

Jarka Arnold, Tobias Kohn, Aegidius Plüss

PROGRAMMING CONCEPTS

in Python with the IDE TigerJython

These pages constitute an interactive
and fully online textbook on program-
ming with Python. It offers a wealth of
complete code examples, exercises, and
ideas on how to bring current topics to
your programming class. Its primary ob-
jective is to build up a solid under-
standing of the concepts of program-
ming, rather than a mere introduction to
the programming language Python.

www.programmierkonzepte.ch/engl

Version 2.7, Last update: Nov 24 2021

tigerjython

Content

1. LEARNING ENVIRONMENT .. 6

1.1 Setup ... 7
1.2 First Steps ... 12
1.3 Instructions for Teachers ... 16
1.4 Raspberry PI ... 17

2. TURTLE GRAPHICS... 21
 2.1 Moving the Turtle ... 22
 2.2 Using colors ... 25
 2.3 Repetition .. 28
 2.4 Functions ... 32
 2.5 Parameters .. 35
 2.6 Variables .. 38
 2.7 Selection .. 41
 2.8 while loop ... 44
 2.9 Recursions ... 50
 2.10 Event control .. 55
 2.11 Turtle objects ... 60
 2.12 Printing .. 66
 2.13 Documentation .. 68

3. 2D GRAPHICS & PICTURES ... 72

3.1 Coordinates ... 73
3.2 for loops ... 77

 3.3 Structured programming .. 81
 3.4 Functions with return value ... 84
 3.5 Global variables,animations .. 87
 3.6 Keyboard controls ... 91
 3.7 Mouse events .. 95
 3.8 Thread graphics... 101
 3.9 Growing and shrinking ... 109
 3.10 Randomness ... 119
 3.11 Image processing .. 125
 3.12 Printing image.. 134
 3.13 Widgets .. 137
 3.14 Documentation GPanel ... 141

4. SOUND .. 146
 4.1 Playing back sound ... 147
 4.2 Sound editing... 151
 4.3 Recording sound ... 154
 4.4 Speech synthesis .. 158
 4.5 Acoustic experiments .. 161
 4.6 Documentation Sound ... 164

5. ROBOTICS .. 165
 5.1 Real and simulation mode ... 166
 5.2 Intelligent robots .. 173
 5.3 Controlling and regulating ... 182
 5.4 Sensor technology ... 186
 5.5 Documentation Robotics ... 193

6. INTERNET ... 197
 6.1 HTML, Strings.. 198
 6.2 Client-Server-Modell, HTTP .. 203
 6.3 Bing, Dictionary ... 208

7. GAMES & OOP ... 212
 7. 1. Objects everywhere ... 213
 7.2 Classes and objects .. 218
 7.3 Arcade Games, Frogger .. 226
 7.4 Gridgames, Solitaire .. 233
 7.5 Sprite animation... 240
 7.6 Documentation .. 252

8. COMPUTER EXPERIMENTS ... 256
 8.1 Simulations .. 257
 8.2 Populations .. 261
 8.3 Statistical Tests ... 275
 8.4 Average Waiting Times ... 284
 8.5 Sequences, Convergence ... 294
 8.6 Correlation, Regression ... 301
 8.7 Complex Numbers & Fractals ... 318
 8.8 Spectral Analysis ... 329
 8.9 Group Dynamics .. 335
 8.10 Random Walk .. 342

9. DATABASES & SQL .. 349
 9.1 Persistence, Files .. 350
 9.2 Online-Databases .. 354
 9.3 Reservation system ... 362
 9.4 Documentation SQL .. 368

10. EFFICIENCY & LIMITATIONS .. 369
 10.1 Complexity with Sorting ... 370
 10.2 Unsolvable Problems .. 378
 10.3 Backtracking .. 385
 10.4 Shortest Path, 3 Jugs .. 394
 10.5 Cryptosystems ... 405
 10.6 Finite-state Machines .. 411
 10.7 Information & Order ... 419

11. APPENDIX .. 427
 11.1 Fun Mind Games ... 428
 11.2 Pitfalls, Rules & Tricks ... 441
 11.3 Bugs & Debugging .. 447
 11.4 Parallel processing .. 455
 11.5 Serial Interface .. 468
 11.6 TCP Sockets .. 471

12. LITERATURE & LINKS... 485

 CONTACT ... 486

This work is not protected by copyright and may be reproduced for any personal use and use in
the classroom. For non-commercial purposes can you make use off all Texts and programs
without reference to their origin.

Version 2.6, July 2016

Autors: Jarka Arnold, Tobias Kohn, Aegidius Plüss

English translation: Kristin and Florian Thalmann

Contact: help@tigerjython.com

Supported by the SVIA / SSIE / SVIA
Swiss Association for computer science in education

mailto:help@tigerjython.com

FOREWORD

In the beginning of the 1950s I had the privilege of using the first available programmable computer

in Switzerland, Zuse 4, to write my doctoral thesis at the Swiss Federal Institute of Technology (ETHZ)

in Zürich. The first steps in our country in computer sciences, later combined under the name

“informatics“, only gradually found their way into cantonal universities, particularly the recognition of

informatics as a separate scientific discipline. At the ETHZ it was only in 1974 that the group of

computer science professors got their own institute in computer science and it took until 1981 for an

entire department of computer science to be initiated. The rapid development of the performance and

the miniaturization of computers significantly contributed to a huge increase in data production. This

led to an enormous expansion of data communications, which could only be accomplished with a more

widespread use of computers. Consequently, communication techniques had to be expanded and

access to them had to be enabled.

On our planet, which is threatened by an increasing growth of populations and their demands for

better living conditions, Switzerland can only maintain its position as one of the wealthiest and most

advanced countries with an exquisite standard of living, and direct democracy by having a modern and

efficient education system with high quality research. However, this requires not only taking account

of the latest developments in the ICT sector in an optimal expansion of our universities, but also a

redesign of the basic education offered in primary and secondary schools, as well as the teaching of

computer science in grammar schools. The three basic skills of reading, writing, and arithmetic are no

longer sufficient to ensure a satisfactory existence in today’s world, where computers play a key role

in personal and professional life. As the former Director of the Federal Office for Education and

Science, I fought for establishing computer science as a separate subject in grammar schools.

A question that arose was whether the integration of ICT subjects in teaching programs was sufficient

enough, or whether a more comprehensive knowledge in computer science, which allows for a better

use of modern computer technology, should be taught. The authors of the learning platform

TigerJython, who demonstrate how the most important concepts in computer science can be taught in

a simple way while using the Python programming language and a didactically designed programming

environment, give a concrete answer to this question. It provides an excellent foundation for their

recommendation that the subject of computer science be introduced in the 6th grade. The following

recently published Swiss press release titled "Die Schweizer EGovernmentAngebote sind im

internationalen Vergleich nur Mittelmass... Die Schweiz ist unter den europäischen Staaten gar auf den

vorletzten Platz zurückgefallen" shows, in my opinion, the need for a timely response to this proposal

since this alarming regression is above all due to an inadequate knowledge of computer science in the

educational institutions. In our rich country with its high density of computers there exists no lack of

the necessary material requirements to correct this relaps!

Prof. Dr. sc. math., Dr. h.c. Urs Hochstrasser, former Director of the Federal Office for Education and

Science (http://hochstrasserurs.blogspot.ch)

PREFACE

TigerJython consists of online teaching materials and a development environment specially designed

for education. The online teaching materials begin with turtle graphics, but then continue on with

topics reaching from the programming of Lego robots, multimedia, and computer games to databases

and stochastic simulations. TigerJython is suitable for use both in the classroom and for self-study due

to its modular structure and its numerous examples and exercises. The first chapters can already be

used in introductory computer science courses in elementary schools (in Switzerland S1). As a whole,

the choice of topics and the material's scope correspond to a basic course of computer science at

grammar schools.

The authors are convinced that education in computer science contributes essentially to the

intellectual development of adolescents. In our opinion, it should already be taught in primary schools

no later than at the age of 12-13 years old, in order to awaken an early enjoyment and interest in

logical and technical thinking in pupils. The first version of the teaching materials were developed in

2013, and this is now the second version with revised and corrected materials. Throughout these

materials we have incorporated our years of experience with students, as well as our experience in

educating computer science teaching staff. Our intention was always to develop the interest and

enjoyment of algorithmic problem solving in girls and boys, and to support teachers.

In this teaching material, any barriers that might prevent someone from entering into programming

are deliberately kept very low, and throughout, the TigerJython programming environment and the

Python programming language are used. The teaching material was formed from a single mold, so to

speak. Much of the content comes from daily environments and problem situations in other school

subjects. This way, the knowledge from computer science class can be applied to other disciplines as

well.

Although Python was developed by Dutchman Guido van Rossum already over 20 years ago, it has

only really become used in schools in recent years and is now experiencing a real 'hype' in many

training institutions. This may be because Python as an interpreted language with its global scope is

very easy to learn, but also because Python can work with very few computer resources and even runs

on micro systems. Also, with our development environment TigerJython we offer a student-friendly

environment that is balanced between simplicity and professionalism. In our opinion, it is particularly

well suited for a computer science class for the following reasons:

Installation on Windows/Mac/Linux consists of copying a single file to the computer. This way,

instructors can immediately start teaching, even in computer labs without administrator rights

The IDE is so simple that absolutely no introductory instruction is necessary for its operation.

Particularly, there is no need to create projects

TigerJython performs a precise error analysis of the program, and outputs error messages that are

understandable by novice programmers

TigerJython contains numerous additional modules that are specifically tailored for the classroom,

such as turtle graphics, coordinate graphics, robotics, and game programming

We hope that with TigerJython and the online teaching materials we are able to pass on some of our

enthusiasm for education in computer science.

Acknowledgements:

We want to thank all of those who contributed to the success of TigerJython with suggestions and

feedback, namely Walter Gander (ETH Zürich), Juraj Hromkovic (ETH Zürich), Theo Heußer

(Gymnasium Hemsbach), Urs Hochstrasser (former Federal Office for Education and Science, Bern).

October 2014. Jarka Arnold, Tobias Kohn, Aegidius Plüss

 Learning Objectives

 You can install the TigerJython development environment on your computer.

 You know how to edit and running a program.

 You know how to change settings.

 You know how to use the console window for simple calculations.

 You know that you can even use TigerJython on the Raspberry PI.

"I think everybody in this country should learn how to program a

computer because it teaches you how to think."

Steve Jobs, The lost interview

Page 6

1.1 SETUP

INTRODUCTION

The development environment of TigerJython is well suited for novice programmers and for

users who work in a protected environment (for example, computer labs without administrator

rights). The distribution of TigerJython consists of a single JAR file that can be downloaded for

free.

 Download TigerJython

The distribution contains all of the components necessary for programming, except for the Java

Runtime Environment (JRE). TigerJython is even capable of running from an external data

storage device (USB-Stick, CD).

TigerJython is an independent platform that works flawlessly with

Windows, Mac and Linux, and even Raspberry Pi.

INSTALLATION

Download the file tigerjython2.jar. Save it to any directory on your hard drive, and if you would

like to, you can create a linked file so that you can start it directly from the desktop. If you are

on Linux, you have to give the JAR file the right to run (executable). You can save all of your

Python programs in the same directory. If you wish to assign a corresponding desktop icon to

the link, you can download it here for Windows and here for Mac/Linux.

GETTING STARTED

Start the TigerJython-Editor

either by clicking on

tigerjython2.jar or by clicking

on the link to the file.

The editor is easy to operate.

There are buttons for New

document, Open, Save, Run

program, Debugger (on/off),

Display console and Settings.

Test it out by typing in some

print-commands, then click on

the green Run program button.

Unlike most other programming

languages, Python can deal

with numbers of any length.

Page 7

http://jython.tobiaskohn.ch/download2.html
http://www.tigerjython.ch/download/tjlogo.ico
http://www.tigerjython.ch/download/tjlogo.ico
http://jython.tobiaskohn.ch/download2.html

EDITING PROGRAM

Write a simple program to create a turtle graphic

When editing, you can use standard

keyboard shortcuts:

 Ctrl+C Copy

 Ctrl+V Paste

 Ctrl+X Cut

 Ctrl+A Select all

 Ctrl+Z Undo

 Ctrl+S Save

 Ctrl+N New document

 Ctrl+O Open

 Ctrl+Y Redo

 Ctrl+F Search

 Ctrl+H Search and Replace

Ctrl+Q Comment out selected lines

 Remove comment

 Ctrl+D Delete row

 Shift+

 Cursor

 Highlight

The example programs used in the tutorial

are chosen so that you are able to use them

easily as templates.

You can select the entire program by

clicking on highlight program code. You can

also select a part of the code by using the

mouse. Use Ctrl+C to copy the highlighted

code to the clipboard and Ctrl+V to paste it

into your TigerJython-editor window.

Our highlighting trick will help

you find the statements that are

mentioned in the text, in the

program.

By clicking on words written in

green, the corresponding

statement is highlighted in the

program.

Page 8

RUNNING THE PROGRAM

Click on the green arrow to run the

program.

The graphic appears in a new window..

If something is wrong with the program, error

messages will appear in the problems window

SETTINGS

 You can make some adjustments under the settings:

Font size, indentation and font colors of the editor

Language (German, English, French)

Default size and background color of the turtle window, pen and turtle color

Additional tools for enabling EV3-robotics, etc.

Page 9

DOCUMENTATION

There are additional modules that are integrated into TigerJython, for example the turtle

graphic. By clicking on the APLU documentation in the Help tab, you can view the

documentation for these libraries.

EXAMPLES

We suggest that you work through the teaching material chapter by chapter. Transfer each

example program individually to the TigerJython editor using highlight program code, Ctrl+C

and Ctrl+V, save them with an appropriate name, and then execute them.

You can also download all of the programs here.

INSTALLATION IN COMPUTER LABS FOR MULTIPLE USERS

TigerJython is limited to a single JAR file tigerjython2.jar, so it is easily removable from any

computer. No installation process is required and no registry entries are made. For

user-definable options, a configuration file named tigerjython2.cfg is used, which is usually

automatically generated in the home directory of tigerjython2.jar. In computer labs, this file

can be managed by a system administrator. More information can be found here.

Note: In rare cases in computer labs, the JARs of APLU libraries (e.g. aplu5.jar) used by Java

are copied into <jrehome>/lib/ext. This may lead to conflicts with TigerJython which uses

specifically configured APLU libraries.

DESKTOP LAUNCHER FOR UBUNTU

Download image file tjlogo64.png from here and copy it into the directory where is

tigerjython2.jar.

For newer versions of Ubuntu, the gnome-panel must be installed:

sudo apt-get install gnome-panel

Generating the launcher file by pressing Alt-F2 and entering

gnome-desktop-item-edit --create-new ~/Desktop

The dialog box fill (path to adjust tigerjython2.jar):

Click on the icone and specify the downloaded image file tjlogo64.png. Confirm with OK.
Page 10

http://examples.tigerjython.ch

STARTING A PROGRAM WITHOUT THE TIGERJYTHON IDE

Since Python is an interpreted language, it is necessary that the interpreter is started to

execute a program script. Under Windows you may run a script from the command line with

java -jar jython.jar <prog.py>

provided that the current directory contains jython.jar and the script.

To ensure that the additional modules from the APLU library are automatically loaded, they

have to be included in the JAR file. Here you can download a modified jython.jar (named

ajython.jar) that contains the modules. Check the readme.txt in the download to get more

information how to proceed. Be aware that some TigerJython specific language features are

missing, especially the repeat structure and some input dialogs. However it is not necessary to

install Python nor Jython.

Page 11

1.2 FIRST STEPS

INTRODUCTION

A computer program typically consists of several statements. With Python, you can immediately

execute single statements. This approach is a particularly good way to try out Python for the

first time or test something out. To get started you have to click on the console icon, which

opens the console window. On the command line that starts with >>>, you can type the

instruction and then end it with the ENTER key (carriage return). As in any other ordinary

editor, you can easily use the cursor keys to move back and forth on the command line and

delete or insert single characters. As soon as you press ENTER the command line is executed,

unless it is a multi-line command. In this case, the command is only executed after you press

ENTER repeatedly.

You can mark already processed statements with the mouse, and copy it to the clipboard using

Ctrl+C. You can paste the contents of the clipboard when you are on the command line using

Ctrl+V.

The underline symbol is a placeholder for the result of a previous calculation, using Cursor-Up

you can get the last command and using Cursor-Left/Cursor-Right edit.

GETTING TO KNOW PYTHON

You can vary the following proposals

as you wish, how ever you might find

them to be more interesting or fun.

Start TigerJython and select the

Console button.

Start by typing the examples below to

get to know the four basic arithmetic

operations:

>>> 4 + 13

 17

>>> 2.5 - 5.7

 -3.2

>>> 1356 * 22345

 30299820

>>> 1 / 7

 0.14285714285714285

As you see, you can use whole numbers or decimals. The whole numbers are called integer

(int) and the decimals are called float.

You can write several operations on a single line. Pay attention to the order of operations

that applies, where * and / bind more strongly than + and -, and with operations of the same

rank, the expression is evaluated from left to right. You can put the operations that belong

together in parentheses. (Square and curly brackets have different meanings):

Page 12

>>> (66 - 12) * 5 / 6

 45.0

>>> 66 - 12 * 5 / 6

 56.0

The integer division and the remainder (modulo operation) are also important:

>>> 5 // 3

 1

>>> 5 % 3

 2

Python can easily manage long numbers without a problem, for example with the use of the

power operator:

>>> 45**123

 22138041353571795138171990088959838587798501812515796

 35495262099494113535880540560608088894435720496058262

 03407737866682728901508127084151522949268748976128137

 6128136645054322872994134741020388901233673095703125L

There are a number of built-in functions, for example:

>>> abs(-9)

 9

>>> max(1, 5, 2, 4)

 5

Many other functions are available only after you import the respective modules. You can

import in two ways. In the first way, you must precede a function with its module name

followed by a dot. In the second way, you can call the function directly.

>>> import math

>>> math.pi

 3.141592653589793

>>> math.cos(pi)

 -1

>>> from math import *

>>> pi

 3.141592653589793

>>> sin(pi)

 1.2246467991473533e-16

Here you can see that a computer program never calculates exactly, since sin(pi) would have to

be exactly 0.

A succession of letters and punctuation marks is called string and you can define it by using

single or double quotes. With the print command, you can write strings and other values to an

output window. The comma is used as a separator.

>>> print "The result is", 2

Produces in the output window: The result is 2

As in mathematics, you can assign values to variable names. To do this, use an identifier of one

or more letters. Some characters are not allowed such as blank spaces, umlauts, accents and

most other special characters. One benefit of using variables is to achieve a previously

calculated result faster. Quite conveniently, the already known variables are listed in the right

section of the console window.

>>> a = 2

>>> b = 3

>>> sum = a + b

>>> print "The sum of", a, "and", b, "is", sum

Produces in the output window: : The Sum von 2 and 3 is 5

Page 13

A one-dimensional collection of arbitrary data is called a list. Lists are a highly convenient and

flexible data type in all programming languages. In Python you simply write list items in square

brackets and you can also display them in the output window by calling print.

>>> li = [1, "chicken", 3.14]

>>> print li

In the output window: [1, "chicken", 3.14]

Lists and many other objects have associated functions which are called methods. For example,

you can add a new element to the end of the list with the method append().

>>> li.append("egg")

>>> print li

In the output window: [1, 'chicken', 3.14, 'egg']

You can also define your own functions. For this purpose, you will use the keyword def. You

can return values using return. After you define it, you can call your function as you would with

any other built-in function:

>>> def sum(a, b):

>>> return a + b

>>> sum(2, 3)

 5

GIVING THE TURTLE COMMANDS

The console is very useful for quickly trying out a few

commands or functions. For example, if you want to

familiarize yourself with turtle graphics, first import the

module gturtle and then create a window with a turtle in

it using the command makeTurtle().

>>> from gturtle import *

>>> makeTurtle()

Afterwards, you have all the commands of turtle

graphics at your disposal. For example:

forward(100) short: fd(100) Move 100 steps (pixels) forward

back(50) short: bk(50) Move 50 steps backwards

left(90) short lt(90) Rotate 90° to the left

right(90) short: rt(90) Rotate 90° to the right

clearScreen() short: cs() Delete all traces and place the turtle in the middle

Example:

>>> fd(100)

>>> dot(20)

>>> rt(90)

>>> fd(100)

>>> dot(20)

>>> home()

Page 14

With the keyword repeat you can execute one or more

statements repeatedly. If you want to repeat a series of

commands as a command block, you have to indent them

by the same amount.

>>> repeat 4:

 fd(100)

 rt(90)

As shown above, you can combine several statements

under their own name by defining your own function.

The main advantage of functions is that you can call

them by their name as often as you would like, instead

of writing down their code in its entirety each time.

>>> def drawSquare():

 repeat 4:

 fd(10 0)

 rt(90)

>>> drawSquare()

>>> rt(180)

>>> drawSquare()

It might be fun to try some more turtle commands on your own. You can find an overview of

the commands in the chapter Turtle Graphics under dokumentation. In that chapter you will

also systematically learn how to write entire programs.

Page 15

1.3 INSTRUCTIONS FOR TEACHERS

The teaching material has an internal methodological structure that transitions "from simple

to complex". Later chapters apply the basic knowledge and concepts that are covered in the

preceding chapters. In total the material covers around 2-3 years of basic lessons. Depending

on the grade of the class and the number of lessons available, only selected parts of the

material can be taught, and missing terms and concepts have to made up. Since turtle graphics

are a great way to be introduced to the material, most basics are taught in this chapter.

Based on our teaching experience, we suggest the following minimal program variants.

1. Turtle graphics and student projects (as an introduction to computer science in secondary

education S1 and S2, 1-2 hours per week for a year)

2. Selected topics in turtle graphics and the chapter on robotics (as an introduction to

computer science or for computer science workshops, if Lego EV3 or NXT-robots are

available, at least 10-20 lessons)

3. Selected topics in turtle graphics and game programming (1-2 hours per week for a year at

higher schools)

4. Selected topics in turtle graphics, coordinate graphics and applications in school subjects

(as an introduction to computer science with interdisciplinary applications, 1-2 lessons per

week for a year)

5. The first topics of turtle graphics (as an introduction to programming in ICT courses, 4-10

lessons)

We decided to use English identifiers and comments in the programs. This not only helps to

facilitate the translation into other languages, but also corresponds with the trend towards the

internationalization of program code.

As an aid for teachers there is a keyword list including important concepts in computer

science for each topic.

Solutions to the exercises:

If you are working at an educational institution you can get the solutions of the exercises by

writing an e-mail to help@tigerjython.com. The request must include the following verifiable

information: name, address, educational institute, and e-mail address. By requesting the

solutions, you agree that you will use them strictly for personal use and that you will not pass

them on to anyone else.

Copyrights:

This work is not copyrighted and may be reproduced freely for personal use and for use in a

classroom. For non-commercial purposes, texts and programs may be used without reference

to their source.

Page 16

1.4 RASPBERRY PI

INTRODUCTION

You can use TigerJython on the Raspberry Pi in

order to learn the Python programming language or

in order to access its sound system and GPIO port.

Although TigerJython starts slightly slower than the

pre-installed Python with IDLE, you will have a more

sophisticated graphical development environment

with many library routines already integrated (turtle

graphics, robotics, game development, etc.) at your

selection.

INSTALLATION

The easiest way to get started is downloading the operating system installer NOOS from

http://www.raspberrypi.org/downloads copying the content to a SD card (a minimum of 8

GB), and choosing the operating system Raspbian (a Linux Debian variant) when starting up.

Since the distribution already includes a JRE, you will only need to copy tigerjython2.jar into a

directory, for example /home/pi/tigerjython, and give the file execution rights with the file

manager (under File properties).

To start TigerJython, type the following command into a terminal (console):

java -jar /home/pi/tigerjython/tigerjython2.jar

In order to use the GPIO module, TigerJython requires administrator rights. That is why you

should always start TigerJython with a preceding sudo:

sudo java -jar /home/pi/tigerjython/tigerjython2.jar

Instead of typing this command each and every time, you can specify in the file manager that

files with the file type .jar are always executed using this command. You can also create a shell

script. To make it even easier, you can make a desktop link proceeding as follows:

Right click and copy the icon IDLE and then paste it onto the desktop, creating a new link

icon.

In order to edit the associated link script, right click on this icon and choose Leafpad. You

can now adjust the entries accordingly and even specify a TigerJython logo (download).

Here is an example:

After saving, you can start TigerJython by clicking on the new icon. You will need a little bit of

Page 17

https://www.raspberrypi.org/downloads

patience until the IDE has started on the Raspberry Pi (about one minute). Fortunately, as you

will notice, running Python programs is surprisingly fast. We recommend to use a fast SD card

(class 10) and the Raspberry Pi 2 Model B.

DIGITAL INPUT/OUTPUT USING THE GPIO PORT

Raspberry Pi provides you with 17 digital input/output channels that can be tapped on a 26-pin

connector (new version 40-pin also supports). Each channel can be defined as an output or an

input with either an internal pull-up resistor, a pull-down resistor, or without a resistor. There

are also 5V, 3.3V, and ground pins available on the connectors. The input voltage must

never exceed 3.3V, so you should not connect external 5V-logic outputs directly to the

inputs.

In TigerJython, you will find the class GPIO in the module RPi_GPIO, using which you can easily

address the IO ports. The module uses the library Pi4J by Robert Savage, but corresponds to

the module RPi.GPIO. All the necessary files are included in the distribution of TigerJython.

By default, the pins of the GPIO ports are used with the pin numbers 1..26. Each pin can be

defined with GPIO.setup() as input or output channel. With GPIO.output(channel, state) can

you set an output value. With GPIO.input(channel) can you read und return the current input

value. You find the detailed documentation under the menu option Help > APLU Documentation.

In order to test it, you simply connect an

LED to a series resistance between pin 6

(ground) and pin 12, whereby you have to

try out the polarity of the LED (it is not

destroyed due to an incorrect polarity). If

you have a key switch available, you can

connect it between pin 6 (ground) and pin

26.

In your program you first define channel

12 as an output and make the LED blink

10 times per second:

from RPi_GPIO import GPIO

GPIO.setup(12, GPIO.OUT)

while True:
 GPIO.output(12, 1)
 GPIO.delay(100)
 GPIO.output(12, 0)
 GPIO.delay(100)

For the demonstration of an input port you connect a key switch at pin 26. Typically you will

need a few flags, so you can turn on the blinking by pressing the button and turn it off by

pressing it again.

from RPi_GPIO import GPIO

pin numbers
switch = 26
led = 12

print "Press button turn blinking on/off"

GPIO.setup(led, GPIO.OUT)
GPIO.setup(switch, GPIO.IN, GPIO.PUD_UP)

Page 18

buttonPressed = False
blinking = False
ledOn = False

while True:
 v = GPIO.input(switch)
 if not buttonPressed and v == GPIO.LOW:
 buttonPressed = True
 blinking = not blinking

 if buttonPressed and v == GPIO.HIGH:
 buttonPressed = False

 if blinking:
 if ledOn:
 ledOn = False
 GPIO.output(led, GPIO.LOW)
 else:
 ledOn = True
 GPIO.output(led, GPIO.HIGH)
 else:
 ledOn = False
 GPIO.output(led, GPIO.LOW)
 GPIO.delay(100)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

In the loop you first get the current state of the key switch (you "poll" it). When pressed, it

connects GND to the input on pin 26, therefore input(26) returns GPIO LOW or 0. When you

release the button, it causes the internal pull-up resistor to set the input to logic HIGH (3.3V),

without needing to create the voltage from the outside.

The use of the key switch as an on/off switch is a little tricky, because despite the constant

polling you have to convert the turning on/off into an event that only occurs when the switch

goes down. For this you use a flag buttonPressed, which you set to True upon the first key

pressing. After that you do not walk through the respective part of the code again, until you

have released the switch and pressed it again.

Since the loop is also responsible for the flashing, you use a flag blinking, that represents the

on/off status. Finally, you have to remember with the flag ledOn, whether in a specific

iteration of the loop the LED should be turned on or off.

Because you are not sure if the LED is lit up at the moment of switching off, you switch it off in

the last else. It is a small imperfection that after that, the program will still always run through

that code.

An electronic engineer knows that when a key is pressed it does not usually make immediate

contact (it "bounces"). However, since the loop is only repeated after 100 ms due to the

delay(100), we can assume that the "bouncing" will have ended.

USING EVENTS

It is much easier to use the event model. The pressing and releasing the button is here

regarded as an event that calls automatically a function onButtonPressed(). There, you only

need the flag blinking reverse.

Page 19

from RPi_GPIO import GPIO

def onButtonPressed(channel, state):
 global blinking
 blinking = not blinking

pin numbers
switch = 26
led = 12

print "Press button to turn blinking on/off"
GPIO.setup(led, GPIO.OUT)
GPIO.setup(switch, GPIO.IN, GPIO.PUD_UP) # pull-up resistor
GPIO.add_event_detect(switch, GPIO.FALLING) # event on falling edge
GPIO.add_event_callback(switch, onButtonPressed) # register callback

blinking = False
while True:
 if blinking:
 GPIO.output(led, 1)
 GPIO.delay(100)
 GPIO.output(led, 0)
 GPIO.delay(100)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

To use events, you must specify with the method add_event_detect(), whether you want to

respond to the transition from low to high or high to low or both. After that you register with

add_event_callback() a function to be called when the event occurs.

Page 20

Learning

Objectives

 You can write a simple program and draw figures on the screen with the turtle.

 You can change the color of the lines and areas, and also adjust the line width.

 You know how the turtle can repeat statements several times.

 You know how to run parts of the program only under certain conditions.

 You can define your own commands with parameters.

 You know what variables are and you can use them in your programs.

 You know what recursion is and you can write simple recursive programs.

 You can create turtle objects and use multiple turtles simultaneously.

"A turtle is located at a certain place and it also has a certain

viewing direction. Therefore, a turtle is like a person... children can

identify with the turtle and can transfer their knowledge of their

bodies into the learning of geometry."

Seymour Papert

Page 21

2.1 MOVING THE TURTLE

INTRODUCTION

Programming means giving a machine commands in order to control it. The first such machine

that you will control is a small turtle on the screen, which we simply call turtle. What can this

turtle do and what do you have to know in order to control it?

Turtle commands are written in English and are always followed by a pair of parentheses, which

may contain further details about the respective command. Even if no further information is

required, an empty pair of parentheses must follow. The case of the letters (either upper case or

lower case) must always stay consistent.

The turtle can move within its window and draw a trail, but before it can get going, you must

first instruct the computer to create such a turtle. You can do this with the command

makeTurtle(). In order to then move the turtle, you can use three commands: forward(distance),

left(angle), and right(angle).

PROGRAMMING CONCEPTS: Edit source, run program, sequence

YOUR FIRST PROGRAM

This is how your first program with the turtle looks.

Click on Mark program code, copy it and paste it into

the TigerJython-Editor. Execute it by clicking on the

green start button. The turtle will draw a right triangle.

The turtle commands are all stored in a file (a so-called

module) named gturtle. With the import command you

tell the computer that it should make certain commands

in a module available. The command makeTurtle()

creates a window with a turtle that you can control. The

following lines of the code consist of commands (also

called statements) for the turtle itself.

from gturtle import *

makeTurtle()

forward(141)
left(135)
forward(100)
left(90)
forward(100)

MEMO

At the beginning of each turtle program you must first load the turtle module, and then create

a new turtle:

from gturtle import *
makeTurtle()

Page 22

Afterwards, you can give any amount of commands to the turtle. The three commands that the

turtle surely understands are:

forward(s)

left(w)

right(w)

Move forward by distance s (in pixels).

Rotate left by angle w (in degrees).

Rotate right by angle w (in degrees).

YOUR OWN TURTLE IMAGE

You can also specify your own file while calling

makeTurtle(), which is then used as the turtle picture.

This way, you can give the program your own personal

touch. Here you can use the file beetle.gif from the

directory sprites of the TigerJython distribution. Please

note that you must put the file name in quotation

marks.

With the following code, the turtle will draw a cross with

filled circles at the end points.

from gturtle import *

makeTurtle("sprites/beetle.gif")

forward(100)
dot(20)
back(100)
right(90)

forward(100)
dot(20)
back(100)
right(90)

forward(100)
dot(20)
back(100)
right(90)

forward(100)
dot(20)
back(100)
right(90)

MEMO

If you want to use a different image for the turtle, as seen in the above example, you must

first create an icon with an image editor. Normally, turtle images have a size of 32x32 pixels

and a transparent background and are typically in GIF or PNG format. The image file should be

stored in the subfolder sprites of the same directory in which your program is located.

In the above program you are using the new command back(), with which the turtle moves

backwards, as well as dot(), with which the turtle draws a filled circle, the radius of which you

can specify (in pixels).

Page 23

EXERCISES

1. Draw two nested squares with the turtle.

2. Using the command dot(), try to draw the following

figure:

3. The House of Saint Nick is a drawing game for kids. The goal is

to draw the house using exactly 8 lines, without passing

through the same route twice. Draw the House of Saint Nick

using the turtle.

4*. Create your own turtle icon with an image editor and

draw the adjacent picture with it. The side length of the

squares is 100. It does not matter where the turtle

begins or ends.

Page 24

2.2 USING COLORS

INTRODUCTION

The turtle draws its trail using a colored pen, for which it knows some additional instructions. As

long as the pen is down, the turtle draws a trail. Using the statement penUp(), it moves its pen

up and stops drawing. With penDown(), the pen is brought back down to the drawing area, so

that a trail is drawn again.

Using setPenColor(color) you can select the color of the pen. It is important that you put the

name of the color inside quotation marks. As always in programming, the turtle knows only

English color names. The following list is not complete, but here are some examples: yellow,

gold, orange, red, maroon, violet, magenta, purple, navy, blue, skyblue, cyan, turquoise,

lightgreen, green, darkgreen, chocolate, brown, black, gray, white.

PROGRAMMING CONCEPTS: Drawing with colors

COLOR AND PEN WIDTH

This program makes the turtle draw a candle with a

wide red line. You can set the line width in pixels using

the command setLineWidth().

You can draw the yellow flame with the command

dot(). There is one part of the program where the turtle

moves without drawing a line, because the pen was

lifted with the command penUp(). After penDown() is

called, the turtle draws again.

hideTurtle() makes the turtle invisible.

from gturtle import *

makeTurtle()

setLineWidth(60)
setPenColor("red")
forward(100)
penUp()
forward(50)
penDown()
setPenColor("yellow")
dot(40)
setLineWidth(5)
setPenColor("black")
back(15)
hideTurtle()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO
Page 25

The drawing pen of the turtle can change color with use of the statement setPenColor(color).

With penUp() the turtle stops drawing, and with penDown() it continues to draw again. You

can control the width of the line using setLineWidth(width).

The turtle knows the so-called X11 colors. There are a few dozen names of colors which you

can find on the Internet http://cng.seas.rochester.edu/CNG/docs/x11color.html . You

can select all of these colors with the setPenColor(color) statement.

FILLED AREAS

You can fill almost any area with colors using the turtle.

With the command startPath(), you tell the turtle that

you intend to fill an area. The turtle remembers its

current position as the starting point of a sequence of

lines. You then move around the area with the turtle

and finally call the command fillPath(), which connects

the start point to the end point and fills in the resulting

area with color. You can adjust the fill color with

setFillColor(color).

Lines starting with the hash symbol (#) are called

comments, which are ignored during the execution of

the program. You can add these to make notes for

yourself or others.

For example, you could specify under which program name the file is stored, or add text that

explains your code.

from gturtle import *

makeTurtle()

setPenColor("sandybrown")
setFillColor("sandybrown")
startPath()
forward(100)
right(45)
forward(72)
right(90)
forward(72)
right(45)
forward(100)
fillPath()
hideTurtle()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

If you want to fill an area defined by a sequence of lines, you begin drawing with the command

startPath(). Using fillPath(), the start point and the end point are connected and the

enclosed area is filled.

You can write comments by starting a code line with the # symbol.

EXERCISES

Page 26

1. Draw a regular hexagon with the turtle and make each side a

different color.

2. Draw a traffic light. You can draw the black rectangle with a pencil

width of 80 and the circles with dot(40).

3. The turtle should draw the adjacent image.

Page 27

2.3 REPETITION

INTRODUCTION

Computers are particularly good at repeating the same instructions (including turtle commands)

over and over again. In order to draw a square, you do not need to enter the commands

forward(100) and left(90) four times in a row. It is rather sufficient to tell the turtle to simply

repeat the two statements four times.

With the instruction repeat, you tell the turtle that some commands should repeat a designated

number of times. In order for the computer to know that these commands belong together

(forming a program block), they must be equally indented. Typically, we use three spaces for

indentation.

PROGRAMMING CONCEPTS: Simple repeat loop, repeat loop instead of code duplication

REPEAT - STRUCTURE

In order to draw a square, the turtle has to move

straight ahead four times and make a total of four 90°

turns. If you were to write out each command

separately, the program would become quite long.

With the instruction repeat 4: you tell the turtle to

repeat the indented lines four times. Make sure not to

forget the colon!

from gturtle import *

makeTurtle()
repeat 4:
 forward(100)
 left(90)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

With repeat n: you tell the computer that it should repeat one or more instructions n times

before it executes further instructions. Everything that is to be repeated must be placed below

repeat, and must also be indented.

repeat number:
 Instructions, that
 should be
 repeated

Page 28

REPEATING SOUNDS

A typical example of a repetition is the Dah-Dih-Dah-Dih

sound of fire trucks. Using the turtle you can easily

create such a tone sequence, and simultaneousely for

fun, you can let the turtle draw a zigzag curve. You can

generate a pure tone with playTone(), where you

specify its pitch as a frequency (in Hertz) and its

duration (in milliseconds).

from gturtle import *

makeTurtle()

setPos(-200, 0)
right(45)

repeat 5:
playTone(392, 400)

 forward(50)
 right(90)
 playTone(523, 400)
 forward(50)
 left(90)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

With setPos(x, y) you can directly put the turtle into a designated position in the window

without actually making a trace. The two numbers, x and y, are the coordinates relative to the

zero point, which is located at the middle of the window. (The coordinate range depends on the

size of the window.)

You can also specify the pitch of playTone() using a letter according to the musical scale, for

example with c, d, etc., or in the one-line octave with c', d', etc. (or with two or three

apostrophes). You have to put quotation marks around the pitch. If you want, you can also

indicate a musical instrument to be used (available are: piano, guitar, harp, trumpet,

xylophone, organ, violin, panflute, bird, seashore). Try it once with:

Lower Ton: playTone("g'", 400, instrument = "trumpet")

Higher Ton: playTone("c''", 400, instrument = "trumpet")

NESTED REPEATS

A square can be made quite easily with a four-fold repetition. Now let's draw 20 squares, with the

squares slightly rotating against each other.

Page 29

You first have to nest the two repeat statements into

each other. In the inner program block, the turtle

draws a square and then turns by 18 degrees to the

right. The outer repeat statement repeats this 20

times. Please make sure to correctly indent the

statements that should be repeated.

If you hide the turtle with hideTurtle(), it will finish

drawing quicker.

from gturtle import *

makeTurtle()

hideTurtle()
repeat 20:
 repeat 4:
 forward(80)
 left(90)
 right(18)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The repeat commands can be nested. It is very important to have the correct indentations in

the statements which are to be repeated.

EXERCISES

1. Draw a staircase with seven steps.

2. Draw a star using the back() command.

3. You can draw a “real” star with rotation angles

140° and 80°.

Page 30

4. Draw the following figure using two nested repeat

statements. The inner repeat block will draw a

square.

5. Draw a pearl necklace.

6. Draw a bird.

Page 31

2.4 FUNCTIONS

INTRODUCTION

In a larger picture, you may want to use figures such as triangles and squares repeatedly.

However, the turtle itself does not know what a triangle or a square is. Therefore you have to

explain to the turtle how to draw the figures each time with a complete program code. Is this

possible in an easier way?

It is! You can teach the turtle new commands, for example how to draw a square or a triangle.

Then you simply have to tell the turtle that it should execute such a command, namely draw a

square or a triangle. In order to define a new command, you can choose any given identifier, for

example square, and then write def square(): After that, you then write down all of the

instructions belonging to the new command. In order for the computer to know what is part of

the new command, the instructions must be indented.

PROGRAMMING CONCEPTS: Modular programming, function definition, function call

DEFINING YOUR OWN COMMAND

In this program you will use def to define the new

command square(). Afterwards, the turtle will know

how to draw a square, however, it will not have drawn

one yet.

Using the command square() the turtle draws a square

at its current position with a side length of 100. In our

example there is a red, a blue, and a green square.

from gturtle import *

def square():
 repeat 4:
 forward(100)
 left(90)

makeTurtle()
setPenColor("red")
square()
right(120)
setPenColor("blue")
square()
right(120)
setPenColor("green")
square()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 32

MEMO

You can define a new command using def identifier(): Choose a name that reflects the

activity of the command. All instructions that belong to the new command must be indented

def identifier():
 instuctions

Do not forget to put brackets and the colon after the identifier! In Python you also call new

commands functions. When you use the function square() one could also say that the function

is "called".

We should get used to placing the function definitions in the program header, since they have

to be defined before they are called

EXERCISES

1. Define a command hexagon() with which you can draw a

hexagon, then use this command to draw the adjacent

figure.

2a. Define a command that draws a square standing

on one of its corners, then use this command to

draw the adjacent figure.

2b*. You can draw filled squares by using the

commands startPath() and fillPath().

3a. In this task, you will experience how to solve a problem step by

step using functions [more...].

Define a function arc() that tells the turtle to draw an arc and

rotate a total of 90 degrees to the right. You can set the

maximum value of the turtle's speed with speed(-1).

Page 33

3b. Add the function petal() to the program, which will draw two

arcs. At the end, the turtle should be back in the original starting

direction.

3c. Add another command to the program so that the petal() is

drawn as a filled red leaf (without a visible border line).

3d. Extend the program with the function flower(),

which draws a five-petalled flower. To make the

turtle draw the flower even faster, use the

function hideTurtle() to make the turtle invisible.

3e*. Add a stem to the flower.

Page 34

2.5 PARAMETER

EINFÜHRUNG

Beim Befehl forward() gibst du in Klammern an, um welche Strecke die Turtle vorwärts gehen

soll. Dieser Wert in den Klammern gibt an, wie weit vorwärts gegangen wird. Er präzisiert den

Befehl und heisst ein Parameter: Hier ist es eine Zahl, die bei jeder Verwendung von forward()

anders sein kann. Im vorhergehenden Kapitel hast du einen eigenen Befehl square() definiert.

Im Unterschied zu forward() ist die Seitenlänge dieses Quadrats aber immer 100 Pixel. Dabei

wäre es doch in vielen Fällen praktisch, die Seitenlänge des Quadrats anpassen zu können. Wie

geht das?

PROGRAMMIERKONZEPTE: Parameter, Parameterübergabe

BEFEHLE MIT PARAMETER

Auch in diesem Programm definieren wir ein Quadrat.

An Stelle der leeren Parameterklammer bei der

Definition der Funktion square(), setzen wir den

Parameternamen sidelength ein und verwenden diesen

beim Aufruf von forward(sidelength).

Du kannst dadurch square mehrmals verwenden und bei

jeder Verwendung eine Zahl für seite angeben.

Mit square(80) zeichnet die Turtle ein Quadrat mit der

Seitenlänge von 80 Pixeln, mit square(50) eines mit

der Seitenlänge von 50 Pixeln.

from gturtle import *

def square(sidelength):
 repeat 4:
 forward(sidelength)
 left(90)

makeTurtle()
setPenColor("red")
square(80)
left(180)
setPenColor("green")
square(50)

Programmcode markieren (Ctrl+C kopieren, Ctrl+V einfügen)

MEMO

Parameter sind Platzhalter für Werte, die jedes Mal anders sein können. Du gibst den

Parameter bei der Definition eines Befehls hinter den Befehlsnamen in einem Klammerpaar an.

def befehlsname(parameter):
 Anweisungen, die
 parameter verwenden

Der Parametername ist frei wählbar, sollte aber seine Bedeutung wiederspiegeln. Bei der

Page 35

Verwendung des Befehls gibst du wieder in Klammern den Wert an, den der Parameter haben

soll.

befehlsname(123)

Hier wird der Parameter im ganzen Befehl durch 123 ersetzt.

MEHRERE PARAMETER

Befehle können mehrere Parameter besitzen. Beim

Quadrat kannst du zum Beispiel mit def

square(sidelength, color) als Parameter seite und

farbe wählen.

Du kannst dann quadrat viel flexibler verwenden.Mit

square(100, "red") zeichnet die Turtle ein rotes

Quadrat mit der Seitenlänge von 100 Pixeln, mit

square(80, "green") ein grünes mit der Seitenlänge

von 80 Pixeln.

from gturtle import *

def square(sidelength, color):
 setPenColor(color)
 repeat 4:
 forward(sidelength)
 left(90)

makeTurtle()
square(100, "red")
left(120)
square(80, "green")
left(120)
square(60, "violet")

MEMO

Befehle können mehrere Parameter besitzen. Diese werden in der Parameterklammer getrennt

mit Komma eingegeben.

def befehlsname(parameter1, parameter2....):
 Anweisungen, die parameter1
 und parameter2 verwenden

Die Reihenfolge der Parameter in der Parameterklammer bei der Definition des Befehls muss

mit der Reihenfolge der Werte beim Aufruf des Befehls übereinstimmen.

AUFGABEN

1. Definiere einen Befehl triangle(color), mit welchem die

Turtle farbige Dreiecke zeichnen kann. Zeichne 4 Dreiecke

in den Farben red, green, blue und violet

Page 36

2. Definiere einen Befehl colorCircle(radius, color), mit

welchem die Turtle einen farbigen Kreis zeichnet. Du

kannst dabei den Befehl rightArc(radius, angle)

verwenden. Zeichne die nebenstehende Figur.

3. Das folgende Programm zeichnet leider 3 gleich grosse Fünfecke, aber nicht wie gewünscht

verschieden grosse. Warum nicht? Korrigiere es.

from gturtle import *

def pentagon(sidelength, color):
 setPenColor(color)
 repeat 5:
 forward(90)
 left(72)

makeTurtle()
pentagon(100, "red")
left(120)
pentagon(80, "green")
left(120)
pentagon(60, "violet")

4. Du sagst der Turtle mit dem Befehl segment(), sich um eine bestimmte Strecke s vorwärts

zu bewegen und sich um einen bestimmten Winkel w nach rechts zu drehen:

def segment(s, w):
 forward(s)
 right(w)

Schreibe ein Programm, das diesen Befehl 92 mal mit s = 300 und w = 151 ausführt. Mit

setPos(x, y) kannst du die Turtle zu Beginn geeignet im Fenster positionieren.

5*. Die Turtle soll zwei, drei oder vier segment-Bewegungen ausführen. Schau dir die schönen

Grafiken in folgenden Fällen an:

Anzahl Segmente Werte Anzahl Wiederholungen

2 forward(77)

right(140.86)

forward(310)

right(112)

37

3 forward(15.4)

right(140.86)

forward(62)

right(112)

forwad(57.2)

right(130)

46

4 forward(31)

right(141)

forward(112)

right(87.19)

forward(115.2)

right(130)

forward(186)

right(121.43)

68

Page 37

2.6 VARIABLES

INTRODUCTION

In the previous chapter, you drew squares with side lengths that were firmly implemented in the

program. There may also be times when you want to enter the side length with an input dialog.

In order to do this, the program needs to store the entered number as a variable. You can see

the variable as a container, the content of which you can access with a name. So, in short, a

variable has a name and a value. You can freely choose the name of a variable, but they

cannot be keywords or names with special characters. Moreover the name cannot start with a

number.

With the notation a = 2 you create the container that you

can access with the name a and put the number 2 inside. In

the future we will say that you are defining a variable a

and assigning a value to it.

a = 2 : variable definition (assignment)

You can only put one object into the container. Later in

your program, when you want to store another number 3

under the name a, write a = 3 [more...].

a = 3 : new assignment

So then what happens when you write a = a + 5? You take the number that is currently in the

container, accessed with the name a, and therefore the number 3 is added to the number 5. The

result adds up to 8 and it is again saved under the name a.

Therefore, the equal sign does not mean the same thing in computer programming as it does in

mathematics. It does not define an equation, but rather a variable definition or an assignment

[more...].

PROGRAMMING CONCEPTS: Variable definition, assignment

READING AND MODIFYING VARIABLE VALUES

You can assign a value between 10 and 100 to the

variable x with the help of the dialog box. You change

this value in the following looping structure, which

results in drawing a spiral.

from gturtle import *

makeTurtle()

Page 38

x = inputInt("Enter a number between 5 and 100")
repeat 10:
 forward(x)
 left(120)
 x = x + 20

MEMO

With variables you can store values that you are able to read and change in the course of the

program. Every variable has a name and a value. You can define a variable and assign a value

to it using an equal sign [more...].

DISTINGUISHING VARIABLES AND PARAMETERS

You should be aware of the differences between a variable and a parameter. Parameters

transport data into a function and are only valid within that function, whereas variables are

possible anywhere. When calling a function, you give each of its parameters values that can be

used as variables within the function's scope.

To make the difference clear, use the parameter

sidelength in the function square() in your program.

When you input a number with inputInt(), it stores it

as the variable s. When you call square(), you then

pass the variable value of s on to the parameter

sidelength.

from gturtle import *

def square(sidelength):
 repeat 4:
 forward(sidelength)
 right(90)

makeTurtle()
s = inputInt("Enter the side length")
square(s)

MEMO

You have to distinguish between the variable s and the parameter sidelength. In the definition

of a function parameters are placeholders and can be regarded as variables that are only

known inside of the function each time it is called. If you call the function with a variable, the

variable's value is used in the function. Thus, square(length) draws a square with a side length

of length [more...].

THE SAME NAME FOR DIFFERENT THINGS

As you already know, parameters and variables should be

named after what they relate to, but they can be chosen

arbitrarily. Because of this, it is common to choose the same

name for parameters and variables. No naming conflicts

arise. However, you must remember the distinction in order

to understand the program.

Page 39

from gturtle import *

def square(sidelength):
 repeat 4:
 forward(sidelength)
 right(90)

makeTurtle()
sidelength = inputInt("Enter the side length")
square(sidelength)

MEMO

Although you can use the same name for a specific parameter and variable, you should be

able to conceptualize them separately.

EXERCISES

1. After entering the number of corners into the dialog box,

the turtle should draw a regular n-gon. For example,

when you input the number 8, an 8-gon (octagon) should

be drawn. The program should calculate the appropriate

rotation angle. Put yourself in the position of the turtle

and think how far you have to rotate yourself in order to

draw the next side. Remember how we drew an

equilateral triangle. .

2. After entering an angle in the dialog box, the turtle draws

30 lines, each with a side length of 100, and after each of

which it rotates left by the given angle. Experiment with

different angles and draw some cool pictures. You can

speed up the drawing by with hideTurtle().

3. Tell the turtle to draw 10 squares. First define a command

square with the parameter sidelength. The side length of

the first square is 8, and each following square has a side

length increasing by 10

4. Enter the side length of the largest square into the dialog

box. The turtle will then draw 20 squares. After each

previous square, the side length should be smaller by a

factor of 0.9 and the turtle should rotate 10° to the left

Page 40

2.7 SELECTION

INTRODUCTION

What you do in your daily life often depends on certain conditions. So let's say you decide on

how you will get to school today depending on the weather. You say: "In case it rains today, I'll

take the tram, otherwise I'll ll ride my bike". Similar to this, flow of a program can also depend

on certain conditions. Among the basic structures of any programming language are such

program branches that depend on specific conditions. The instructions after if are only executed

when the condition is true, otherwise the statements after else are executed.

PROGRAMMING CONCEPTS: Condition, program branching, selection, if-else structure

REVIEWING INPUTS

After you enter the side length in the dialog box, the

square will only be drawn if it fits the window entirely.

We now examine the value of s. If s is less than 300 a

square with the side length s is drawn, otherwise a

message appears in the lower part of the Tigerjython

window. In a programming language, this test is done

using the if statement.

from gturtle import *

def square(sidelength):
 repeat 4:
 forward(sidelength)
 right(90)

makeTurtle()
s = inputInt("Enter the side length")
if s < 300:
 square(s)
else:
 print "The side length is too big"

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The instructions after if are only executed if the condition is true, otherwise the statements

after else are executed. You can also leave out the else block. Try it!

Please be aware of the colons after the if condition and after else, as well as a correct

indentation of both program blocks.

Page 41

MULTIPLE SELECTION

Now we would like to draw colored squares. You can

enter the desired color by putting a number into the

dialog box. In an if structure, the number is checked

and then the appropriate fill color is set. We first test if

the value is 1, then if it is 2 (with elif), and finally 3.

For any other number entered, we use else to set the

color to black.

With the command fill(10, 10) the closed area around

the given point is filled with the specified fill color.

Since after drawing the square, the turtle is back in the

center of the window (0, 0), by using (10, 10) we select

a point that is definitely inside of the square.

from gturtle import *

def square():
 repeat 4:
 forward(100)
 right(90)

makeTurtle()
n = inputInt("Enter a number: 1:red 2:green 3:yellow")
if n == 1:
 setFillColor("red")
elif n == 2:
 setFillColor("green")
elif n == 3:
 setFillColor("yellow")
else:
 setFillColor("black")

square()
fill(10, 10)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Several conditions can be checked consecutively. In a case where the condition at if is not

fulfilled, the condition at elif is checked. elif is an abbreviation of else if. In a case where none

of the elif conditions are fulfilled, any statements after else are executed.

It is very important to remember that in Python, a double equal sign is used in the test for

equality. It may take time getting used to it, but it is necessary because the single equal sign

is used for assignments.

Please be aware of the notations used for comparison operators: >, >= , < , <= , == , != .

With the command fill(x, y) you can fill closed figures with the fill color. However, the point (x,

y) must be located inside of the figure.

COLOR CHOICE, BOOLEAN VARIABLES

In order to fill a figure afterwards using the fill() statement, its interior of the figure cannot

already be occupied by another figure. You already know the startPath()/fillPath()combination

with which you can correctly fill new figures that lay on top of existing figures.

Page 42

In this program you call askColor(), which brings up a

nice dialog box with which you can choose the color of

the star.

The star that you draw uses the function star(), which in addition to the size of the star also has

a parameter filled whose value can be true or false and determines whether the star should be

filled or not.

from gturtle import *

makeTurtle()

def star(size, filled):
 if filled:
 startPath()
 repeat 9:
 forward(size)
 left(175)
 forward(size)
 left(225)
 if filled:
 fillPath()

clear("black")
repeat 5:
 color = askColor("Color selection", "yellow")
 if color == None:
 break
 setPenColor(color)
 setFillColor(color)
 setRandomPos(400, 400)
 back(100)
 star(100, True)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The function askColor() has parameters for the text in the title bar and the color that is

selected as the default value. When you click the OK button the function returns the selected

color and when you click the cancel button instead, the function returns the special value

none. You can test this value with an if statement and you can abort the repeat loop with

break.

A variable or a parameter which can take the values true or false is called a boolean variable

or a boolean parameter [more...]. You can directly test its value, for instance with if filled: It

is thus not necessary (and not very elegant) to write if filled == True.

Page 43

EXERCISES

1.
In the dialog box you ask the user how big the side length of a square should be. If it is less

than 50, a red square is drawn with this side length. Otherwise a green square is drawn.

2. Make the turtle draw a staircase with 10 steps using repeat 10. Make the first 5 levels blue

and the rest of the levels red (Figure a).

(a) (b)

Tell the turtle to draw a spiral, first using green, then red, and finally black (Figure b).

Page 44

2.8 WHILE LOOPS

INTRODUCTION

You have already gotten to know the command repeat, with which you can repeat a program

block several times. However, it is important to know that you can only use repeat this way in

TigerJython and not in other Python flavours. On the other hand, you can use the while structure

everywhere.

The while loop is initiated with the keyword while, followed by a looping condition. The

instructions in the loop block are repeated as long as the condition is fulfilled. The program then

continues on with the next statement listed after the loop block.

PROGRAMMING CONCEPTS: Iteration, while structure, combined conditions, loop termination

SPIDER WEB

The turtle should draw a rectangular spiral with the help

of a while loop. We will use a variable a, with an initial

value 5which is then increased by 2 with each

iteration of the loop. As long as the condition a < 200

is true, the statements in the loop block will be

executed.

To make it a bit more fun, you can switch out the turtle

icon for a spider.

from gturtle import *

makeTurtle("sprites/spider.png")

a = 5
while a < 200:
 forward(a)
 right(90)
 a = a + 2

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

A while loop is used to repeat a program block. In order for the program block to be executed,

the condition must be true. Because of this, one might also call it a "running condition". If the

change in value is missing in the loop block, the running condition always stays true and the

program remains endlessly "hanging" in the loop.

In our learning environment, you can cancel the hanging program with the stop button or by

closing the turtle window. In general, infinite loops without a the option to cancel are

dangerous, and in an extreme case you will have to reboot your computer.

Page 45

COMBINING CONDITIONS WITH OR

The turtle should draw the adjacent figure using the

while loop. As you can see, it is drawn with alternating

red and green triangles.

You can use the following trick to change the colors:

Test the loop variable to see whether it is 0, 2 or 4 and

then choose the pen color red.

Using the command fillToPoint(0. 0) you can fill a

figure with color while drawing. In this case, it is as

though a rubber band was attached to the point (0, 0),

the other end of which the turtle drags along. All points

the rubber band reaches along the way are colored

consecutively.

from gturtle import *

def triangle():
 repeat 3:
 forward(100)
 right(120)

makeTurtle()
i = 0
while i < 6:
 if i == 0 or i == 2 or i == 4:
 setPenColor("red")
 else:
 setPenColor("green")

 fillToPoint(0, 0)
 triangle()
 right(60)
 i = i + 1

MEMO

You must pay attention to the correct indentation for each loop block when using several

program structures. As you can see, you can combine two or more conditions using or. A

condition linked this way is true if either of the conditions are satisfied, and it is also true if

both conditions are met. Using the command fillToPoint(x, y) you can fill figures with the pen

color while drawing, as opposed to the command fill(), with which you can fill already drawn

closed figures.

COMBINING CONDITIONS WITH AND

The turtle should draw 10 connected houses using a

while loop. The houses are numbered from 1 to 10. The

houses with the numbers 4-7 are large, and all of the

other houses are small. In the while loop, the house

number nr is used to determine the size of the houses.

The houses are large if nr is greater than 3 and less than

8.

We use the command fillToHorizontal(0) to add color. As a result, the area between the drawn

figure and the horizontal line y = 0 is filled consecutively.

Page 46

from gturtle import *

makeTurtle()
setPos(-200, 30)
right(30)
fillToHorizontal(0)
setPenColor("sienna")

nr = 1
while nr <= 10:
 if nr > 3 and nr < 8:
 forward(60)
 right(120)
 forward(60)
 left(120)
 else:
 forward(30)
 right(120)
 forward(30)
 left(120)

 nr += 1

MEMO

You can link two conditions with and. Such a linked statement is only true if both conditions

are met. Using the command fillToHorizontal(y) you can fill figures with the pen color while

drawing. This way, the area between the drawn figure and the horizontal line at y is filled.

nr += 1 means that nr is increased by 1. It is just an abbreviation for the assignment nr = nr

+ 1.

EXITING LOOPS WITH BREAK

A loop whose condition is always true will loop forever.

However, you can force a loop to exit at any time using

the keyword break.

Your program will draw rotated squares with increasing

side lengths until the side length is 120.

from gturtle import *

def square(sidelength):
 repeat 4:
 forward(sidelength)
 left(90)

makeTurtle()
hideTurtle()

i = 0
while 1 == 1:
 if i > 120:

Page 47

 break
 square(i)
 right(6)
 i += 2
print "i =", i

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Instead of using while 1 == 1: you can use while True:, since True is always true. (On the

other hand, False is always false.)

The loop is run in increments of two. Instead of using i = i + 2 you should use the abbreviated

notion i += 2 (i is incremented by 2).

With the command print-you can write something into the TigerJython console at the bottom

of the editor. With text you should use quotation marks and numbers should be separated by a

comma. A space will automatically be inserted between the text and the number. Do you

understand why the output is i = 122?

The keyword continue is rarely used. It skips the remaining part of the body of the loop.

INPUT VALIDATION

If you ask the user to enter a number restricted to a certain range, you cannot trust him that he

adheres to your restriction. A "robust" program checks the input and intercepts an incorrect

entry with a feedback. This input validation is most easily performed in a while loop which is

repeated until the input value is accepted. In your program the user enters the number 1, 2, or 3

to select one the colors red, green, or yellow of the filled circle.

from gturtle import *

makeTurtle()

n = 0
while n < 1 or n > 3:
 n = inputInt("Enter 1, 2 or 3")
if n == 1:
 setPenColor("red")
elif n == 2:
 setPenColor("green")
else:
 setPenColor("yellow")
dot(200)

EXERCISES

1. The turtle moves forward on a line with length 5 and

turns 70° to the right. Then it increases the line

length by 0.5 and repeats these steps as long as the

line length is smaller than 150.

Try it also with the rotation angle of 89 °!

Page 48

2. As you probably noticed, the rotation angle at a tip of

the 5 edged star is 144°. Change this rotation angle

by just a little bit, for example to 143°, and increase

the number of repetitions. You will then get a new

figure.

3. The turtle draws a diagonal pattern with filled red

circles. All circles are located in the Turtle window,

which means that the distance from the center is less

than 400.

Use the command dot(25) for creating the circles.

4.

The turtle is located at the position (250, 200). With

steps of length 10, the turtle moves on a straight line

to the home position until the distance is less than 1.

Use the commands towards() and heading(degrees)

(see documentation).

5*. In order to stop the turtle more precisely at home,

you decrease the distance by a factor 10 to 100.

Unfortunately it may happen that the turtle does not

stop anymore. Can you explain this behavior?

Page 49

2.10 EVENT CONTROL

INTRODUCTION

So far we have only seen a programs with a single strand of events, where one statement after

another is executed, with possible ramifications and repetitions. However, when you click a

mouse button, for instance, while your program is being executed, you cannot be sure where

your program is located at the time. In order to capture the clicks in the program we have to

introduce a new programming concept called event control. The principle is as follows:

Define a function with any name, for example onMouseHit() that is never explicitly called in the

program. Then ask that your computer calls this function whenever the mouse button is

clicked. So, what you are telling the program is: Whenever the mouse button is clicked, execute

onMouseHit().

PROGRAMMING CONCEPTS: Event-driven programming, mouse event

MOUSE EVENTS

It is very easy to implement the new concept in Python. In the first event-driven program, the

turtle should draw a fun figure in the main part. After this, you can decorate it by coloring

certain areas with a mouse click.

Write the function onMouseHit(x, y), which delivers the x- and y-coordinate of the mouse click,

and then give it a flood fill by using fill(x, y) (the filling of a closed region).

Most importantly you have to tell the system that it

should call the function onMouseHit() whenever the

mouse button is pressed. In order to do this you can use

the parameter mouseHit when you call makeTurtle()

and assign it the name of your function.

Use hideTurtle() so that the drawing is created faster.

from gturtle import *

def onMouseHit(x, y):
 fill(x, y)

makeTurtle(mouseHit = onMouseHit)
hideTurtle()
addStatusBar(30)
setStatusText("Click to fill a region!")

repeat 12:
 repeat 6:
 forward(80)
 right(60)
 left(30)

Page 50

MEMO

Technically, the concept of event-driven programming is implemented by writing a function to

be called whenever the event occurs. You inform the system which function this is by passing

the name of your function to makeTurtle(). Here you are using the notation parameter_name

= parameter_value.

You can customize your preferences for the fill color with setFillColor().

You can write important information for the user in a status bar below the turtle window by

using addStatusBar(n). The number n states the line height of the text bar (in pixels).

DRAWING WITH A MOUSE CLICK

The turtle should draw a star with rays at the position

of the mouse click. For this you write the function

onMouseHit(x, y) where you instruct the turtle how to

draw the star. In order for onMouseHit() to be called

when the mouse is clicked you pass the parameter

name mouseHit in makeTurtle() the function name

onMouseHit.

from gturtle import *

def onMouseHit(x, y):
 setPos(x, y)
 repeat 6:
 dot(40)
 forward(60)
 back(60)
 right(60)

makeTurtle(mouseHit = onMouseHit)
speed(-1)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The program has a flaw: If you click again while the turtle is still drawing a star, it will not

finish that star but will immediately begin drawing the new star. However, it also continues to

execute the commands of the old star, and so the new star is drawn incorrectly.

This wrong behavior is apparently due to the fact that every time you click, the function

onMouseHit() it is called and executed, even if the previous execution is not done yet. In order

to prevent this from happening, you can use the parameter named mouseHitX instead of

mouseHit.

Page 51

TURTLE CHASING THE MOUSE

Now you want the turtle to follow the mouse

everywhere it goes. You cannot use the actual mouse

click, but instead you should consider the movement

of the mouse as an event. makeTurtle() knows the

parameter mouseMoved to which you can pass a

function that is called at every relocation of the mouse.

The function onMouseMoved(x, y) receives the

current mouse coordinates x and y.

from gturtle import *

def onMouseMoved(x, y):
 setHeading(towards(x, y))
 forward(10)

makeTurtle(mouseMoved = onMouseMoved)
speed(-1)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Besides mouseHit and mouseHitX there are other parameters of makeTurtle() at your disposal

with which you can detect mouse events. Instead of x, y they use event, from which you can

determine the coordinates of the mouse event.

mousePressed Mouse button is pressed

mouseReleased Mouse button is released

mouseClicked Mouse button is pressed and released

mouseDragged Mouse is moved while the button is pressed

mouseMoved Mouse is moved

mouseEntered Mouse enters the turtle window

mouseExited Mouse exits the turtle window

You can also use multiple parameters simultaneously, for example the two functions

onMousePressed() and onMouseDragged():

makeTurtle(mousePressed = onMousePressed, mouseDragged = onMouseDragged)

You can find out which mouse button was pressed with isLeftMouseButton() or

isRightMouseButton().

There is an important difference between these events and mouseHit: the movement of the

turtle is not visible during the execution of the function. Therefore, you should either set the

turtle on high speed with speed(-1), hide it with hideTurtle(), or execute the code for its

movement in the main part of the program.

KEY EVENTS

Page 52

Each time a keyboard key is hit, an event is "fired". To

handle it, you register a callback function in makeTurtle

by using the named parameter keyPressed. The callback

receives an integer code that identifies the key you

pressed. (You may find out the key codes by performing

some simple tests.) In your program the turtles moves

repeatedly 10 steps in forward direction. By hitting the

cursor keys you can change its orientation in the four

cardinal directions. To prevent the turtle to leave the

playground, the wrap mode is enabled.

from gturtle import *

LEFT = 37
RIGHT = 39
UP = 38
DOWN = 40

def onKeyPressed(key):
 if key == LEFT:
 setHeading(-90)
 elif key == RIGHT:
 setHeading(90)
 elif key == UP:
 setHeading(0)
 elif key == DOWN:
 setHeading(180)

makeTurtle(keyPressed = onKeyPressed)
wrap()
while True:
 forward(10)

Highlight program code (Ctrl+C kopieren, Ctrl+V einfügen)

EXERCISES

1. Draw the adjacent star with a looping structure and fill it with

mouse clicks so that it suits your taste.

2. You can use the turtle to create a program where you can draw in

freehand. To do this, lower the pen using the press event and

move it using the drag event.

Page 53

3. By pressing the left mouse button you draw any figure you would

like. You can then color an area by clicking the right mouse

button.

 EXTRA MATERIAL

YOUR PERSONAL MOUSE IMAGE

You are able to change the image of the mouse cursor

to whatever you would like, thus giving your program a

special look. To do this, use the command setCursor()

and give it one of the values from the table below. You

can even use your own image if you use

setCustomCursor()and pass it the path to your image.

A standard mouse icon is 32x32 pixels in size and has a

transparent background. It should be saved in gif or

png format. Both pencil.gif and cutemouse.gif are

already available in the distribution of TigerJython in

the folder sprites.

You can now decorate the tracking program shown above with cuteturtle or your own mouse

figure. Make sure that the turtle always moves to the mouse by using moveTo().

from gturtle import *

def onMouseMoved(x, y):
 moveTo(x, y)

makeTurtle(mouseMoved = onMouseMoved)
setCustomCursor("sprites/cutemouse.gif")
speed(-1)

MEMO

By using speed(-1) you prevent the turtle from animating so that drawing with moveTo() gets

faster. Possible parameters of setCursor():

Parameter Icon

Cursor.DEFAULT_CURSOR Default icon

Cursor.CROSSHAIR_CURSOR Crosshair

Cursor.MOVE_CURSOR Moving cursor (cross arrows)

Cursor.TEXT_CURSOR Text cursor (vertical line)

Cursor.WAIT_CURSOR Waiting cursor

The sprites directory in the path indication of setCustomCursor() is in the same directory as

your program.

Page 54

2.10 EVENT CONTROL

INTRODUCTION

So far we have only seen a programs with a single strand of events, where one statement after

another is executed, with possible ramifications and repetitions. However, when you click a

mouse button, for instance, while your program is being executed, you cannot be sure where

your program is located at the time. In order to capture the clicks in the program we have to

introduce a new programming concept called event control. The principle is as follows:

Define a function with any name, for example onMouseHit() that is never explicitly called in the

program. Then ask that your computer calls this function whenever the mouse button is

clicked. So, what you are telling the program is: Whenever the mouse button is clicked, execute

onMouseHit().

PROGRAMMING CONCEPTS: Event-driven programming, mouse event

MOUSE EVENTS

It is very easy to implement the new concept in Python. In the first event-driven program, the

turtle should draw a fun figure in the main part. After this, you can decorate it by coloring

certain areas with a mouse click.

Write the function onMouseHit(x, y), which delivers the x- and y-coordinate of the mouse click,

and then give it a flood fill by using fill(x, y) (the filling of a closed region).

Most importantly you have to tell the system that it

should call the function onMouseHit() whenever the

mouse button is pressed. In order to do this you can use

the parameter mouseHit when you call makeTurtle()

and assign it the name of your function.

Use hideTurtle() so that the drawing is created faster.

from gturtle import *

def onMouseHit(x, y):
 fill(x, y)

makeTurtle(mouseHit = onMouseHit)
hideTurtle()
addStatusBar(30)
setStatusText("Click to fill a region!")

repeat 12:
 repeat 6:
 forward(80)
 right(60)
 left(30)

Page 55

MEMO

Technically, the concept of event-driven programming is implemented by writing a function to

be called whenever the event occurs. You inform the system which function this is by passing

the name of your function to makeTurtle(). Here you are using the notation parameter_name

= parameter_value.

You can customize your preferences for the fill color with setFillColor().

You can write important information for the user in a status bar below the turtle window by

using addStatusBar(n). The number n states the line height of the text bar (in pixels).

DRAWING WITH A MOUSE CLICK

The turtle should draw a star with rays at the position

of the mouse click. For this you write the function

onMouseHit(x, y) where you instruct the turtle how to

draw the star. In order for onMouseHit() to be called

when the mouse is clicked you pass the parameter

name mouseHit in makeTurtle() the function name

onMouseHit.

from gturtle import *

def onMouseHit(x, y):
 setPos(x, y)
 repeat 6:
 dot(40)
 forward(60)
 back(60)
 right(60)

makeTurtle(mouseHit = onMouseHit)
speed(-1)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The program has a flaw: If you click again while the turtle is still drawing a star, it will not

finish that star but will immediately begin drawing the new star. However, it also continues to

execute the commands of the old star, and so the new star is drawn incorrectly.

This wrong behavior is apparently due to the fact that every time you click, the function

onMouseHit() it is called and executed, even if the previous execution is not done yet. In order

to prevent this from happening, you can use the parameter named mouseHitX instead of

mouseHit.

Page 56

TURTLE CHASING THE MOUSE

Now you want the turtle to follow the mouse

everywhere it goes. You cannot use the actual mouse

click, but instead you should consider the movement

of the mouse as an event. makeTurtle() knows the

parameter mouseMoved to which you can pass a

function that is called at every relocation of the mouse.

The function onMouseMoved(x, y) receives the

current mouse coordinates x and y.

from gturtle import *

def onMouseMoved(x, y):
 setHeading(towards(x, y))
 forward(10)

makeTurtle(mouseMoved = onMouseMoved)
speed(-1)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Besides mouseHit and mouseHitX there are other parameters of makeTurtle() at your disposal

with which you can detect mouse events. Instead of x, y they use event, from which you can

determine the coordinates of the mouse event.

mousePressed Mouse button is pressed

mouseReleased Mouse button is released

mouseClicked Mouse button is pressed and released

mouseDragged Mouse is moved while the button is pressed

mouseMoved Mouse is moved

mouseEntered Mouse enters the turtle window

mouseExited Mouse exits the turtle window

You can also use multiple parameters simultaneously, for example the two functions

onMousePressed() and onMouseDragged():

makeTurtle(mousePressed = onMousePressed, mouseDragged = onMouseDragged)

You can find out which mouse button was pressed with isLeftMouseButton() or

isRightMouseButton().

There is an important difference between these events and mouseHit: the movement of the

turtle is not visible during the execution of the function. Therefore, you should either set the

turtle on high speed with speed(-1), hide it with hideTurtle(), or execute the code for its

movement in the main part of the program.

KEY EVENTS

Page 57

Each time a keyboard key is hit, an event is "fired". To

handle it, you register a callback function in makeTurtle

by using the named parameter keyPressed. The callback

receives an integer code that identifies the key you

pressed. (You may find out the key codes by performing

some simple tests.) In your program the turtles moves

repeatedly 10 steps in forward direction. By hitting the

cursor keys you can change its orientation in the four

cardinal directions. To prevent the turtle to leave the

playground, the wrap mode is enabled.

from gturtle import *

LEFT = 37
RIGHT = 39
UP = 38
DOWN = 40

def onKeyPressed(key):
 if key == LEFT:
 setHeading(-90)
 elif key == RIGHT:
 setHeading(90)
 elif key == UP:
 setHeading(0)
 elif key == DOWN:
 setHeading(180)

makeTurtle(keyPressed = onKeyPressed)
wrap()
while True:
 forward(10)

Highlight program code (Ctrl+C kopieren, Ctrl+V einfügen)

EXERCISES

1. Draw the adjacent star with a looping structure and fill it with

mouse clicks so that it suits your taste.

2. You can use the turtle to create a program where you can draw in

freehand. To do this, lower the pen using the press event and

move it using the drag event.

Page 58

3. By pressing the left mouse button you draw any figure you would

like. You can then color an area by clicking the right mouse

button.

 EXTRA MATERIAL

YOUR PERSONAL MOUSE IMAGE

You are able to change the image of the mouse cursor

to whatever you would like, thus giving your program a

special look. To do this, use the command setCursor()

and give it one of the values from the table below. You

can even use your own image if you use

setCustomCursor()and pass it the path to your image.

A standard mouse icon is 32x32 pixels in size and has a

transparent background. It should be saved in gif or

png format. Both pencil.gif and cutemouse.gif are

already available in the distribution of TigerJython in

the folder sprites.

You can now decorate the tracking program shown above with cuteturtle or your own mouse

figure. Make sure that the turtle always moves to the mouse by using moveTo().

from gturtle import *

def onMouseMoved(x, y):
 moveTo(x, y)

makeTurtle(mouseMoved = onMouseMoved)
setCustomCursor("sprites/cutemouse.gif")
speed(-1)

MEMO

By using speed(-1) you prevent the turtle from animating so that drawing with moveTo() gets

faster. Possible parameters of setCursor():

Parameter Icon

Cursor.DEFAULT_CURSOR Default icon

Cursor.CROSSHAIR_CURSOR Crosshair

Cursor.MOVE_CURSOR Moving cursor (cross arrows)

Cursor.TEXT_CURSOR Text cursor (vertical line)

Cursor.WAIT_CURSOR Waiting cursor

The sprites directory in the path indication of setCustomCursor() is in the same directory as

your program.

Page 59

2.11 TURTLE OBJECTS

INTRODUCTION

In nature, a turtle is an individual with its own specific identity. In an exhibition at the zoo you

could give each turtle its own name, for example Pepe or Maya. However, turtles also have

things in common: they are reptiles belonging to the animal class of tortoises. These notions of

classes and individuals have been so successful that they were introduced into computer science

as a fundamental concept, called object-oriented programming (OOP). It will be easy for you

to learn the basic principles of OOP using turtle graphics.

PROGRAMMING CONCEPTS: Class, object, object-oriented programming, constructor, clones

CREATING A TURTLE OBJECT

The turtle was previously used as an anonymous object which we did not use a name for. If you

want to use multiple turtles at the same time, you must give every turtle an identity by naming

it. You can then use the name as a variable name.

With the statement maya = Turtle() you create a turtle named maya.

With the statement pepe = Turtle() you create a turtle named pepe.

You can control the named turtles with the commands

you already know, but you always have to say which

turtle you mean. Put the turtle name first, followed by a

point, and finally the command, for example

maya.forward(100).

In the first example maya draws a ladder. You do not

need the line makeTurtle() anymore since you are

creating the turtle yourself.

from gturtle import *

maya = Turtle()
maya.setColor("red")
maya.setPenColor("green")
maya.setPos(0, -200)

repeat 7:
 repeat 4:
 maya.forward(50)
 maya.right(90)
 maya.forward(50)

MEMO

Similar objects are grouped into classes. An object of a class is made (we also say

"instantiated") by using the class name with a set of parentheses. We call this the

constructor of the class. In the future we will call functions that belong to a particular class

methods.

Page 60

CREATING MORE TURTLE OBJECTS

Now you know all too well that you can use multiple turtles in the same program in the way

previously described. If you want to create maya and pepe, then write

maya = Turtle() und pepe = Turtle()

These two turtles each end up in their own turtle

window. You can put them into the same turtle

enclosure by generating the enclosure as an object of

the class TurtleFrame:

tf = TurtleFrame()

This object variable should be passed to the Turtle

constructor while creating the turtles. At the same time

that maya builds the same ladder as before, pepe builds

a horizontal black staircase.

from gturtle import *

tf = TurtleFrame()

maya = Turtle(tf)
maya.setColor("red")
maya.setPenColor("red")
maya.setPos(0, -200)

pepe = Turtle(tf)
pepe.setColor("black")
pepe.setPenColor("black")
pepe.setPos(200, 0)
pepe.left(90)

repeat 7:
 repeat 4:
 maya.forward(50)
 maya.right(90)
 pepe.forward(50)
 pepe.left(90)
 maya.forward(50)
 pepe.forward(50)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

If you want to put multiple turtles into the same window you need to create a TurtleFrame and

specify it as a constructor parameter for the turtle. The turtles do not run into each other but

rather move (so to speak) over one another, whereby the turtle moving last always ends up on

top of all the others.

Page 61

TURTLE PARAMETERS

Turtle objects can also be used as function parameters.

Because the same code is used to draw a single ladder

for both turtles, it is easiest to define a function step().

As a (formal) parameter you can use any name you

would like, for example, just t. You then call the

function twice, once passing it maya, and the other

time passing it pepe.

from gturtle import *

def step(t):
 repeat 4:
 t.forward(50)
 t.right(90)
 t.forward(50)

tf = TurtleFrame()

maya = Turtle(tf, "sprites/beetle.gif")
maya.setPenColor("green")
maya.setPos(0, -150)
pepe = Turtle(tf, "sprites/cuteturtle.gif")
pepe.setPos(200, 0)
pepe.left(90)

repeat 7:
 step(maya)
 step(pepe)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

You can use your own image for each turtle if you specify the path to the image file while

creating them. In the previous example, you used two image files beetle.gif and cuteturtle.gif

which are located in the distribution of TigerJython.

MICE PROBLEM WITH A CLONED TURTLE

During the famous mice (or beetle) problem [more...] n beetles start at the corners of a regular

n-gon and chase each other at a constant speed. The position of the beetles is fixed at equal

steps of time and each one is rotated in the direction of the beetle in the next polygon corner.

Afterwards, all of the beetles move forward at a steady increment.

You can nicely solve this problem by first drawing the polygon with the nameless (global) turtle

and then by putting a cloned turtle at each corner. Here you choose a square and create the

turtle clones t1, t2, t3, and t4 with clone(). A clone is a new turtle object with identical

properties.

Page 62

After that, you adjust their viewing direction in an

endless loop with setHeading() and move them

forward by 5. The drawing becomes especially nice if

you draw out the connecting lines between each chasing

turtle.

The easiest way to do this is to define the function

drawLine(a, b), with which the turtle a will draw a

trail to turtle b and then go back again by using

moveTo().

from gturtle import *

s = 360

makeTurtle()
setPos(-s/2, -s/2)

def drawLine(a, b):
 ax = a.getX()
 ay = a.getY()
 ah = a.heading()
 a.moveTo(b.getX(), b.getY())
 a.setPos(ax, ay)
 a.heading(ah)

generate Turtle clone
t1 = clone()
t1.speed(-1)
forward(s)
right(90)
t2 = clone()
t2.speed(-1)
forward(s)
right(90)
t3 = clone()
t3.speed(-1)
forward(s)
right(90)
t4 = clone()
t4.speed(-1)
forward(s)
right(90)
hideTurtle()

repeat:
 t1.setHeading(t1.towards(t2))
 t2.setHeading(t2.towards(t3))
 t3.setHeading(t3.towards(t4))
 t4.setHeading(t4.towards(t1))

 drawLine(t1, t2)
 drawLine(t2, t3)
 drawLine(t3, t4)
 drawLine(t4, t1)

 t1.forward(5)
 t2.forward(5)
 t3.forward(5)
 t4.forward(5)

Page 63

MEMO

By using clone() you are creating a new turtle from the global turtle, so it will have the same

position, the same viewing direction, and the same color (if you are using a custom turtle icon,

it will have the same image) [more...] .

The function drawLine() can be simplified if you save the position and orientation of the turtle

with pushState(). The state can then be retrieved again with popState():

def drawLine(a, b):
 a.pushState()
 a.moveTo(b.getX(), b.getY())
 a.popState()

The emerging chasing curves can be calculated mathematically (see here).

EXERCISES

1. Three turtles should alternately, point by point, draw a five-pointed star. The turtles should

be colored cyan (the standard color), red, and green. The turtle's color can be specified as

an additional parameter of the constructor.

2. A green mother turtle constantly draws a circle with a

green pen color. At first, the red child turtle is far away

from the mother turtle and then moves with the red pen

towards the mother.

(The child turtle named child can determine the direction

of the mother using direction = child.towards(mother)

3.

Laura draws (not filled) squares. After each square is drawn, a second

turtle jumps in and colors it green.

Use different turtle images for the two turtles. The images available in

tigerjython2.jar are beetle.gif, beetle1.gif, beetle2.gif, and spider.png.

You can also use your own images. If you do, you have to save it in

the subdirectory sprites, which is located in the same directory as your

program.

Page 64

4. Create chasing graphics for 6 turtles

that start their chase at the corners

of a regular 6-gon, similar to the

example "beetle problems".

 EXTRA MATERIAL

CREATING TURTLES WITH A MOUSE CLICK

With every mouse click your program will create a new

turtle that draws a star, at the location of the mouse

cursor, independently of other existing turtles. In this

example you can experience the full scope and the

beauty of object-oriented programming as well as event

control.

To process the mouse click, you define the function

drawStar(). In order for the function to be called by

your system when you press the left mouse button, you

must use the parameter mouseHit in the constructor of

the turtle frame and give it the name of this function.

from gturtle import *

def drawStar(x, y):
 t = Turtle(tf)
 t.setPos(x, y)
 t.fillToPoint(x, y)
 for i in range(6):
 t.forward(40)
 t.right(140)
 t.forward(40)
 t.left(80)

tf = TurtleFrame(mouseHit = drawStar)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Objects that have the same capabilities and similar properties are defined as classes in OOP.

You can create individual objects with the constructor (instances).

In order to process a mouse click, you have to write a function with a name of your choice

(including two parameters, x and y) and then pass this name to the parameter mouseHit in the

constructor of the TurtleFrame. x and y provide the coordinates of the mouse click.

Page 65

2.12 PRINTING

INTRODUCTION

To achieve higher precision you can draw graphics on a printer since printers usually have a

much higher resolution, for example 1200x1200 dpi, where a typical screen resolution is around

100 dpi. The printing of GPanel graphics works in a way where graphic operations are printed

onto paper instead of being displayed on the screen. For this, you can define a function with any

name that contains all of the instructions for creating the image. When it is called directly, the

image appears on the screen. To print, call printerPlot() with the function name.

A printer dialog opens where you can select the printer and set its properties. You can then also

print on virtual printers to create a graphic file in a high resolution format (for example TIFF or

EPS).

PROGRAMMING CONCEPTS: High resolution graphics

A NON-FIRE-BREATHING DRAGON

To show a fun example of high-resolution printing, let

the turtle draw a complicated picture called the

dragon curve. Although you could also make this

curve by folding a strip of paper, it is much easier

with computer graphics. However, the

implementation of the folding instructions in an

algorithm is not entirely trivial. Since we are dealing

with printing here, we simply use a pre-defined

function to draw the curve, figure(s, n, flag).

At least you can see that the curve is defined recursively and calls itself twice, although with a

lower order n-1. Additionally, the function uses a parameter flag that can be 1 or -1 and that

determines the drawing direction.

Page 66

To print the image, draw it in the function doIt(). This function cannot have parameters. When

you call doIt() the drawing appears on the screen, but when you pass the name doIt to the

printerPlot() command the drawing is printed (without showing the turtle).

from gturtle import *
import math

nbGenerations = 12

def doIt():
 rt(90)
 figure(300, nbGenerations, 1)

def figure(s, n, flag):
 if n == 0:
 fd(s);
 else:
 alpha = 45
 if flag == 1:
 alpha = -alpha
 flag = -flag
 lt(alpha)
 figure(s / math.sqrt(2), n - 1, -flag)
 rt(2 * alpha)
 figure(s / math.sqrt(2), n - 1, flag)
 lt(alpha)

makeTurtle()
ht()
setPos(-100, 100) # screen
doIt()
setPos(100, 0) # printer
printerPlot(doIt)

MEMO

You have to position the drawing on the sheet properly by using setPos(). Depending on the

size of the turtle window and the printer being used, this position can change. When calling

printerPlot() you can also specify a scaling factor k in printerPlot(doIt, k). The image enlarges

when k > 1 and shrinks when k < 1.

EXERCISES

1. Joshua Goldstein suggests using pairs of move/turn commands to create nice pictures. A

step consists of the commands forward(s) and right(a)

Draw and print the following Goldstein figures:

a. 31 steps where s = 300, a = 151°

b. 142 steps where s = 400, a = 159.72°

You must provide the positioning yourself!

2. A step can also consist of two move/turn pairs.

Draw and print the following Goldstein figure:

37 steps where s = 77, a = 140.86° and s = 310, a = 112°

3. Draw and print the Goldstein figure with three move/turn pairs:

47 steps where s = 15.4, a = 140.86 ° and s = 62, a = 112° and s= 57.2, a = 130°

Page 67

Documentation Turtle Graphics

Module import: from gturtle import *

Function Action

makeTurtle() creates a (global) turtle in a new window and defines all global commands

makeTurtle(color) same, but creates a turtle with a specified color

makeTurtle("sprites/turtle.gif") same, but creates a turtle with given sprite image

t = Turtle() creates a turtle object t

tf = TurtleFrame() creates a graphics windows where several turtles may live together

tf = TurtleFrame(title) dasselbe, aber mit gegebenen Titel

t = Turtle(tf) creates a turtle in the given turtle frame

clone() creates a turtle clone (same color, position, viewing direction)

isDisposed() returns True, if the window is closed

putSleep() pauses program execution until wakeUp() is called

wakeUp() resumes paused program execution

enableRepaint(False) disables automatic screen rendering

repaint() renders the screen manually (after disabling automatic rendering)

savePlayground(fileName, format)
copies the playground into a image file (format: "png" or "gif"). Returns True, if

successful; otherwise False

Movements

back(distance), bk(distance) moves the turtle backwards for given distance (in turtle coordinates)

forward(distance), fd(distance) moves the turtle forwards for given distance (in turtle coordinates)

hideTurtle(), ht() hides the turtle (speeds-up the drawing)

home() puts the turtle into the middle of the window with upward direction

left(angle), lt(angle) turns the turtle to the left (in degrees)

penDown(), pd() activates the pen (trace becomes visible)

penErase(), pe() sets the pen color to the background color

leftArc(radius, angle) moves the turtle on a left oriented arc with with given radius and sector angle

leftCircle(radius) moves the turtle on a left oriented circle with given radius (in turtle coordinates)

penUp(), pu() deactivates the pen (trace becomes invisible)

penWidth(width) selects the pen width (in pixels)

right(angle), rt(angle) turnes the turtle to the right (in degrees)

rightArc(radius, angle) moves the turtle on a right oriented arc with with given radius and sector angle

rightCircle(radius) moves the turtle on a right oriented circle with given radius (in turtle coordinates)

setCustomCursor(cursorImage) selects image file used as mouse cursor

setCustomCursor(cursorImage, Point(x,

y))
selects image file use as mouse cursor and defines the hotspot relative to the picture

setLineWidth(width) sets the pen width (in pixels)

showTurtle(), st() shows the turtle

speed(speed) sets the speed of the turtle movement

delay(time) stops the program for the given amount of time (in milliseconds)

wrap() turtle positions outside the window are mapped inside the window (torus symmetry)

clip() turtles outside the window are invisible

getPlaygroundWidth() returns the width m of the turtle Playground (turtle coordinates -m/2...m/2)

getPlaygroundHeight() returns the height n of the turtle Playground (turtle coordinates -n/2...n/2)

Page 68

Positioning

direction(x, y) returns the angle to turn to the position (x, y) zurück

direction(coords) same, but coordinates given as list, tuple or complex

direction(turtle) returns the angle to turn to the position of another turtle

distance(x, y) returns the distance of the turtle to point(x, y)

distance(coords) same, but coordinates given as list, tuple or complex

distance(turtle) returns the distance to another turtle

getPos() returns the current position (list)

getX() returns the current x-coordinate

getY() returns the current y-coordinate

heading() returns the current viewing direction (in degrees, clockwise to the north)

heading(degrees) sets the viewing direction (in degrees, zero to the north, positive clockwise)

moveTo(x, y) moves the turtle to the given coordinates by drawing the trace

moveTo(coords) same, but coordinates given as list, tuple or complex

setHeading(degrees), setH(degrees) sets the viewing direction (in degrees, zero to the north, positive clockwise)

setRandomHeading() sets the viewing direction to a random value 0 ... 360°

setPos(x, y) moves the turtle to the given coordinates without drawing the trace

setPos(coords) same, but coordinates given as list, tuple or complex

setX(x) sets the turtle to given x-coordinate

setY(y) sets the turtle to given y-coordinate

setRandomPos(width, height) sets the turtle position to a random value in the given rectangle

setScreenPos(x, y) sets the turtle position to the given screen coordinates

setScreenPos(Point(x, y)) sets the turtel position to the given point

towards(x, y) returns the direction (in degrees) to the given coordinates

towards(coords) same, but coordinates given as list, tuple or complex

towards(turtle) returns the direction to another turtle

toTurtlePos(x, y) returns a list of the turtle coordinates of the given pixel coordinates

toTurtlePos(Point(x, y)) returns a list of the turtle coordinates of the given point

pushState() saves the current turtle state on a stack (first-in-last-out)

popState() sets the turtle state to the last element of the stack and removes the state from the stack

clearStates() removes all elements from the state stack

Colors

askColor(title, defaultColor) opens a color selection dialog and returns the selected color

clear() erases the traces and hides all turtles, but let them where they are

clear(color) erases the traces, hides all turtles and paint the background with the given color

clean() erases everything and puts all turtles to the home position

clean(color)
erases everything, puts all turtles to the home position and paint the background with the

color

dot(diameter) paints a filled circle with given radius using the current pen color

openDot(diameter) paints a non-filled circle with given radius using the current pen color

fill() fills a closed area around the current turtlle position with the current fill color

fill(x , y) fills a closed area around the given position with the current fill color

fill(coords) same, but coordinates given as list, tuple or complex

fillToPoint() fills continuously from the current turtle position

fillToPoint(x , y) fills continuoiusly from the given point(also list, tuple, complex)

fillToHorizontal(y) fills continuously die area between the horizontal line and the turtle position

Page 69

fillToVertical(x) fills continuously die area between the veritcall line and the turtle position

fillOff() terminates the fill mode

getColor() returns the turtle color

getColorStr() returns the turtle color as X11 color string

getFillColor() returns the fill color

getFillColorStr() returns the fill color as X11 color string

getPixelColor() returns the color of the pixel (background or trace) at the current turtle position

getPixelColorStr() returns the color as X11 color string of the pixel at the current turtle position

getRandomX11Color() returns a random X11 color string

makeColor() returns a color reference of given value. Value examples: ("7FFED4"), ("Aqua-Marine"),

(0x7FFED4), (8388564), (0.5, 1.0, 0.83), (128, 255, 212), ("rainbow", n) with n = 0..1,

light spectrum

setColor(color) sets the turtle color

setPenColor(color) sets the turtle's pen color

setPenWidth(width) sets the turtle's pen width

setFillColor(color) sets the turtle's fill color

startPath() starts to register the turtle movement for a following fll operation

fillPath() closes the fill operation at current turtle position and fills the path with the current flll color

stampTurtle() creates an image of the turtle at the current position

stampTurtle(color) creates an image of the turtle with given color at current position

Callbacks

makeTurtle(mouseNNN = onMouseNNN)

use a comma separator to register

more than one

registers the callback function onMouseNNN(x, y) that is called when a mouse event

happens. Values for NNN: Pressed, Released, Clicked, Dragged, Moved, Entered, Exited,

SingleClicked, DoubleClicked, Hit: Invocation in separate thread, HitX: same, but events

are ignored until the previous callback returns

isLeftMouseButton(),

isRightMouseButton()
returns True, if the event is caused by the left/right mouse button

makeTurtle(keyNNN = onKeyNNN) registers the callback onKeyNNN(keyCode) that is called when a keyboard key is hit.

Values for NNN: Pressed, Hit: Invocation in separate thread, HitX: same, but events are

ignored until the previous callback returns. keyCode is a unique integer value that

identifies the key

getKeyModifiers() returns an integer code for special keyboard keys (shift, ctrl, etc., also combined)

makeTurtle(closeClicked =

onCloseClicked)

registers the callback onCloseClicked() that is called when the title bar close button is hit.

The window must be closed manually by calling dispose()

makeTurtle(turtleHit = onTurtleHit)
registers the callback function onTurtleHit(x, y) that is called when the turtle image is

clicked

t = Turtle(turtleHit = onTurtleHit)
registers the callback function onTurtleHit(t, x, y) that is called when the image of turtle t is

clicked

Text, Images and Sound

addStatusBar(20) adds a status bar 20 pixels height

beep() emits a short tone

playTone(freq) plays tone mit given frequency (in Hz) and duration 1000 ms (blocking function)

playTone(freq, blocking=False) same, but not-blocking function, used to play several tones at the same time

playTone(freq, duration) plays tone with given frequency and given duration (in ms)

playTone([f1, f2, ...]) plays several tones in a sequence with given frequency and duration 1000 ms

playTone([(f1, d1), (f2, d2), ...]) plays serveral tones in a sequence with given frequency and given duration

playTone([("c",700), ("e",1500), ...])
plays serveral tones in a sequence with given (Helmholtz) pitch naming and duration.

Supported are: great octave, one-line to three-line octave (range C, C# up to h'''

Page 70

playTone([("c",700), ("e",1500), ...],

instrument = "piano")

same, but selects instrument type. Supported are: piano, guitar, harp, trumpet, xylophone,

organ, violin, panflute, bird, seashore, ... (see MIDI specifications)

playTone([("c",700), ("e",1500), ...],

instrument = "piano", volume=10)
same, but selects sound volume (0..100)

label(text) displays the given text starting at the current turtle position

printerPlot(draw) prints the traces that are drawn in function draw

setFont(Font font) defines the font used by label()

setFontSize(size) defines the font size used by label()

getTextHeight() returns the height of texts with current font (in pixels)

getTextAscent() returns the ascender height of texts with current font (in pixels)

getTextDescent() returns the descender height of texts with current font (in pixels)

getTextWidth(text) returns the width of given text with current font (in pixels)

setStatusText(text) shows the given text in the status bar. Any exiting text is erased.

setTitel(title) shows the given title in the window title bar

img = getImage(path) retrieve the image from the jar resource, from local drive or from a webserver

drawImage(img) draws the given image into background with the image center at the current turtle position

and rotated to the current turtle viewing direction.

drawImage(path) loads an image (in png, gif or jpg format) from the local file system or from an URL and

draws it at the current turtle position with the current viewing direction. For path =

sprites/nnn an image from the TigerJython distribution is loaded

Dialogs

msgDlg(message) opens a modal dialolg with an OK button and given message

msgDlg(message, title = text) same with title text

inputInt(prompt)
opens a modal dialog with OK/Cancel buttons. OK returns integer (the dialog is shown

again, if no integer is entered). Cancel or Close terminate the program

inputInt(prompt, False) same, but Cancel/Close do not terminate, but returns None

inputFloat(prompt)
opens a modal dialog with OK/Cancel buttons. OK returns float (the dialog is shown again,

if no float is entered). Cancel or Close terminate the program

inputFloat(prompt, False) same, but Cancel/Close do not terminate, but returns None

inputString(prompt)
opens a modal dialog with OK/Cancel buttons. OK returns string. Cancel or Close

terminate the program

inputString(prompt, False) same, but Cancel/Close do not terminate, but returns None

input(prompt)
opens a modal dialog with OK/Cancel buttons. OK returns integer, float or string. Cancel

or Close terminate the program

input(prompt, False) same, but Cancel/Close do not terminate, but returns None

askYesNo(prompt)
opens a modal dialog with Yes/No buttons. Yes returns True, No returns False. Cancel or

Close terminate the program

askYesNo(prompt, False) same, but Close does not terminate, but returns None

Page 71

Learning

Objectives

 You can create simple 2D graphics with geometric shapes.

 You know how to use keyboard and mouse inputs in the graphics window.

 You can display simple function graphs y = f(x) in the graphics window.

 You know that a digital image consists of colored pixels that are stored as numbers.

You can load a digital image, alter it in specific ways, represent it on the screen, and save

it.

 You can write keyboard- and mouse-controlled programs.

 You know how to generate random numbers and can apply this to random experiments.

 You can use input fields, buttons, and menus in your programs.

"A picture is worth a thousand words."

Old Proverb

Page 72

3.1 COORDINATES

INTRODUCTION

You have already made your first experience drawing with the turtle on the computer. However,

the turtle has its limits and so now you will get to know more flexible options of creating

graphics output.

PROGRAMMING CONCEPTS: Coordinate graphics, Cartesian coordinate system

OPENING THE GRAPHIC WINDOW

The library (respectively the window for the graphics output) is called GPanel. This library is

already installed in TigerJython but you must still specify that you want to use the GPanel and

therefore start your program with an import. Then you can use makeGPanel() to create a new

graphics window:

from gpanel import *
makeGPanel(-3, 7, -4, 6)

So far, the program does not do anything very exciting as it only shows a blank window that you

can then close again. Your GPanel window is always square and uses an x-y-coordinate system,

as you should know from mathematics:

In this example you specify the x- and y-coordinate range with the four numbers -3, 7, -4, and

6. -3 is the x-coordinate on the left edge, 7 is the x-coordinate on the right edge, -4 is the

y-coordinate on the bottom edge and 6 is the y-coordinate on the top edge.

MEMO

You can create a window with makeGPanel(). You can define the desired area of the

coordinate system with four numbers: makeGPanel(xmin, xmax, ymin, ymax)

You can also specify a window title as the first parameter:

makeGPanel(title, xmin, xmax, ymin, ymax)

Page 73

DRAWING LINES

Once the window is open, you can begin drawing in it

just as you like. There are a number of useful functions

that can help. For example, with line() you can draw a

line, and with setColor() you can alter the color. You

can then, for example, draw a colorful triangle.

For each line, you first specify the x- and y-coordinates

of the start point, then the x- and y-coordinates of the

end point. The vertices should have the following

coordinates: (1, -1) (5, -1) (3, 3). Of course you can

only see the triangle if you choose the coordinate

system appropriately. Undistorted drawings will only

appear if the coordinate system is the same length in

both the x- and y-direction.

from gpanel import *

makeGPanel("My window", 0, 6, -2, 4)

lineWidth(3)
setColor("red")
line(1, -1, 5, -1)
setColor("green")
line(5, -1, 3, 3)
setColor("blue")
line(3, 3, 1, -1)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

 You can specify the width of the line in pixels using the function lineWidth().

CIRCLES AND RECTANGLES

GPanel can draw not only lines, but also circles,

ellipses, rectangles, triangles, and arcs. It can even

write out texts. You can draw a filled circle with the

command fillCircle(radius). But before you draw a

circle, you need to position the graphics cursor using

move(x, y) in order to define the center point.

fillRectangle(length, width) draws a rectangle with its

center at the position of the graphics cursor. In our

example, we draw several squares and circles using a

while loop.

Page 74

from gpanel import *

makeGPanel(0, 20, 0, 20)

setColor("red")
x = 2
y = 2
while y < 20:
 move(x, y)
 fillCircle(1)
 move(x, 20 - y)
 fillRectangle(2, 2)
 x = x + 2
 y = y + 2

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

You can draw many different figures with GPanel. Here are the most important commands:

point(x, y)

line(x1, y1, x2, y2)

rectangle(width, height)

fillRectangle(width, height)

rectangle(x1, y1, x2, y2)

fillRectangle(x1, y1, x2, y2)

fillTriangle(x1, y1, ..., y3)

circle(r)

fillCircle(r)

ellipse(a, b)

fillEllipse(a, b)

arc(r, a, b)

text("t")

move(x, y)

A point

A line

A rectangle (width, height)

A filled rectangle

A rectangle (vertices)

A filled rectangle

A triangle (vertices)

A circle with radius r

A filled circle

An ellipse with axes a, b

A filled ellipse

An arc

Writes the text t

Determines position

For circles, arcs, ellipses, text, and rectangles that are simply defined by length and width,

you must first determine their position by setting the graphics cursor using move().

GPanel knows the so-called X11 colors. There are a few dozen color names that you can find

on the Internet here: http://cng.seas.rochester.edu/CNG/docs/x11color.html. You can

choose all of these colors using setColor(color).

Page 75

EXERCISES

1. Draw a similar figure:

2. What does a rainbow actually look like? Let the computer draw you a rainbow. Use the

function circle(r) so that only the upper part of the circle is visible.

Page 76

3.2 FOR LOOPS

INTRODUCTION

You often have to count during repetition. For that, you need a variable in the repetition block

that changes by a certain value in every iteration of the loop. It is easier to do this using a for

structure than it is with a while structure. You must first understand the range() function. In the

simplest case, range() has a single parameter (also called stop value) and provides a sequence

of natural numbers that starts with 0 and ends with the last number before the stop value.

You can try this out with a few examples. If, for example, you execute a program with the single

statement print range(10), the numbers [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] are written in the output

window. Try it out with a few different parameters. As you can see, in our example, the stop

value 10 is not included in the list; it rather indicates how many list elements there are.

PROGRAMMING CONCEPTS: Iteration, for structure, nesting of for loops

FAMILY OF LINES

You can draw a cool curve with 20 lines using this for

structure.

from gpanel import *

makeGPanel(0, 20, 0, 20)

for i in range(21):
 line(i, 0, 20, i)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The statement for i in range(n) runs through the numbers from 0 to n-1, so in other words, a

total of n numbers. The places of consolidation of the lines form a quadratic Bézier curve.

RANGE() WITH TWO PARAMETERS

The range function can also have two parameters. In this case, the first parameter is the start

value of the list and the second is the stop value, which is, however, not included in the list.

Page 77

If, for example, you write print range(2, 9), the

numbers [2, 3, 4, 5, 6, 7, 8] are written in the output

window. Try it out using a few other parameters.

Using the following program, you draw lines in two

colors with the start points on the x-axis from the

coordinates -20 to 20. The endpoint of all lines is the

point (0, 40).

from gpanel import *

makeGPanel(-20, 20, 0, 40)

for i in range(-20, 21):
 if i < 0:
 setColor("red")
 else:
 setColor("green")
 line(i, 0, 0, 40)

MEMO

The loop for i in range(start, stop) with integer start and stop values begins at i = start and

ends at i = stop - 1, where the loop counter i is increased by 1 each time it runs through the

loop. Thereby you need to make start smaller than stop, otherwise the loop will never run.

RANGE() WITH THREE PARAMETERS

You can even call the range function with three

parameters. In this case, the first parameter is the

start value of the list, the second is the stop value, and

the third is the change in value from one element to the

next. This will help you to adjust the step size, which

was previously always 1, to any situation.

If, for example, you write print range(2, 15, 3), the

numbers [2, 5, 8, 11, 14] are written in the output

window.

In the adjacent graphic you draw a pyramid standing on

its peak with filled rectangles. The smallest rectangle

has a width of 2, and the biggest has a width of 40.

from gpanel import *

makeGPanel(0, 40, 0, 40)

setColor("red")
y = 1
for i in range(2, 41, 2):
 move(20, y)

Page 78

 fillRectangle(i, 1.5)
 y = y + 2

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The loop for i in range(start, stop, step) begins with i = start and ends at a value that is

less than stop. i is increased by step each time the program runs through the loop. You can

also choose negative numbers for the values start, stop and step.

I step is negative, i is reduced by step at every iteration; the last value is greater than stop.

NESTED FOR LOOPS (Moiré)

Closely drawn lines positioned above one another can

produce an optical effect called the Moiré pattern. In a

square, you draw lines from 10 points on the bottom

edge to each of 10 points on the upper edge. Then you

do the same from the left to the right edge.

from gpanel import *

makeGPanel(0, 10, 0, 10)

for i in range(0, 11):
 for k in range (0, 11):
 line(i, 0, k, 10)
 delay(100)
for i in range(0, 11):
 for k in range (0, 11):
 line(0, i, 10, k)
 delay(100)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The program might not be very easy to understand, but it is important. At best, you can

assume that the loop variable i of the outer loop has a constant value (initially 0) . The inner

loop runs with this value for the values k = 0 up to and including 10. Then i is set to 1 and the

inner loops run again with this value i, etc.

When using the command delay(millisec), the program waits for the given number of

milliseconds so that you can observe how the pattern emerges gradually.

EXERCISES

 1. You will get an even nicer graphic than the one seen in Example 1 if you use colors. Draw a

Page 79

second family of lines with a different color (Figure a).

(a) (b)

The blue family of lines (Figure b) is drawn with line(i, 0, 0, 20 - i). Can you also program the

purple one?

2. Draw a family of circles.

You can draw the colored family of circles with the following procedure: First draw a filled

circle with the radius y, then choose the color black and draw another circle with the same

radius:

 setColor("cyan")
 fillCircle(y)
 setColor("black")
 circle(y)

3. In Example 3 we drew a pyramid standing upside

down. Draw a "real" pyramid with three colors. In

order to do so, you can use a for loop that counts

down.

.

Page 80

3.3 STRUCTURED PROGRAMMING

INTRODUCTION

The concept of variables is very important to programming. Therefore, you need to give a special

effort in order to understand it as thoroughly as possible. You already know that a variable is a

memory slot that is addressed with a name and that holds a value. You also know that

parameters can be understood as “volatile” memory slots which, when their function is called,

receive a value that the function can then access during its execution.

PROGRAMMING CONCEPTS: Constants, procedural programming, reusability

A MOSAIC OF 10X10 STONES

You have the task of creating a beautiful colored mosaic

out of square stones. You get different colored mosaic

stones with the side length 10, and you should put

them together exactly side by side on a canvas with the

size 400x400. You feel a bit lazy, so you are going to

leave the task up to the computer. You tell it to place

the stones with random colors line by line. Use

delay(1) to create a short pause after each stone is

laid so that you can watch the computer making the

mosaic.

from gpanel import *
makeGPanel(0, 400, 0, 400)

for y in range(0, 400, 10):
 for x in range(0, 400, 10):
 setColor(getRandomX11Color())
 move(x + 5, y + 5)
 fillRectangle(10, 10)
 delay(1)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Whenever a grid needs to be run through, two nested for loops are best suited. Think about

why precisely the stones are placed line by line from bottom to top. You need a shift at move()

because the stones are anchored/established in the middle.

The method getRandomX11Color() gives back (as a word) one of the colors from the X11

color palette, which you can then pass on to setColor(). You can first call the function

getRandomX11Color(), and then the function setColor().

Page 81

MAGIC NUMBERS

Two weeks later, you receive a delivery of stones that

are five times larger with a side length of 50. The

computer should lay them on the same canvas again.

What do you need to do to adjust the program? You

check out the previous code, but of course you no

longer understand what each particular line means.

You think: anywhere there is a 10, the number should

be changed to 50. So you do this, but soon realize you

were wrong. Unfortunately the mosaic no longer covers

the entire canvas.

Now you have to go back through the code line by line in order to find the error. If this is

necessary to adapt the program to a new situation (reuse), then your program was correct but

just poorly written. You should get into the habit of having a good programming style, so that

you can easily adjust programs to (fit) new situations.

How can you proceed? Instead of writing the stone size as a fixed number in the code, define a

variable size, that can be used in place of the fixed number wherever the stone size plays a role.

In order to structure the program even better, you should also write a separate function

drawStone() for the placement of the stone.

from gpanel import *

def drawStone(x, y):
 setColor(getRandomX11Color())
 move(x + size/2, y + size/2)
 fillRectangle(size, size)

makeGPanel(0, 400, 0, 400)

size = 50

for x in range(0, 400, size):
 for y in range(0, 400, size):
 drawStone(x, y)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The use of fixed numerical values throughout the program results in poorly reusable programs.

You should instead define variables and use them in place of numbers. To indicate that these

should never change, sometimes you write these variables in capital letters and call them

constants.

A variable that is defined in the main block can also be read in each function. Therefore, we

also call it a global variable.

For longer self-contained actions, the code should be put into separate functions. This has

several advantages: the first is that you can recognize the function name and what it should

do, the second is that you can call them several times without having to rewrite the code, and

the third is that the program becomes clear and comprehensible. This type of programming is

called structured programming (or procedural programming) and it is an important trait

of a good programming style.

Page 82

EXERCISES

1. As you can find out using the Pythagorean theorem, the command:

fillTriangle(x - math.sqrt(3)/2 * r, y - r/2,

 x + math.sqrt(3)/2 * r, y - r/2,

 x, y + r);

draws an equilateral triangle with the center point at (x, y) and the radius r. Verify this in a

GPanel with the coordinate system -1..1 for both axes, which draws a triangle with its center

at the origin.

2. Use the code from exercise 1 and define a function star(x, y, r), which draws a star using two

equilateral triangles with the center point (x, y) and the size r. Try it out and draw a few

stars.

3.
Enhance the function star() with a parameter that sets the color of the star. Draw a star

mosaic on a grey background with 50x50 stars. Keep the size of the stars consistent.

Also, make sure that none of the stars are drawn with the background color.

Page 83

3.4 FUNCTIONS WITH A RETURN VALUE

INTRODUCTION

You already know how to define a function with or without parameters and how to call it. From

mathematics you probably know that there, functions are understood as something slightly

different. In mathematics, a function y = f(x) has an independent variable x. For each value of x,

the function returns a value of the dependent variable y. One example is the quadratic function:

. x = 0, 1, 2, 3 results in the square numbers 0, 1, 4, 9.

You can also define functions in Python that calculate a value and then "return" it as a variable.

PROGRAMMING CONCEPTS: Return value of a function, discretization

THE KEYWORD RETURN

You can define a function squarenumber(x) that

calculates a square number x * x for a given parameter

x, just as in mathematics. The return occurs by using

the keyword return. You can then draw the graph of

the function in a GPanel. For the graphics you best use

draw(x, y), which draws a line segment from the last

position of the graphics cursor to (x, y) and then

places it there. After the GPanel window appears, the

graphics cursor is at (0, 0). You must first set it to the

starting point of the image using move(), otherwise

you will get an incorrect starting line.

from gpanel import *
makeGPanel(-25, 25, -25, 25)

def squarenumber(x):
 y = x * x
 return y

for x in range(-5, 6):
 y = squarenumber(x)
 if x == -5:
 move(x, y)
 else:
 draw(x, y)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

With return, a function can return a value to the caller and stop further processing. Just as in

mathematics, a function cannot return multiple values [more...].

However, as you have seen, in contrast to mathematics, there are also functions in computer

science that do not return a value but can still have an effect. Functions are even able to do

both, cause something and return something [more...].

Page 84

This graphical representation of the quadratic function is not very nice yet. In addition to the

missing coordinate system, the graph's angular progression is also quite unpleasant. This is

due to the fact that you only calculate the function at a few integer points that you connect

with straight lines. This exposes an essential weakness of computer science compared to

mathematics: Although the function delivers a y value for every value of the x-axis (for every

real number), in computer science we can only calculate it at a finite number of points. We say

that the continuous x-axis is dissolved into discrete points.

DECIMAL NUMBERS (FLOATS)

At least we can make the representation a bit nicer

if we choose to calculate points that are close to

each other on the x-axis. For example, you can run

through the range of -5 to 5 in hundredth steps. To

make it even better, you can draw a coordinate

grid.

Unfortunately, you can only run for loops with

integer values in Python. If you need a better

resolution, you can use a while loop. This way, we

can add 0.01 to the x coordinate at every step.

Now Python does no longer consider x as an

integer, but as a decimal number (float).

from gpanel import *
makeGPanel(-6, 6, -3, 33)
setColor("gray")
drawGrid(-5, 5, 0, 30)

def squarenumber(x):
 y = x * x
 return y

setColor("blue")
lineWidth(2)
x = -5
while x < 5:
 y = squarenumber(x)
 if x == -5:
 move(x, y)
 else:
 draw(x, y)
 x = x + 0.01

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

In Python, decimal numbers are called float. Unlike in mathematics, decimal numbers in

computer science always have a certain (finite) number of digits. In Python there are about 14

digits (in other programming languages such numbers are called double). One example in

computer programming is that you can never exactly specify the number π (which is of course

an infinite decimal fraction), because you would only get a precision of around 14 digits with a

float.

If you need a coordinate grid, you can do the following:

Page 85

Expand/Enlarge the coordinate range left and right, and up and down by 10% (instead of

-5 to 5 use -6 to 6, instead of 0 to 30 use -3 to 33)

Call drawGrid() with 4 parameter values, matching the coordinate range that you are

actually using. This results in 10 coordinate fields.

EXERCISES

1. Define the function mean(a, b) that returns the arithmetic mean of the two parameters. Test

it out with the console.

2. Examine the behavior of the function y = cos(x). How is it different from y = sin(x)?

3. Display the graph of the function y = sin(5x) in a GPanel, for a range between 0 and 2π with

a resolution of 0.01 (you can get π using math.pi). Pick a value other than 5 within the sine

function. What is the connection between this number and the graph?

4. Define the function f(x) = 1 / sin(x) and represent it in a GPanel for the range -5...5 (for both

axes) with a solution of 0.001. Also draw the coordinate axes with a different color. Do you

find anything interesting about this?

Page 86

3.5 GLOBAL VARIABLES, ANIMATIONS

INTRODUCTION

Computer graphics are frequently used to represent time-varying content. For example, you can

simulate a process from physics or biology, or create a computer game. We generally call such a

program an animation. In order to show a temporal sequence, new images are drawn one after

another, always after an equal step in time, called an animation step.

PROGRAMMING CONCEPTS: Global variables, side effects, double buffering

CHANGING GLOBAL VARIABLES

You want to illustrate a ball that moves on a circle. You

will get a circular motion with a radius of 1 by

calculating the x-coordinate using the cosine function

with an increasing parameter t (corresponding to

advancing time), and the y-coordinate with the sine

function, thus x = cos(t) and y = sin(t). If you want a

different radius, you have to multiply both values with

the radius.

With the function step(), the situation for each

animation step is drawn. Once the ball has made a full

circle, the color should change.

It is common to introduce an endless animation loop in the main program that repeatedly calls

step(). By incorporating a delay, you can change the speed of the animation. When using step(),

the global variable t should increase at each step and reset to 0 once it has reached 2P, and

the color should change.

import math
from gpanel import *

def step():
 global t
 x = r * math.cos(t)
 y = r * math.sin(t)
 t = t + 0.1
 if t > 6.28:
 t = 0
 setColor(getRandomX11Color())
 move(x, y)
 fillCircle(10)

makeGPanel(-500, 500, -500, 500)
bgColor("darkgreen")

t = 0
r = 200

while True:
 step()
 delay(10)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 87

MEMO

Python prohibits changing the value of global variables in functions. We can bypass this by

providing the variable with the keyword global in the function.

The identifier global poses risks: any function can not only change a variable designated as

global, but can also create it, as the following example shows:

def set():
 global a
 a = 2

def get():
 print "a =", a
set()
get()

Since set() generates a variable a which is visible throughout the entire program, we also say

that the function set() has side effects. Also note how nicely several things, one after

another, can be written into the console using comma separation in a print statement. In the

output the comma is replaced by a space.

THE TRICK WITH THE EVEN TICK

The animation loops should run in time ticks that are as even as possible, i.e. with the desired

animation period, otherwise the movement will be jerky. With step() each new animation state

is set up. Depending on the situation, this can take different amounts of time to complete, as the

program may not always run the same parts of the code, and also because the computer may be

busy with other tasks in the background, which may delay the execution of the Python code. To

compensate for the step() of varying length, the following trick is used, which you could also

have figured out yourself: before calling step(), you keep track of the current time using the

variable startTime. After returning from step() you wait in a waiting loop until the difference

between the new time and the start time reaches the animation period.

The program moves a soccer ball from goal to goal. For

this, you use an image football.gif hat is located in the

directory sprites of the TigerJython distribution. You can

also take your own picture by copying the file into an

appropriate directory on your computer and passing the

file path as a parameter in image() (absolute or relative

to the directory where your program is located).

from gpanel import *
import time

def step():
 global x
 global v
 clear()
 lineWidth(5)
 move(25, 300)
 rectangle(50, 100)
 move(575, 300)
 rectangle(50, 100)

Page 88

 x = x + v
 image("_sprites/football.gif", x, 275)
 if x > 500 or x < 50:
 v = -v

makeGPanel(0, 600, 0, 600)
bgColor("forestgreen")
enableRepaint(False)

x = 300
v = 10

while True:
 startTime = time.clock()
 step()
 repaint()
 while (time.clock() - startTime) < 0.020:
 delay(1)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Using time.clock() you can get the current time as a decimal number. The given value is

dependent on the computer (processor time, or the time since the first call of clock()). But

since you only need the time difference, it does not matter. Save the time before calling step()

and wait at the end of the animation loop with a delay(1), until the difference between the

current time and the start time reaches the animation period (in seconds). Remember this

trick, for you will use it for many processes that ought to run as periodically as possible.

Every graphics command is immediately visible in the GPanel window. Deleting with clear()

while animating will briefly show an empty graphics window, which can lead to a flickering

effect. To avoid this, double buffering should be used in animations.

You can achieve this using the command enableRepaint(False), causing the graphics

command to be executed only in a background buffer (off screen buffer) and effects are no

longer visible. So clear() only deletes the background buffer and does not erase the graphics

window anymore. You must trigger the display of the graphics buffers on the screen (called

rendering) yourself at the right moment by calling repaint().

In this program you also need to globally distinguish the variables x and v in the function

step() since they are changed in the function.

EXERCISES

1. If you do not move the x- and y-coordinates with ordinary cosine or sine functions as you did

in your first program, but rather at different rates, it will create interesting curve patterns

called Lissajoux figures. Draw such figures with a resolution of 1/1000 in the range of t = 0

to 2π and with

x = cos(4.5 * t) und y = sin(6.3 * t)

2. Instead of using fixed numbers, use the variables omega_x and omega_y to draw the figure

for the following values:

omega_x omega_y

3 5

3 7

5 7

Page 89

Do you see a connection between the figure and the values of omega_x and omega_y?

3. Draw the Lissajoux figure with omega_x = 2 and omega_y = 7, in the range of t = 0 to 2π,

and with a resolution of 1/100 in a GPanel with the coordinates -2 to 2 (both axes). Instead of

connecting the points with lines, draw a circle with a radius 0.2 at any point. You get a

“slinky-like” figure. As you can see in the picture, you can make monochrome circles or you

can fill them with color using getRandomX11Color(). Play around with it!

Page 90

3.6 KEYBOARD CONTROLS

INTRODUCTION

Programs become especially interactive when the user can control the program execution by

using keys on the keyboard. Although keystrokes are actually events that always occur

independently of the program, they can be captured also through querying functions.

PROGRAMMING CONCEPTS: Boolean data type, game state, animation

KEYBOARD CONTROLS

The command getKeyCodeWait() will stop the

program until you press a key. Then, the function

provides you with the corresponding key code as a

return value. With the exception of certain special keys,

each key has its own numerical code.

You can figure out the key codes using a simple test

program. The numerical codes are written in the

console window.

from gpanel imp ort *
makeGPanel(0, 10, 0, 10)

text (1, 5, "Press any key.")
while True:
 key = getKeyCodeWait()
 print key,

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

You can use the command getKeyCodeWait() for keyboard inputs. The computer waits until

you press a key and then returns the key code.

However, you have to remember that the GPanel window must be active. In other words, it

must be in focus. If the window loses focus, you have to click somewhere inside it in order to

activate it again. Only the currently active window receives keyboard events.

CONTROLLING FIGURES

You can move graphic objects using the keyboard. The program controls the green circle with the

cursor keys, moving it left, right, up, or down. In a so-called event loop the program waits for a

key press and then processes the obtained key code in a nested if-else structure.

Page 91

Since the drawing of the circle is used over and over

again, it makes sense that you would pack the code into

its own function drawCircle() that can be called

multiple times, in compliance with the structured

programming paradigm.

from gpanel import *

KEY_LEFT = 37
KEY_RIGHT = 39
KEY_UP = 38
KEY_DOWN = 40

def drawCircle():
 move(x, y)
 setColor(" green")
 fillCircle(5)
 setColo r("black")
 circle(5)

makeGPanel(0 , 100, 0, 100)
text("Move the circle with the arrow keys.")
x = 50
y = 50
step = 2
drawCircle ()

while True:
 key = getKeyCodeWait()
 if key == KEY_LEFT:
 x -= step
 dr awCircle()
 elif key == KEY_RIGHT:
 x += step
 dra wCircle()
 elif key == KEY_UP:
 y += step
 dra wCircle()
 elif key == KEY_DOWN:
 y -= step
 dra wCircle()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

To make the program more readable, you can introduce constants for the keyboard codes of

the arrow keys. So that they are especially noticeable, constants should be placed in the

program header and written in capital letters.

Page 92

NON-BLOCKING KEYBOARD QUERIES

As you are probably aware, the keyboard is often used to

control the game play in computer games. In this case

you can of course not use the blocking function

getKeyCodeWait() because it would pause the game.

Rather, you need a function that will deliver the

information if a key has been pressed, but that also

immediately returns.

In case you indeed pressed a key, you process this

event, otherwise the game will continue on normally.

You want the speed of a ball moving back and forth to get slower with the letter key 's' (for slow)

and get faster with 'f' (for fast), but only up to a certain maximum value. You need to again

focus your attention on the event loop, which is where everything essential happens. In it,

kbhit() periodically queries, whether a key was hit or not. If this is the case, kbhit() returns

True and you can get the key code by using getKeyCode().

from gpanel import *
import time

KEY_S = 83
KEY_F = 70

makeGPanel(0, 600, 0, 600)
title("Key 'f': faster, 's': slower")

enableRepaint(False)
x = 300
y = 300
v = 10
vmax = 50
isAhead = True

while True:
 startTime = time.clock ()

 if kbhit():
 key = getKeyCode()
 if key == KEY_F:
 if v < vmax:
 v += 1
 elif key == KEY_S:
 if v > 0:
 v -= 1

 c lear()
 setColor("black")
 text(10, 10, "Speed: " + str(v))
 if isAhead:
 x = x + v
 else :
 x = x - v
 move(x, y)
 setColor("red")
 fillCircle(20)
 repain t()
 if x > 600 or x < 0:
 isAhead = not isAhea d
 while (time.clock() - st artTime) < 0.010:
 delay(1)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 93

MEMO

Since it is an animation, we again need to use an animation timer in order to obtain a run

through the event loop that is as periodic as possible. The next game state is created in the

loop and it is then displayed in the window screen with repaint().

kbhit() returns a truth value, which we refer to as a boolean. If a key was pressed since the

last call, it returns True, otherwise False.

In order to move the ball to the right (forward), its x-coordinate must increase by v (the

measure for speed) with each pass of the event loop. To move to the left, the coordinate v

must decrease. We summarize a forward and backward movement as a game state which we

save in the variable isAhead.

You can add a word to a second word in Python using the + character, for example "Hans" +

"Peter" results in the word "HansPeter". However, if you want to add a number to a word, you

first have to convert the number using the str() function.

EXERCISES

1. Using the cursor keys UP, DOWN, LEFT and RIGHT

draw a snake line of small red circles, which lie

closely next to each other.

2. As an extension, define the following buttons for color selection: after you press the letter

key g, the circles should turn green, b should make them blue, and r red.

3. Extend the above program with the ball moving back and forth so that the UP and DOWN

cursor keys make the ball move up and down.

Page 94

3.7 MOUSE EVENTS

INTRODUCTION

So far, your understanding of the computer is that it executes instruction after instruction. It can

also change the course of a program due to certain conditions or run through loops. The

corresponding program structures are called sequence, selection, and iteration. As early as

1966 Böhm and Jacopini proved in a famous article that any calculation procedures (algorithms)

can be realized using these three programming structures.

This is, however, only true as long as you do not incorporate any external influences. For

example, you can cancel a program at any moment by clicking with the mouse on "Close" (close

button). Such processes need a new programming concept: event control (event handling). You

have already learned the basic principles in the chapter Turtle Graphics/Event Control. It consists

in procedures of the type:

"Whenever the event e occurs, the function f is executed".

The implementation is simple and known since the early days of computer technology in the

fifties of the last century. We define a function f (then called interrupt routine) which is never

even called by our own program. It sleeps, so to speak, until a certain event E occurs, an

external influence, upon which it is then automatically called by the system. Today we call such a

function callback and we say that the callback f is “fired” by the event E. Often, callbacks

are called with parameter values that contain important information about the event, for

example, which mouse button was pressed or where the mouse is located.

PROGRAMMING CONCEPTS: Event-driven program, callback, registering callbacks

REACTING TO A MOUSE EVENT

You can also use mouse events in the GPanel, just like in turtle graphics. In the first example, a

green circle is drawn at the current mouse position when the left or right mouse button is

pressed. Do the following:

First, in a function with an arbitrarily chosen name,

define what should happen when a mouse button is

pressed. Here you choose a name, for example

onMousePressed(), that expresses what the function

does as well as possible. When called by the system, the

callback receives the current coordinates of the mouse

cursor. Next you need to tell the system that it should

call your callback when the mouse button is pressed.

This process is called callback registration. To

register your callback you will need a named parameter

of makeGPanel() that is called mousePressed.

from gpanel import *

def onMousePressed(x, y):
 move(x, y)
 fillCircle(0.02)

makeGPanel(mousePressed = onMousePressed)
setColor("green")

Page 95

MEMO

A callback is not called by your own program, but rather automatically when the event is

triggered. The registration of the callback is performed through a named parameter. You can

detect the pressing of a mouse button with two different callbacks: a click event or a press

event. The click event will not be triggered until after the key is released, but the press event

triggers immediately once you press the button.

DETECTING MOUSE MOVEMENT

The mouse movement can also be recognized as an

event, which is triggered in rapid succession when the

mouse is moved. The parameter is called

mouseMoved. Your program draws a red filled circle

with a black outline at every call of the callback,

whereby you can draw fun tubelike pictures.

from gpanel import *

def onMouseMoved(x, y):
 move(x, y)
 setColor("red")
 fillCircle(.04)
 setColor("black")
 circle(.04)

makeGPanel(mouseMoved = onMouseMoved)

MEMO

 The onMouseMoved(x, y) callback is registered through a named parameter mouseMoved.

FREE HAND DRAWING WITH A PRESSED MOUSE BUTTON

Now you are already capable of writing a simple

drawing program, with which you can draw a figure

free-handedly using the mouse. All you need is the drag

event which is triggered in rapid succession when you

move the mouse with the button pressed down. The

program logic is simple: move the graphics cursor to the

current location when the press event occurs and then

draw a line using draw() in the drag event callback.

Page 96

from gpanel import *

def onMousePressed(x, y):
 move(x, y)

def onMouseDragged(x, y):
 draw(x, y)

makeGPanel(mousePressed = onMousePressed,
 mouseDragged = onMouseDragged)

MEMO

You can register multiple callback with named parameters simultaneously. The order of the

parameters does not matter.

THE LEFT AND RIGHT MOUSE BUTTON

As you have probably noticed, the mouse events are

triggered by both the left and right mouse buttons. If

you want to differentiate the two buttons, use the

functions isLeftMouseButton() and

isRightMouseButton(). These return True when the

left or the right button is involved, respectively.

When you press on the right mouse button the

program opens a color palette. You can then select the

fill color of the circle with the left mouse button.

from gpanel import *

def onMousePressed(x, y):
 if isLeftMouseButton():
 pixColor = getPixelColor(x, y)
 if pixColor == makeColor("white"):
 return
 clear()
 setColor(pixColor)
 move(5, 5)
 fillCircle(2)

 if isRightMouseButton():
 for i in range(5):
 move(9, 2 * i + 1)
 if i == 0:
 setColor("deep pink")
 if i == 1:
 setColor("green")
 if i == 2:
 setColor("yellow")
 if i == 3:
 setColor("deep sky blue")
 if i == 4:
 setColor("dark violet")
 fillRectangle(2, 2)

makeGPanel(0, 10, 0, 10, mousePressed = onMousePressed)
move(5, 5)
fillCircle(2)

Page 97

MEMO

The registered mouse callbacks are triggered with the left and the right mouse buttons. You can

find out which button was used by calling isLeftMouseButton() or isRightMouseButton().

RUBBER BAND LINES

If you want to draw lines with a drawing program, you

can mark the starting point by pressing the mouse

button. While dragging the mouse, you make a

temporary line similar to that of a rubber band that is

fastened at the starting point. Only release the mouse

button when you are satisfied with the position of the

line, and then it will actually be drawn.

So here you need three callbacks: onMousePresssed,

onMouseDragged and onMouseReleased.

But there is a particular problem: to move the rubber band over the drawing area it must be

repeatedly erased from its old location and drawn again to the new location, without changing the

already existing drawing. If you deleted the lines by overwriting them with the background color,

gaps would result in the existing drawing at the intersection points.

To solve this problem, you must save the existing drawing in the press callback (one also calls

this "rescue"). The deletion of the temporary rubber band then happens by restoring this “old”

drawing. You can save the drawing with storeGraphics() and restore it with recallGraphics().

from gpanel import *

def onMousePressed(x, y):
 global x1, y1, x2, y2
 storeGraphics()
 x1 = x
 y1 = y
 x2 = x1
 y2 = y1
 setColor("red")

def onMouseDragged(x, y):
 global x2, y2
 recallGraphics()
 x2 = x
 y2 = y
 line(x1, y1, x2, y2)

def onMouseReleased(x, y):
 setColor("white")
 if not (x1 == x2 and y1 == y2):
 line(x1, y1, x2, y2)

x1 = 0
y1 = 0
x2 = 0
y2 = 0

makeGPanel(mousePressed = onMousePressed,
 mouseDragged = onMouseDragged,
 mouseReleased = onMouseReleased)
title("Press And Drag To Draw Lines")
bgColor("blue")

Page 98

setColor("white")
lineWidth(2)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Remember the principles of drawing rubber band lines:

In a press event the end point of the line is initialized and the graphic is saved.

In a drag event the saved/stored graphic is restored, the temporary line with the new end

point is saved, and the new end point is saved.

In a release event the line is definitely drawn, but only if the mouse was really moved.

EXERCISES

1. Draw a green filled circle. The fill color should change to

red when you move the mouse onto the circle. It should

turn back to green when the mouse moves off.

You can specify a window with

makeGPanel(-10, 10, -10, 10,

 mouseMoved = onMouseMoved)

2. Your program should draw a line segment after every

mouse click.

3. Upon the movement with a pressed mouse button, your

program should draw a tube-like figure. While moving, the

tube should swell up from an initial thickness of 0.01 to

0.1, and then return back to its original thickness.

4. Write a program where you can draw green rectangles

onto a black background. In this case, you should be able

to place a temporary "rubber band rectangle" by pressing

Page 99

and dragging the mouse, before it is definitely placed

upon releasing the mouse. Use the rectangle functions

that are called with the coordinates of two opposite corner

points of the rectangle (rectangle(x1, y1, x2, y2)).

ADDITIONAL MATERIAL

REGISTERING CALLBACKS WITH DECORATORS

Instead of using named parameters of makeGPanel() to register a callback, an arbitrary named

function with two parameters x and y can be "decorated" by a preceding line, so that TigerJython

automatically registers the function as callback that is called when the event happens. The

additional line has to be prefixed by the "at" sign @. The following decorators are available:

@onMousePressed mouse button is pressed

@onMouseReleased mouse button is released

@onMouseClicked mouse button is pressed and released

@onMouseDragged mouse is moved while a button is pressed

@onMouseMoved mouse is moved while no button is pressed

@onMouseEntered mouse enters the graphics window

@onMouseExited mouse leaves the graphics window

So the program shown above which draws a circle when the mouse button is pressed, can be

written using a decorator:

from gpanel import *

@onMousePressed
def doIt(x, y):
 move(x, y)
 fillCircle(0.02)

makeGPanel()
setColor("green")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 100

3.8 THREAD GRAPHICS

INTRODUCTION

You have likely played with thread graphics already in

preschool. For this, you hammered nails or inserted needles

into a timber or carton board to create a particular figure,

according to a crafting guide. Most of these were arranged at

equal intervals and you linked them together with threads.

When you placed a sufficient amount of threads, interesting

curves appeared where the thread consolidated. In

mathematics, this is called envelope (also envelope curve)

because the threads are tangent to this curve.

 From Täubner, Walz: Fadengrafik

Instead of creating the thread graphic yourself, you can also instruct a machine to do it. This

would require the machine to not only understand the instructions but then to also translate

these instructions into an action, for example using a robot arm to pull the strings or record the

strings on a screen. Such an instruction manual for a machine is also called an algorithm. You

can first formulate the algorithm as a “craft” instruction understandable in colloquial language.

Since it is desirable that the machine produces the exact same pattern on each pass, the

algorithm must be formulated so precisely that the machine knows exactly what to do at every

step. Programming languages were invented for this and that is why you learn to program, since

in the natural languages there is no such unambiguity.

PROGRAMMING CONCEPTS: Algorithm, data structure, model, program elegance, list, index

POINTS AS LISTS

Instead of working with boards, nails, and threads, you

can transfer the procedure to your computer. Thereby

you make an portrayal of nature, you model the

board as a screen window, the nails as points on the

screen, and the threads as lines.

In transferring the algorithm into a programming

language, it is important to establish the closest

relationship possible to reality. Nails, and geometric

points respectively, represent tangible objects to you,

and so they should be in the program as well.

In geometry, you can write P(x, y) for a point, where x and y are the coordinates. In the

program, we can pack the two numbers x and y into a data structure, called a list. We write p =

[x, y]. The geometric point P(0, 8) is thus modeled by the list p = [0, 8] .

You can access the individual components of a list with an index with a count starting at 0. You

have to write the index in a set of square brackets, so p[0] for the x-coordinate, and p[1] for

the y-coordinate. The nice thing is that all of the graphic functions of the GPanel are "list

conscious" because they also work with point lists instead of x-y-coordinates. Your program

models the pulling of threads from nail A around 19 nails at the coordinates on the x-axis to nail

B, and back again. You can even incorporate a delay() which causes the stringing to take a

longer time that is graspable by humans.

Page 101

from gpanel import *

DELAY = 100

def step(x):
 p1 = [x, 0]
 draw(p1)
 delay(DELAY)
 draw(pB)
 delay(DELAY)
 p2 = [x + 1, 0]
 draw(p2)
 delay(DELAY)
 draw(pA)
 delay(DELAY)

makeGPanel(-10, 10, -10, 10)
pA = [0, 8]
pB = [0, -8]
move(pA)
for x in range(-9, 9, 2):
 step(x)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The data must also be structured conveniently in the implementation of an algorithm. Our

geometric points are modeled as a list with two elements (x- and y-coordinates). The choice of

the data structure significantly affects the program. Niklaus Wirth, a famous computer

science professor at the ETH Zürich, aptly said: program = algorithm + data structure
[Ref.]

Lists can store multiple values, named list elements. They are defined with square brackets.

You can read the individual elements with a list index and assign new values.

All of the graphics commands of GPanel also work with points modeled as lists of x- and

y-coordinates.

PROGRAMMING IS AN ART

You probably realize that you can create the previous

thread graphic much easier if you draw the lines

independently of how the thread would actually be drawn

by hand. You just need to connect the points A and B with

routes.

from gpanel import *

makeGPanel(-10, 10, -10, 10)
pA = [0, 8]
pB = [0, -8]

for x in range(-9, 10, 1):
 pX = [x, 0]
 line(pA, pX)
 line(pB, pX)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 102

MEMO

An algorithm can be implemented in various ways that differ in length of code and duration of

the execution of the program. We also speak of more elegant and less elegant programs. Just

remember that it is not enough for a program to produce a correct result, but it should also be

written elegantly. Consider programming an art!

ELEGANT THREAD GRAPHIC ALGORITHMS

You often need dividing points of a line segment for

thread graphics. For this there is a simple function in

GPanel called getDividingPoint(pA, pB, r), which you

pass the two endpoints pA and pB of the line and the

division factor r. It returns you the dividing point as a

list [more...].

You are now modeling a thread graphic with nails on the

sides AB and AC with an especially elegant program.

from gpanel import *

makeGPanel(0, 100, 0, 100)

pA = [10, 10]
pB = [90, 20]
pC = [30, 90]

line(pA, pB)
line(pA, pC)

r = 0
while r <= 1:
 pX1 = getDividingPoint(pA, pB, r)
 pX2 = getDividingPoint(pA, pC, 1 - r)
 line(pX1, pX2)
 r += 0.05
 delay(300)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Library functions such as getDividingPoint() can greatly simplify a program. For certain

well-defined tasks, you should use existing library functions that you know from your

programming experience here, taken from documentations, or from what you can find on the

Web.

Mathematically, the resulting curve is a quadratic Bézier curve. You can draw it with the

function quadraticBezier(pB, pA, pC), where pB and pC are the endpoints, and pA is the control

point of the curve.

Page 103

MOUSE CONTROLLED THREAD GRAPHICS

Modeling natural processes with the computer is not

just a game, it also has versatile applications. You can

test different situations in a much shorter time and with

much less effort with a computer until you have found

one that you want to implement into practice. Your

program is particularly attractive if you can make

changes with the mouse that have an immediate effect.

With Python, this can be incorporated with little extra

effort, by using callbacks.

In your program, you can move the vertex A by moving

the mouse, and a new thread graphic will be made

immediately.

In order to create the graphics, you use the function updateGraphics() which is called by the

mouse callbacks. Every time you delete the entire graphics window and then recreate it with

point A at the current location of the mouse cursor.

from gpanel import *

def updateGraphics():
 clear()
 line(pA, pB)
 line(pA, pC)
 r = 0
 while r <= 1:
 pX1 = getDividingPoint(pA, pB, r)
 pX2 = getDividingPoint(pA, pC, 1 - r)
 line(pX1, pX2)
 r += 0.05

def myCallback(e):
 pA[0] = toWindowX(e.getX())
 pA[1] = toWindowY(e.getY())
 updateGraphics()

makeGPanel(0, 100, 0, 100,
 mousePressed = myCallback,
 mouseDragged = myCallback)

pA = [10, 10]
pB = [90, 20]
pC = [30, 90]
updateGraphics()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

You can also deal with two different events, here the press event and the drag event, using

the same callback.

Page 104

EXERCISES

1. Create the adjacent thread graphic

2. Work from the thread graphic from exercise 1, so that

you can draw the top of the triangle with a mouse drag

and the graphic is repeatedly drawn anew.

 EXTRA MATERIAL

BÉZIER CURVES

These curves were invented in the sixties of the last

century by Pierre Bézier, then an engineer of the car

company Renault, so one could produce aesthetically

pleasing curves for the design of industrial products.

You can create a cubic Bézier curve as a thread graphic

using the De Casteljau algorithm.

The algorithm reads as follows:

Specify 4 points P0, P1, P2, P3. (P0 and P3 will be the end points of the curve, P1 and P2

so-called control points)

Connect P0P1, P1P2, P2P3

The routes P0P1, P1P2, P2P3 are arranged into equidistant division points. For a given

division ratio, this results in the dividing points Q1, Q2, Q3

Connect Q1Q2, Q2Q3

Split the routes Q1Q2, Q2Q3 in the same division/factor ratio. This results in the division

points R2 and R3

Page 105

Connect R2R3

You can easily implement the algorithm into a program if you implement the points as lists and

call the function getDividingPoint() several times.

from gpanel import *

makeGPanel(0, 100, 0, 100)

pt1 = [10, 10]
pc1 = [20, 90]
pc2 = [70, 70]
pt2 = [90, 20]

setColor("green")

line(pt1, pc1)
line(pt2, pc2)
line(pc1, pc2)

r = 0
while r <= 1:
 q1 = getDividingPoint(pt1, pc1, r)
 q2 = getDividingPoint(pc1, pc2, r)
 q3 = getDividingPoint(pc2, pt2, r)
 line(q1, q2)
 line(q2, q3)
 r2 = getDividingPoint(q1, q2, r)
 r3 = getDividingPoint(q2, q3, r)
 line(r2, r3)
 r += 0.05

setColor("black")
#cubicBezier(pt1, pc1, pc2, pt2)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

A cubic Bézier curve is defined by 4 points. You can draw one in GPanel with the function

cubicBezier(). The current drawing color and line thickness will be used.

INTERACTIVE CURVE DESIGN

Combining your knowledge, you can already write a

quite professional program with which you can create a

Bézier curve and interactively change it with the mouse.

The program even notices when you are near one of the

4 points with the cursor and colors it. With a press

event you can then grab the point and move it around.

The four points must be run through multiple times in

the program. It is therefore advisable that you also put

them in a list with the name points, so that you can

process them with a for structure.

It is also important that you know which of the points you have just grabbed. You store this

information in the variable active: if none of the points are grabbed it has the value -1,

otherwise its value corresponds to the index of the corresponding point.

Page 106

from gpanel import *

def updateGraphics():
 # erase all
 clear()

 # draw points
 lineWidth(1)
 for i in range(4):
 move(points[i])
 if active == i:
 setColor("green")
 fillCircle(2)
 setColor("black")
 circle(2)

 # draw tangents
 setColor("red")
 line(points[0], points[1])
 line(points[3], points[2])

 # draw Bezier curve
 setColor("blue")
 lineWidth(3)
 cubicBezier(points[0], points[1], points[2], points[3])

def onMouseDragged(e):
 if active == -1:
 return
 points[active][0] = toWindowX(e.getX())
 points[active][1] = toWindowY(e.getY())
 updateGraphics()

def onMouseReleased(e):
 active = -1
 updateGraphics()

def onMouseMoved(e):
 global active
 x = toWindowX(e.getX())
 y = toWindowY(e.getY())
 active = near(x, y)
 updateGraphics()

def near(x, y):
 for i in range(4):
 rsquare = (x - points[i][0]) * (x - points[i][0]) +
 (y - points[i][1]) * (y - points[i][1])
 if rsquare < 4:
 return i
 return -1

pt1 = [20, 20]
pc1 = [10, 80]
pc2 = [90, 80]
pt2 = [80, 20]
points = [pt1, pc1, pc2, pt2]
active = -1

makeGPanel(0, 100, 0, 100,
 mouseDragged = onMouseDragged,
 mouseReleased = onMouseReleased,
 mouseMoved = onMouseMoved)
updateGraphics()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 107

MEMO

There are also complicated data structures such as lists whose elements are again lists. For

example, you can address the x-coordinate of P1 using the points[1][0], thus with double
brackets.

Today, Bézier curves are important design tools in the CAD domain [Ref.]

EXERCISES

1. The heart consists of two cubic Bézier curves with the

same start and end points, plus symmetrical control

points. On a piece of paper, draw a sketch of where

these points should be placed and then create the

drawing. The filling is made with the function fill(point,

old_color, new_color), where point stands for an inner

point of a bordered area.

Page 108

3.9 Lists

INTRODUCTION

Sometimes you have to store values that belong together, but their exact number is not known

during the creation of the program. Because of this, you will need a data structure where you can

store multiple values. The structure should be flexible enough to take the order of the added

values into account. It is obvious in this case to use a sequence of simple containers, which you

have already heard about, namely a list. Here you will find out in detail how to work with lists.

A list with 5 elements

A list consists of individual elements arranged one after the other. In contrast to an unstructured

set of elements, there is a first and a last element, and all the other elements have a

predecessor and a successor.

Lists (and similar containers) are enormously important for programming. The operations

possible with lists are very descriptive. The most important are:

Adding elements (at the end, at the beginning, somewhere in between)

Reading elements

Changing elements

Removing elements

Iterating all elements

Sorting elements

Searching for elements

In Python you can store any data in lists, not only numbers. The individual elements can even

have a different type and you can, for example, store numbers and letters in the same list.

PROGRAMMING CONCEPTS: Container, list, predecessor, successor, reference variable

GRADE LIST

You can interpret a list as a variable. It thus has a name and a value, namely its elements. You

create it with a pair of square brackets, e.g. list = [1, 2, 3] generates a list with the elements 1,

2 and 3. A list can also be empty. You can define an empty list with list = [].

Grade books, where you enter the grades for a particular school subject, are a typical use of lists,

let's say biology grades. At the beginning of the semester you have an empty list, which is

expressed in Python as bioGrades = []. Writing in grades is then equivalent to adding list items.

In Python you use the command append(), so for a score of 5 it looks like this:

bioGrades.append(5).

You can view the list at any time with a print command, just simply write print bioGrades.

If you want to calculate your grade point average, you have to run through the list. You can do

this easily and elegantly with a for loop, because

for grade in bioGrades:

copies every list value in order to the variable grade, and you can then use this in the loop body.

Page 109

bioGrades = []
bioGrades.append(5.5)
print bioGrades
bioGrades.append(5)
print bioGrades
bioGrades.append(5.5)
print bioGrades
bioGrades.append(6)
print bioGrades
sum = 0
for note in bioGrades:
 sum += note
print "Average: " + str(sum / len(bioGrades))

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Using the method append() you can add new elements to the end of the list.

The built-in function len() returns the current length of the list. Note the interesting trick with

the variable sum, with which you can create the sum to then calculate the average. You can

also obtain the sum directly with the built-in function sum(bioGrades).

LIST WITH A FIXED NUMBER OF ELEMENTS

It is often already known how long a container list has to be, and that all elements have the same

data type, when creating the program. In many programming languages you call such a data

structure an array. The individual elements are usually accessed via their index. In Python there

is no such data type and instead you use a list.

The program defines a polygon as a list with 4 vertices

(these are again defined as lists with 2 coordinates). In

order to access them with indices from the start, create

a list with 4 zeros polygon = [0, 0, 0, 0]. You can also

use the shorthand notation polygon = [0] * 4.

After that, you copy in the 4 vertices, which replaces the

zeros by point lists. With a for loop you display the

polygon.

from gpanel import *

pA = [0, -3]
pB = [5, -3]
pC = [0, 7]
pD = [-5, 7]

makeGPanel(-10, 10, -10, 10)
line(-10, 0, 10, 0)
line(0, -10, 0, 10)

polygon = [0] * 4 # list with 4 elements, initialized with 0
polygon[0] = pA
polygon[1] = pB
polygon[2] = pC
polygon[3] = pD

Page 110

for i in range(4):
 k = i + 1
 if k == 4:
 k = 0
 line(polygon[i], polygon[k])

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

If you already know the length of the list when creating the program, generate a list with the

initialization values 0 and then refer to the elements using the index.

INSERTING AND DELETING ELEMENTS

The program shows how a word processor works. The entered characters are inserted into a list

of letters. It is clear that you do not know how many letters you will enter in the beginning, so a

list is the ideal data structure. In addition, you see a text cursor which can be set to any position

in the text with a mouse click.

When you type using a character key the letter is

inserted to the right of the cursor and the list grows.

When you use the backspace key the character to the

left of the cursor is deleted and the list shrinks.

In order to represent everything nicely, you write the

characters as text with a text color and background

color in a GPanel. For this you run through the list with a

list index i.

from gpanel import *

BS = 8
SPACE = 32
DEL = 127

def showInfo(key):
 text = "List length = " + str(len(letterList))
 if key != "":
 text += ". Last key code = " + str(ord(key))
 setStatusText(text)

def updateGraphics():
 clear()
 for i in range(len(letterList)):
 text(i, 2, letterList[i], Font("Courier", Font.PLAIN, 24),
 "blue", "light gray")
 line(cursorPos - 0.2, 1.7, cursorPos - 0.2, 2.7)

def onMousePressed(x, y):

 setCursor(x)
 updateGraphics()

def setCursor(x):
 global cursorPos

Page 111

 pos = int(x + 0.7)
 if pos <= len(letterList):
 cursorPos = pos

makeGPanel(-1, 30, 0, 12, mousePressed = onMousePressed)

letterList = []
cursorPos = 0
addStatusBar(30)
setStatusText("Enter Text. Backspace to delete. Mouse to set cursor.")
lineWidth(3)

while True:
 delay(10)
 key = getKey()
 if key == "":
 continue
 keyCode = ord(key)
 if keyCode == BS: # backspace
 if cursorPos > 0:
 cursorPos -= 1
 letterList.pop(cursorPos)
 elif keyCode >= SPACE and keyCode != DEL:
 letterList.insert(cursorPos, key)
 cursorPos += 1
 updateGraphics()
 showInfo(key)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

You have already learned that you can access individual elements of a list using a list index that

starts at zero. For this, you use the square brackets, i.e. letterList[i]. The index must always

lay in the range of 0 and list length - 1. When you use a for in range() structure the stop

value is just the length of the list.

You should never access an element that does not exist with the index. Errors with

invalid index lists are one of the most common errors in programming. If you do not pay

attention, you get programs that sometimes work and sometimes die.

To test which key was pressed you can use getKey(). This function returns immediately after

the call and delivers either the character of the last key pressed or the value 65535 (the largest

representable integer with 16 bit) if no key has been pressed.

ALREADY A PROFESSIONAL PROGRAM

You are already able to visualize a graph with your knowledge [more...]

The task (also called "program specification") is the following:

You can create filled circles in the graphics window with a right mouse click, which are

considered to be nodes of a graph, where the nodes are interconnected with named lines, called

edges. Go on a node with the mouse; with a left mouse press and subsequent dragging you

can move it around while the graph is updated constantly. If you right click on an existing node, it

will be removed.

Page 112

It is wise that you solve complex tasks by first looking

at a subtask that has not yet met all of the final

program specifications. For example, first write a

program with which you can create nodes with each

click. They should already be connected with all other

existing nodes, but you cannot move them yet.

It seems obvious to model the graph with a list graph

in which you store the node points.

The nodes themselves are points with two coordinates P(x, y) that you model with a point list

pointlist [x, y]. It is therefore a list, that then again contains lists as elements (but with a fixed

length of 2). You accomplish joining the nodes with double for loop, but you must make sure

that the nodes are only connected once.

from gpanel import *

def drawGraph():
 clear()
 for pt in graph:
 move(pt)
 fillCircle(2)

 for i in range(len(graph)):
 for k in range(i, len(graph)):
 line(graph[i], graph[k])

def onMousePressed(x, y):

 pt = [x, y]
 graph.append(pt)
 drawGraph()

graph = []
makeGPanel(0, 100, 0, 100, mousePressed = onMousePressed)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Next you are going to incorporate the dragging and

deletion of nodes. For this, you will need the right mouse

button. As you drag it is important to know which node is

being pulled. You can remember it by its index iNode in

the graph list. If no node is being pulled, iNode = -1. In

the function near(x, y), using the Pythagorean theorem,

you calculate the distance between point P(x,y) and all

other points. Once one of the squared distances is less

than 10, you abort the calculation and return the index of

the node. Here you see that you can leave a function using

return even in the middle of the procedure.

Everything else is fun programming work that you could

also achieve yourself based on your current knowledge.

from gpanel import *

def drawGraph():
 clear()

Page 113

 for i in range(len(graph)):
 move(graph[i])
 if i == iNode:
 setColor("red")
 else:
 setColor("green")
 fillCircle(2)

 setColor("blue")
 for i in range(len(graph)):
 for k in range(i, len(graph)):
 line(graph[i], graph[k])

def onMousePressed(x, y):
 global iNode
 if isLeftMouseButton():
 iNode = near(x, y)
 if isRightMouseButton():
 index = near(x, y)
 if index != -1:
 graph.pop(index)
 iNode = -1
 else:
 pt = [x, y]
 graph.append(pt)
 drawGraph()

def onMouseDragged(x, y):
 if isLeftMouseButton():
 if iNode == -1:
 return
 graph[iNode] = [x, y]
 drawGraph()

def onMouseReleased(x, y):
 global iNode
 if isLeftMouseButton():
 iNode = -1
 drawGraph()

def near(x, y):
 for i in range(len(graph)):
 p = graph[i]
 d = (p[0] - x) * (p[0] - x) + (p[1] - y) * (p[1] - y)
 if d < 10:
 return i
 return -1

graph = []
iNode = -1
makeGPanel(0, 100, 0, 100,
 mousePressed = onMousePressed,
 mouseDragged = onMouseDragged,
 mouseReleased = onMouseReleased)
addStatusBar(20)
setStatusText("Right mouse button to set nodes, left button to drag")

MEMO

The program is fully event-driven. The main block only defines two global variables and

initializes the graphics window. For each action the entire graphics window is cleared and

rebuilt with the current situation of the graph.

The most important operations with lists:

Page 114

li = [1, 2, 3, 4]

li = [1, "a", [7 , 5]]

li[i]

li[start:end]

li[start:end:step]

li[start:]

li[:end]

li.append(element)

li.insert(i, element)

li.extend(li2)

li.index(element)

li.pop(i)

pop()

li1 + li2

li1 += li2

li * 4

[0] * 4

len(li)

del li[i]

del li[start:end]

del li[:]

li.reverse()

li.sort()

x in li

x not in li

Defines a list with the numbers 1, 2, 3, 4

Defines a list with different data types

Accesses list elements with index i

Sublist with elements from start to end, without end

Sublist with elements from start to end, with the given step

Sublist with all elements starting at start

Sublist from the first element up to end, but without end

Appends element at the end

Inserts element at position i (element i slides to the right)

Appends all elements of li2 (concatenation)

Finds the first occurrence and returns its index

Removes and returns the element with index i

Removes and returns the last element

Returns the concatenation of li1 and li2 in a new list

Replaces li1 by the concatenation of li1 and li2

New list with elements of li repeated four times

Makes a new list with length of 4 (all elements number 0)

Returns the number of list elements

Removes the element with index i

Removes all elements from start to end, but without end

Removes the element with index i

Reverses the list (last element becomes the first)

Sorts the list (comparison with standard methods)

Returns True, if x is (included) in the list

Returns True, if x is not in the list

The notation with square brackets is called a slice operation. start and end are indices of the

list. The slice operation works similarly to the parameters of range().

EXERCISES

Page 115

1. Input any number of grades with inputFloat("prompt", False). If you press the Cancel button,

the average will be written out in the console. Note that you must use the parameter value

False so that the program does not end if you click Cancel. The special value None is returned

at the termination, which as usual, you can test with if.

2. Extend the editor program above using the slice notation so that every right mouse click cuts

away the beginning of the sentence, up to and including the first blank space.

3. Each time you click, a new image of a football

(football.gif) should appear at the location of the

mouse cursor. All of the footballs are constantly

moving back and forth on the screen. Familiarize

yourself with the football example in the chapter

animations. You can optimize the program by loading

the football image once with img =

getImage("sprites/football.gif") and passing img to

the function image().

 EXTRA MATERIAL:

MUTABLE AND IMMUTABLE DATA TYPES

In Python all data types are stored as objects, including the numeric types (integer, float, long,

complex). As you know, you can access an object by its name. It is also said that the name

refers to or is bound to the object. Therefore, such a variable is also called a reference

variable.

A particular object can be referred to by more than one name. AN additional name is also called

an alias. The following example shows how to deal with this.

A triangle is defined by the three vertex lists a, b, c. You

can create an alias with the statement a_alias = a, so

that a and a_alias both refer to the same list. If you

alter the vertex list with the name a, the changes are

obviously also visible in a_alias, since a and a_alias

refer to the same list.

from gpanel import *

makeGPanel(-10, 10, -10, 10)

a = [0, 0]
a_alias = a
b = [0, 5]
c = [5, 0]

fillTriangle(a, b, c)

Page 116

a[0] = 1
setColor("green")
fillTriangle(a_alias, b, c)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Since numbers are also objects, you would expect the

same behavior if you used numbers as vertex

coordinate. However, the following example shows a

different behavior. If you change xA, the value of

xA_alias does not change.

from gpanel import *

makeGPanel(-10, 10, -10, 10)

xA = 0
yA = 0
xA_alias = xA
yA_alias = yA
xB = 0
yB = 5
xC = 5
yC = 0

fillTriangle(xA, yA, xB, yB, xC, yC)
xA = 1
setColor("green")
fillTriangle(xA_alias, yA_alias, xB, yB, xC, yC)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

What is the explanation for that? The reason is that numbers are immutable objects and the

statement xA = 1 generates a new number. xA_alias is therefore still 0.

The difference between immutable and mutable data types can also be seen when passing

parameters to functions. When an immutable object is passed, it cannot be changed inside the

function. When a mutable object is delivered, the function can change the object. Such a change

is called a secondary or side effect. In order to have a good programming style, you should

use side effects sparingly because they can cause some annoying misconduct that is difficult to

trace.

Page 117

In the following example, the function translate()

changes the passed vertex lists.

from gpanel import *

def translate(pA, pB, pC):
 pA[0] = pA[0] + 5
 pA[1] = pA[1] + 2
 pB[0] = pB[0] + 5
 pB[1] = pB[1] + 2
 pC[0] = pC[0] + 5
 pC[1] = pC[1] + 2

makeGPanel(-10, 10, -10, 10)

a = [0, 0]
b = [0, 5]
c = [5, 0]
fillTriangle(a, b, c)
translate(a, b, c)
setColor("green")
fillTriangle(a, b, c)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

In Python all data are stored as objects, but some objects are considered to be immutable.

These objects are: numerical data types, string, byte, and tuple.

All other data types are mutable. When you assign a new value to a variable of an immutable

data type, a new object is created.

If mutable objects are passed to a function, the function can change the objects, while

immutable objects are protected from such changes.

Page 118

3.10 RANDOMNESS

INTRODUCTION

Chance plays an important role in your daily life. We can think of it as events that are not

predictable. If you are asked to choose from the colors red, green, and blue, no one can predict

which one you will choose and therefore the color is random. Chance plays a big role in games as

well: If you roll a dice, the number of pips you get, between 1 and 6, is random.

Although the world is ruled by chance it is not chaotic, since even in chance there are regularities

that allow for certain predictions. However, these only apply "on average", or in other words, if

you are in the same situation many times. In order to investigate the laws of chance, you must

make random experiments where you define the specific initial conditions, but where the

process is controlled by random numbers.

The computer is exceptionally well suited for random experiments because it is easy to perform a

large number of experiments. For this, the computer must generate a series of random numbers

that are independent of each other. You most often use integers with a certain predetermined

range, e.g. between 1 and 6, or a decimal number between 0 and 1. An algorithm that computes

a set of random numbers is called a random number generator. It is important that the

numbers occur with the same frequency as you would expect from a non-marked dice. We call

such numbers uniformly distributed .

PROGRAMMING CONCEPTS: Random numbers, random experiments, frequency, probability

RANDOM PAINTING

You blot 20 colored ellipses with random sizes, random

positions, and random colors onto a canvas. Whether

you want to see this as a painting, or even as an

artwork is up to you. Anyway, the resulting figures are

fun. To determine the position and size of the ellipses,

you can use the method random() from the random

module, and a new random number will be delivered

between 0 and 1 on every call. In order to obtain the

random colors, you need three random numbers

between 0 and 255 that define the proportions of red,

green, and blue color.

from gpanel import *
import random

def randomColor():
 r = random.randint(0, 255)
 g = random.randint(0, 255)
 b = random.randint(0, 255)
 return makeColor(r, g, b)

makeGPanel()
bgColor(randomColor())

for i in range(20):
 setColor(randomColor())

Page 119

 move(random.random(), random.random())
 a = random.random() / 2
 b = random.random() / 2
 fillEllipse(a, b)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

random.random() returns uniformly distributed random numbers as floats between 0

(included) and 1 (excluded). You have to import the random module in order to access it.

Colors are defined by their red, green, and blue parts (RGB). The values are integers between

0 and 255.

Using randint(start, end) you get a random integer between start and end (both included).

The function makeColor() returns a colored object from 3 color values for red, green, and blue.

FREQUENCY OF DICE NUMBERS

One random experiment is to

roll a dice 100 times to find out

how often the numbers 1, 2,...6

occur.

You can run the experiment a lot faster with a

computer. Instead of the dice, use random

numbers from 1 to 6. You can show the frequency

distribution graphically in a GPanel.

from gpanel import *
import random

NB_ROLLS = 100

makeGPanel(-1, 8, -0.1 * NB_ROLLS / 2, 1.1 * NB_ROLLS / 2)
title("# Rolls: " + str(NB_ROLLS))
drawGrid(0, 7, 0, NB_ROLLS // 2, 7, 10)
setColor("red")

histo = [0, 0, 0, 0, 0, 0, 0]
hist = [0] * 7 # short form

for i in range(NB_ROLLS):
 pip = random.randint(1, 6)
 histo[pip] += 1

lineWidth(5)
for n in range(1, 7):
 line(n, 0, n, histo[n])

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 120

MEMO

The frequency of how often the individual pips occur must be saved. For this, you use the list

histo, in which you add up the events at their corresponding index. You need a list with 7

elements because the index runs from 1 to 6.

Through some experiments, you can determine how the frequency of throwing increases the

chance that the numbers NB_ROLLS are better balanced, and how they get increasingly close

to 1/6 of the number of throws. This fact can be expressed as follows: The probability to get

one of the number of pips in dice throwing is 1/6.

For the coordinate grid, call on drawGrid(xmin, xmax, ymin, ymax, xticks, yticks) with 6

parameters. The last two parameters determine the number of subdivisions. If xmax or ymax

is a float, the axis labels will also be floats, otherwise they are integers.

MONTE CARLO SIMULATION

The Principality of Monaco is world famous for its casino in the Monte Carlo district. The casino

has not only been an attraction for celebrities for the past 150 years, but also for mathematicians

who try to analyze the games and develop winning strategies. The computer is much better for

testing these strategies and is actually better than the real game, because you do not loose any

money with computer experiments as you do in the real games.

In the following "game", you throw points on a square area where there is a polygon. As an

illustration, you can see the points as raindrops. As usual when it rains, there are always roughly

about the same amount of drops in each unit area. So, the drops are uniformly distributed.

You let a certain number of raindrops fall and then count how many of them fall onto the area of

the polygon. It is obvious that the number will increase with an increasing surface area of the

polygon, and that on average, it will be proportional to the surface area. For example, if you let

drops fall onto a polygon with a surface area ¼ the size of the area of the surrounding square it

will likely collect (on average) ¼ of all the raindrops. Once you have realized this, you can

conversely find out the area by counting the number of the drops. Isn't this convenient?

The program is designed to be modern and

user-friendly. With a left mouse click you can create

the vertices of the polygon. You can then click with the

right mouse button in the area that you would like to

calculate, so that the polygon will be drawn and it will

start to rain.

The result is displayed in the title bar.

from gpanel import *
import random

NB_DROPS = 10000

def onMousePressed(x, y):
 if isLeftMouseButton():
 pt = [x, y]
 move(pt)
 circle(0.5)
 corners.append(pt)
 if isRightMouseButton():

Page 121

 wakeUp()

def go():
 global nbHit
 setColor("gray")
 fillPolygon(corners)
 title("Working. Please wait...")
 for i in range(NB_DROPS):
 pt = [100 * random.random(), 100 * random.random()]
 color = getPixelColorStr(pt)
 if color == "black":
 setColor("green")
 point(pt)
 if color == "gray" or color == "red":
 nbHit += 1
 setColor("red")
 point(pt)
 title("All done. #hits: " + str(nbHit) + " of " + str(NB_DROPS))

makeGPanel(0, 100, 0, 100, mousePressed = onMousePressed)
title("Select corners with left button. Start dropping with right button")
bgColor("black")
setColor("white")
corners = []
nbHit = 0
putSleep()
go()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

When you click with the left mouse button you are saving the vertices of the polygon into a

list corners and drawing small circles as marks.

The actual rain simulation is performed in the function go(). It begins when you click the right

mouse button and lasts for a certain amount of time. You make the falling raindrops visible

with different colored points. If you directly call go() in the pressCallback(), as it might seem

straightforward, you will see nothing until the simulation ends. The reason is that the system

prevents refreshing the graphics in a mouse callback for system-intrinsic reasons. So if you

want to visualize a longer-lasting action in a callback, it must happen in another part of the

program. Often the main block of the program is used for this purpose. The execution is

temporarily halted with putSleep(). The press event awakens the sleeping main program with

wakeUp() and the simulation will be carried out with the call go().

In order to avoid problems in the future, you should always remember the following principle:

Callbacks must always return quickly. Therefore, no long-lasting actions should be

executed there.

To find out if a raindrop has fallen onto the gray colored polygon area, use the following trick:

You get the color of the point of impact with getPixelColorStr(). If it is the color gray (or red

if another drop has already fallen there), you increase nbHit by 1 and color the point red. You

can test the procedure by generating some simple polygons (e.g. rectangles, triangles) and

then by measuring the screen with a ruler. You will then realize that you need a lot of raindrops

in order to obtain a reasonably accurate result [more...].

Page 122

CHAOS GAME

It might at first seem surprising that you can create regular patterns with random experiments.

This has to do with the compensation of statistical fluctuations for large numbers. In 1988 Michael

Barnsley invented the following algorithm based on Chaos theory, which builds on a random

selection of the vertices of a triangle:

1. Construct an equilateral triangle with the vertices A, B, C

2. Choose a point P in the interior

3. Randomly select one of the vertices

4. Halve the line segment from P to the vertex. This results in the new point P

5. Draw the point P

6. Repeat steps 2, 3, 4, 5

Such a formulation is common colloquially, but it cannot

be directly translated into program code since step 6

requires that you should jump to step 3 again. In many

modern programming languages, including Python,

there is no jumping structure (no goto). Jumps must be

implemented with one of the looping structures

[more...].

from gpanel import *
import random

MAXITERATIONS = 100000
makeGPanel(0, 10, 0, 10)

pA = [1, 1]
pB = [9, 1]
pC = [5, 8]

triangle(pA, pB, pC)
corners = [pA, pB, pC]
pt = [2, 2]

title("Working...")
for iter in range(MAXITERATIONS):
 i = random.randint(0, 2)
 pRand = corners[i]
 pt = getDividingPoint(pRand, pt, 0.5)
 point(pt)
title("Working...Done")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

If you need a random object, you can join all of the objects in a list and pick an object out of it

at a random index.

It is quite amazing that you can create a regular figure (called Sierpinski triangle) with

randomly selected points.

Page 123

EXERCISES

1. 5 kids meet at the playground and ask each other what

month their birthday is in. It is quite surprising that the

probability that at least two of them have the same

birthday month is relatively large.

Create a simulation with 100 random tests to determine

this probability experimentally. Illustrate this by showing

for each attempt of the experiment twelve rectangular

containers in a GPanel, each of them standing for one of the

months, and add the kids represented by balls. The result

of the series of tests can be written in the title bar.

2. While playing ball, 10 kids in a first team throw their ball,

all at the same time, at 10 kids in a second team and

always hit a kid. (The balls do not affect each other.) The

ones that are hit are eliminated. On the average, how

many of the second team members remain untouched?

Create a simulation with 100 random tests to determine

this number experimentally. Now illustrate in a GPanel, for

each attempt of the experiment, both teams as filled circles

and draw the direction of the balls as lines. The result of

the series of tests can be written in the title bar.

3. You can even determine the area of any given figure with

the Monte Carlo simulation. Hold down the left mouse

button to draw a freehanded outline. By clicking the right

mouse button on a point anywhere inside of the outline, the

area is filled and the simulation is carried out.

4. Conduct the chaos game with a square. Select the vertices

pA(0, -10), pB(10, 0), pC(0, 10), pD(-10, 0) and any point

pt on the inside.

Divide the line segments between a randomly chosen

vertex and pt with a division factor of 0.45

(pt = getDividingPoint(corner, pt, 0.45)).

Page 124

3.11 IMAGE PROCESSING

INTRODUCTION

We understand a picture as a flat, rectangular area on which there are colored forms. In printing

and computer technology, one describes an image as a grid-like arrangement of colored dots

called pixels. The number of pixels per unit of area is called the image resolution and it is

often indicated in dots per inch (dpi).

In order to save and process an image on the computer, the color must be defined as a number.

There are several possibilities for this, which are called either color metrics or color models.

One of the most popular models used is the RGB color model, where the intensity of the three

color components red, green, and blue are represented by numbers between 0 (dark) and 255

(light) more...]. The ARGB model includes even another number between 0 and 255 that is the

measure of transparency (alpha value) [more...].

In short: A computer image consists of a rectangular array of pixels that are encoded as colors.

This is often called a bitmap.

PROGRAMMING CONCEPTS: Image digitalization, resolution, color model, bitmap, image format

COLOR MIXING IN THE RGB MODEL

TigerJython provides you with objects of the type

GBitmap, to simplify your work with bitmaps. Using bm

= GBitmap(width, height) you produce a bitmap with

the desired number of horizontal and vertical pixels.

Afterwards, you can set the color of the individual pixels

using the method setPixelColor(x, y, color) and read

them using getPixelColor(x, y). With the method

image() you can finally represent the bitmap in GPanel.

Your program will draw the famous 3 circles of additive

color mixing as you run through the bitmap with a

nested for loop.

from gpanel import *

xRed = 200
yRed = 200
xGreen = 300
yGreen = 200
xBlue = 250
yBlue = 300

makeGPanel(Size(501, 501))
window(0, 501, 501, 0) # y axis downwards
bm = GBitmap(500, 500)
for x in range(500):
 for y in range(500):
 red = green = blue = 0
 if (x - xRed) * (x - xRed) + (y - yRed) * (y - yRed) < 16000:
 red = 255
 if (x - xGreen) * (x - xGreen) + (y - yGreen) * (y - yGreen) < 16000:
 green = 255

Page 125

 if (x - xBlue) * (x - xBlue) + (y - yBlue) * (y - yBlue) < 16000:
 blue = 255
 bm.setPixelColor(x, y, makeColor(red, green, blue))

image(bm, 0, 500)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Colors are defined by their red, green, and blue components. makeColor(red, green, blue) puts

these color components together to a color (a color object).

For images we typically use an integer coordinate system with the origin in the upper left

corner, with the positive y-axis pointing down [more...].

MAKING A GRAYSCALE IMAGE

At some point, you may have been asked how your image processing software (such as

Photoshop, etc.) actually works. Here, you will get to know some of the simple procedures. Your

program can turn a color image into a grayscale image by determining the average of the red,

green, and blue components, and then use these to define the gray value.

from gpanel import *

size = 300

makeGPanel(Size(2 * size, size))
window(0, size, size, 0) # y axis downwards
img = getImage("sprites/colorfrog.png")
w = img.getWidth()
h = img.getHeight()
image(img, 0, size)
for x in range(0, w):
 for y in range(0, h):
 col = img.getPixelColor(x, y)
 red = col.getRed()
 green = col.getGreen()
 blue = col.getBlue()
 intensity = (red + green + blue) // 3
 gray = makeColor(intensity, intensity, intensity)
 img.setPixelColor(x, y, gray)
image(img, size / 2, size)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 126

MEMO

You can determine the color values as integers from a color object using the methods

getRed(), getGreen(), getBlue().

The background has to be white, not transparent. If you want to allow transparency, you can

determine the transparency value with alpha = getAlpha() and then use it in a extra parameter

of makeColor(red, green, blue, alpha).

REUSABILITY

In many image processing programs the user has to be able to select a portion of the image. For

this, you can create a temporary rectangle by clicking and dragging the mouse (a "rubber band

rectangle"). Once you release the mouse button, the rectangular area will be definitely chosen. It

is smart to solve this subproblem first, since its code can be used again later in many other

image processing applications. Reusability is a sign of quality in all software development.

As you saw earlier, you can regard the drawing of the rubber band lines as an animation. In this

case, however, the entire image needs to be rebuilt with each movement. A neat trick to avoid

this is the XOR drawing mode. In this mode, a new figure is combined with the one underneath

it so that the figure will be deleted again upon further repainting, without changing the

underlying image. The disadvantage to this process is that the colors change while the figure is

drawn. However, this does not usually matter in connection with rubber band rectangles.

The program framework should only call the function

doIt() after the rectangle selection, and write the

coordinates of the upper left corner ulx (upper left x),

uly (upper left y) and the lower right corner lrx (lower

right x), lry (lower right y). You will later insert your

code for image processing in doIt().

You should be able to understand the code with your

previous experience in the chapter about mouse events

without any major problems.

from gpanel import *

size = 300

def onMousePressed(e):
 global x1, y1
 global x2, y2
 setColor("blue")
 setXORMode(Color.white) # set XOR paint mode
 x1 = x2 = e.getX()
 y1 = y2 = e.getY()

def onMouseDragged(e):
 global x2, y2
 rectangle(x1, y1, x2, y2) # erase old
 x2 = e.getX()
 y2 = e.getY()
 rectangle(x1, y1, x2, y2) # draw new

def onMouseReleased(e):
 rectangle(x1, y1, x2, y2) # erase old
 setPaintMode() # establish normal paint mode
 ulx = min(x1, x2)

Page 127

 lrx = max(x1, x2)
 uly = min(y1, y2)
 lry = max(y1, y2)
 doIt(ulx, uly, lrx, lry)

def doIt(ulx, uly, lrx, lry):
 print "ulx = ", ulx, "uly = ", uly
 print "lrx = ", lrx, "lry = ", lry

x1 = y1 = 0
x2 = y2 = 0

makeGPanel(Size(size, size),
 mousePressed = onMousePressed,
 mouseDragged = onMouseDragged,
 mouseReleased = onMouseReleased)
window(0, size, size, 0) # y axis downwards

img = getImage("sprites/colorfrog.png")
image(img, 0, size)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

You can get the bitmap for a picture that you have already stored on your computer by using

getImage(), where you must specify the fully qualified name, or just a part of the path

relative to the directory in which your program is located. For images located in the

distribution, you use the directory name sprites.

In the press event, you put the system into XOR mode, so that in your drag event handling

you can first delete the old rectangle by drawing twice, and then draw the new one. You must

store the vertices in the global variables x1, y1, x2, y2. If you draw the rubber band rectangle

again with the release event before you switch to paint mode, the rectangle will disappear. If

you switched to paint mode first, the rectangle would stay.

The program will work no matter how you decide to draw the rectangle. It always returns the

correct values for ulx,uly and lrx, lry (always ulx < lrx, uly < lry). Be aware that you do not

need to convert the mouse coordinates to window coordinates, since both are equal if you are

using the same values for the window size with size() and the coordinate system with

window().

You still get drag events if you move the mouse out of the window. You have to be careful of

what you do with such coordinates, otherwise the program could crash unexpectedly.

RED-EYE EFFECT

Image processing plays a central role in the

post-processing of digital photos. There are numerous

post-processing programs on the Internet, but you do

not need to rely on them because you can now write

your own program that will be better suited to your

needs, with Python and a healthy degree of imagination

and perseverance. Your task below is to write a

program that can fix the red-eye effect. This occurs

when the back of the eye (fundus) reflects the flash.

Here you will use a picture of a frog, since it also has

other red spots.

from gpanel import *
Page 128

size = 300

def onMousePressed(e):
 global x1, y1
 global x2, y2
 setColor("blue")
 setXORMode("white")
 x1 = x2 = e.getX()
 y1 = y2 = e.getY()

def onMouseDragged(e):
 global x2, y2
 rectangle(x1, y1, x2, y2) # erase old
 x2 = e.getX()
 y2 = e.getY()
 rectangle(x1, y1, x2, y2) # draw new

def onMouseReleased(e):
 rectangle(x1, y1, x2, y2) # erase old
 setPaintMode()
 ulx = min(x1, x2)
 lrx = max(x1, x2)
 uly = min(y1, y2)
 lry = max(y1, y2)

 doIt(ulx, uly, lrx, lry)

def doIt(ulx, uly, lrx, lry):
 for x in range(ulx, lrx):
 for y in range(uly, lry):
 col = img.getPixelColor(x, y)
 red = col.getRed()
 green = col.getGreen()
 blue = col. getBlue()
 col1 = makeColor(3 * red // 4, green, blue)
 img.setPixelColor(x, y, col1)
 image(img, 0, size)

x1 = y1 = 0
x2 = y2 = 0

makeGPanel(Size(size, size),
 mousePressed = onMousePressed,
 mouseDragged = onMouseDragged,
 mouseReleased = onMouseReleased)
window(0, size, size, 0) # y axis downwards

img = getImage("sprites/colorfrog.png")
image(img, 0, size)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The code for processing the image is latched in the function doIt() You can take everything

else unchanged from the previous program. You can adjust the degree of attenuation of the

color red. Here, the red intensity is set down to 75%. Be aware of the double slash, which

performs an integer division (the remainder is ignored). The result is again an integer, just as

it should be.

The program still shows some errors which you can easily fix. Firstly, it also discolors non-red

areas, and secondly, it crashes when you pull the rubber band rectangle out of the window.

Of course it would be really nice if the program could find the red eyes itself. However, to do

Page 129

this it would have to analyze the image and recognize its contents automatically, which is an

especially challenging problem in computer science [more...].

CUTTING AND STORING PICTURES

Cutting images is also one of the basic functions of

image processing programs. Your program can not only

copy a selected part of the image to another window

using the rubber band rectangle, but it can also store

this image as a JPEG file for future use.

from gpanel import *

size = 300

def onMousePressed(e):
 global x1, y1
 global x2, y2
 setColor("blue")
 setXORMode("white")
 x1 = x2 = e.getX()
 y1 = y2 = e.getY()

def onMouseDragged(e):
 global x2, y2
 rectangle(x1, y1, x2, y2) # erase old
 x2 = e.getX()
 y2 = e.getY()
 rectangle(x1, y1, x2, y2) # draw new

def onMouseReleased(e):
 rectangle(x1, y1, x2, y2) # erase old
 setPaintMode()
 ulx = min(x1, x2)
 lrx = max(x1, x2)
 uly = min(y1, y2)
 lry = max(y1, y2)
 doIt(ulx, uly, lrx, lry)

def doIt(ulx, uly, lrx, lry):
 width = lrx - ulx
 height = lry - uly
 if ulx < 0 or uly < 0 or lrx > size or lry > size:
 return
 if width < 20 or height < 20:
 return

 cropped = GBitmap.crop(img, ulx, uly, lrx, lry)
 p = GPanel(Size(width, height)) # another GPanel
 p.window(0, width, 0, height)
 p.image(cropped, 0, 0)
 rc = save(cropped, "mypict.jpg", "jpg")
 if rc:
 p.title("Saving OK")
 else:
 p.title("Saving Failed")

Page 130

x1 = y1 = 0
x2 = y2 = 0

makeGPanel(Size(size, size),
 mousePressed = onMousePressed,
 mouseDragged = onMouseDragged,
 mouseReleased = onMouseReleased)
window(0, size, size, 0) # y axis downwards

img = getImage("sprites/colorfrog.png")
image(img, 0, size)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

You can view more than one GPanel window if necessary, by creating GPanel objects. To draw,

use the graphics commands which you call using the point operator.

If the selected section is too small (especially if you click with the mouse without dragging),

doIt() ends with an empty return, and likewise if the vertices are not in the image area.

To save, use the method save(), where the last parameter determines the image format. The

allowed values are: "bmp", "gif", "jpg", "png".

EXERCISES

1. Write a program that swaps the red and green components of the image colorfrog.png.

2. Write a program where you can rotate the image by

dragging the mouse. Use the function atan2(y, x) which

provides you with the angle α to the point P(x, y). You still

have to convert this to degrees using math.degrees()

before you can rotate the picture with GBitmap.scale().

You can take colorfrog.png as a test image again.

3. Write a photo retouching program that can store the color of a pixel with a click of the mouse

(color picker). The following dragging should draw colored circles filled this way into the

image. Here you have to use the press, drag, and click events. You can again use

colorfrog.png as a test image. Write the 3 color components of the "picked" color in the title

bar of the window.

Page 131

EXTRA MATERIAL: FILTERING IMAGES WITH CONVOLUTION

You surely know that in conventional image processing programs you are able to modify an

image with various filters, such as smoothing filters, sharpening filters, blurring filters, etc. Here,

the important principle of convolution is used, which you can learn about [more...]. In this

process, you change the color values of each pixel by calculating a new value from it and its

eight neighboring pixels, according to a filtering rule.

In detail, this works as follows: For the sake of simplicity, consider a greyscale image where

each pixel in the RBG coloring model possesses a gray value v between 0 and 255. The filtering

rule is defined by nine numbers that are arranged in a square:

m00 m01 m02

m10 m11 m12

m20 m21 m22

This representation is called a convolution matrix (also

called mask). In Python we implement it line by line in a

list

mask = [[0, -1, 0], [-1, 5, 1], [0, -1, 0]]

With this data structure you can easily access the

individual values with double indices, for example m12 =

mask[1][2] = 1. These nine numbers are weighting

factors for a pixel and its eight neighbors. Now you can

calculate the new gray value vnew of a pixel at the point

x, y from the existing nine values v(x, y) as follows:

vnew(x, y) = m00 * v(x - 1, y -1) + m01 * v(x, y - 1) + m02 * v(x + 1, y - 1) +

 m10 * v(x - 1, y) + m11 * v(x, y) + m12 * v(x + 1, y) +

 m20 * v(x - 1, y + 1) + m21 * v(x , y + 1) + m22 * v(x + 1, y + 1)

To illustrate, one could say that for the recalculation one places the convolution matrix above the

pixel, multiplies its values with the underlying gray values, and finally sums them all up. The

program performs these convolution operations for all of the pixels (except the boundary points)

and then saves the resulting gray values in a new bitmap, which it then displays. To do this you

move the convolution matrix row by row, from left to right and from top to bottom, over the

image with a for structure. Here you use the convolution matrix values of a sharpening filter and

the grayscale image frogbw.png of the frog.

from gpanel import *

size = 300

makeGPanel(Size(2 * size, size))
window(0, size, size, 0) # y axis downwards

bmIn = getImage("sprites/frogbw.png")
image(bmIn, 0, size)
w = bmIn.getWidth()
h = bmIn.getHeight()
bmOut = GBitmap(w, h)

#mask = [[1/9, 1/9, 1/9], [1/9, 1/9, 1/9], [1/9, 1/9, 1/9]] # smoothing
mask = [[0, -1, 0], [-1, 5, -1], [0, -1, 0]] #sharpening
#mask = [[-1, -2, -1], [0, 0, 0], [1, 2, 1]] #horizontal edge extraction
#mask = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]] #vertical edge extraction

Page 132

for x in range(0, w):
 for y in range(0, h):
 if x > 0 and x < w - 1 and y > 0 and y < h - 1:
 vnew = 0
 for k in range(3):
 for i in range(3):
 c = bmIn.getPixelColor(x - 1 + i, y - 1 + k)
 v = c.getRed()
 vnew += v * mask[k][i]
 # Make int in 0..255
 vnew = int(vnew)
 vnew = max(vnew, 0)
 vnew = min(vnew, 255)
 gray = Color(vnew, vnew, vnew)
 else:
 c = bmIn.getPixelColor(x, y)
 v = c.getRed()
 gray = Color(v, v, v)

 bmOut.setPixelColor(x, y, gray)

image(bmOut, size / 2, size)

MEMO

In a convolution, each pixel is replaced by a weighted average of itself and its neighboring

points. The filter type is determined by the convolution matrix. You can experiment with the

following well-known convolution matrices, or you can invent your own.

Filter type Convolution matrix

Sharpening filter

Smoothing filter

Edge extraction (horizontal)

Edge extraction (vertical)

Page 133

3.12 PRINTING IMAGES

INTRODUCTION

You have already learned how to let the turtle draw on a high resolution printer in the chapter

Turtle Graphics. You can similarly render an image from GPanel on the printer. You can also use

a virtual printer that creates a graphic file in high resolution format (such as Tiff or EPS)

[more...]. To do this, you define a parameterless function with any name such as doIt() that will

contain all of the commands necessary to create the image. With a direct call, the image will

appear on the screen. To print it, call printerPlot(doIt). You can also specify a scaling factor k,

and if you do, call printerPlot(doIt, k) instead. If k < 1 it results in a reduction, and if k >1 it

results in an enlargement.

PROGRAMMING CONCEPTS: High resolution graphic

ROSETTES

The rose-like curves go all the way back to the 18th century

to the mathematician Guido Grandi [more...]

The generating functions are most easily expressed using

polar coordinates (ρ, φ). It has a parameter n:

 ρ = sin(nφ)

The Cartesian coordinates are obtained as usual:

 x = ρ cos(φ)

 y = ρ sin(φ)

You get a pretty rosette using n = . However, it looks

even nicer on a printer than it does on the screen.

from gpanel import *
import math

def rho(phi):
 return math.sin(n * phi)

def doIt():
 phi = 0
 while phi < nbTurns * math.pi:
 r = rho(phi)
 x = r * math.cos(phi)
 y = r * math.sin(phi)
 if phi == 0:
 move(x, y)
 else:
 draw(x, y)
 phi += dphi

n = math.sqrt(2)
dphi = 0.01
nbTurns = 100
makeGPanel(-1.2, 1.2, -1.2, 1.2)

Page 134

doIt()
printerPlot(doIt)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Depending on the choice of the parameter n, you can create different kinds of curves. Try it

with natural numbers, rational numbers (fractions), and with irrational numbers (π, e).

MAURER ROSES

The mathematician Peter Maurer introduced these

curves in 1987 in his article "A Rose is a Rose...".

They use rosettes as "guidelines". From this

guideline you repeatedly choose points, after a

specific rotation angle d, 360 points in total.

Afterwards, you connect these points with straight

lines.

Depending on the choice of n and d, completely

different curve shapes can be created. Print them to

make them look even nicer (in this example, n = 3

and d = 47 degrees).

from gpanel import *
import math

def sin(x):
 return math.sin(math.radians(x))

def cos(x):
 return math.cos(math.radians(x))

def cartesian(polar):
 return [polar[0] * cos(polar[1]), polar[0] * sin(polar[1])]

def rho(phi):
 return sin(n * phi)

def doIt():
 for i in range(361):
 k = i * d
 pt = [rho(k), k]
 corners.append(pt)

 move(cartesian(corners[0]))
 for pt in corners:
 draw(cartesian(pt))

corners = []
n = 3
d = 47
makeGPanel(-1.2, 1.2, -1.2, 1.2)
doIt()
printerPlot(doIt)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 135

MEMO

In the program you use degrees, not radians. Therefore, it is convenient to define your own

functions for sine and cosine that calculate with degrees. This also simplifies the notation,

since you will not always need to write math. beforehand.

Likewise, it is convenient to make a conversion from polar to Cartesian coordinates in the

function cartesian(), where the coordinate pairs are packaged as a list.

Save the polar coordinates of the 361 points which you select from the guideline in the list

corners. In the end, you run through them and draw lines from point to point using draw().

You can draw other known Maurer roses with the following parameters:

n d

2 39

2 31

6 71

EXERCISES

1. Draw 50 concentric circles with the function wave(center, wavelength) with center as the

midpoint and wavelength as the radius increment. One could interpret the image as the peaks

of a circular wave. Draw the wave with a slightly displaced center and then look at the

resulting interference image on a printout. What curve known from geometry can you

recognize?

Page 136

3.13 WIDGETS

INTRODUCTION

Programs you know usually have a graphical user interface (GUI). You will recognize a menu

bar, input fields, and buttons. GUI components, also called widgets, are regarded as objects,

which you already know from the chapter Turtle Objects. If you want to write a program with a

modern user interface, it is essential that you know and understand the basic concepts of

object-oriented programming (OOP) [more...].

The widgets are divided into different classes according to the following list:

Widget Klasse

Buttons JButton

Labels JLabel

Text fields JTextField

Menu bars JMenuBar

Menu items JMenuItem

Menus with menu items JMenu

Just like you generated a turtle by calling the constructor of the class turtle, you need to create

a GUI component by calling the corresponding class constructor. The constructors often have

parameters with which you can set certain properties of the widget. For example, you can

create an input field with a length of 10 characters using tf = JTextField(10).

When calling the constructor, you also need to define a variable that you will use later to access

the object. For example, tf.getText() returns the text currently in the text field tf.

In order to make a widget visible in GPanel, you use the function addComponent() and provide

it with the object variable. The widgets are automatically placed in the order of the calls in the

upper part of the GPanel window [more...].

PROGRAMMING CONCEPTS: Graphical user interface, GUI component, GUI callback

PI WITH THE RAINDROP SIMULATION

You have already learned how to determine an area using the Monte Carlo simulation. Imagine

that you are drawing a quarter circle with a radius of 1 into a square with a side length of 1. If

you now let n raindrops fall evenly onto the square you will easily be able to figure out how

many of them fall onto of the quarter circle on average.

Since the area of the quarter circle is

S = 1

4
* r2* π = π

4

Page 137

and the area of the square is 1, the number of drops

should be

k = n * π

4

So, if in a computer simulation you let n drops fall and

count k, you get an approximation of Pi with

π = 4 * k

 n

The GUI consists of two labels, two text boxes, and a button. Once created, you add them to

GPanel with addComponent().

It should be clear that clicking on the OK button can be considered an event. The callback is

registered via the parameter named actionListener in the constructor of JButton. Hopefully

you remember that you should not execute lengthy code in a callback. So, you merely call

wakeUp() in the callback, whereby the program, which was halted in the while loop using

putSleep(), is awakened and then executes the simulation.

from gpanel import *

import random

from javax.swing import *

def actionCallback(e):

wakeUp()

def createGUI():

addComponent(lbl1)

 addComponent(tf1)

 addComponent(btn1)

 addComponent(lbl2)

 addComponent(tf2)

validate()

def init():

 tf2.setText("")

 clear()

 move(0.5, 0.5)

 rectangle(1, 1)

 move(0, 0)

 arc(1, 0, 90)

def doIt(n):

 hits = 0

for i in range(n):

 zx = random.random()

 zy = random.random()

if zx * zx + zy * zy < 1:

 hits = hits + 1

 setColor("red")

else:

 setColor("green")

 point(zx, zy)

return hits

lbl1 = JLabel("Number of drops: ")

lbl2 = JLabel(" PI = ")

tf1 = JTextField(6)

tf2 = JTextField(10)

btn1 = JButton("OK", actionListener = actionCallback)

makeGPanel("Monte Carlo Simulation", -0.1, 1.1, -0.1, 1.1)

createGUI()

Page 138

tf1.setText("10000")

init()

while True:

putSleep()

 init()

 n = int(tf1.getText())

 k = doIt(n)

 pi = 4 * k / n

 tf2.setText(str(pi))

MEMO

Widgets are objects of the Swing class library. They are created with the constructor that has

the name of the class. When calling the constructor, you define a variable with which you can

access the object. To display the widget in the GPanel, call the function addComponent() and

pass it the widget variable.

After you have added all of the widgets to the GPanel, you should call validate() so that the

window is rebuilt with the inserted widgets with certainty. You can register button callbacks

with the parameter named actionListener. Remember that a callback should never execute

lengthy code.

MENUS (but not for food!)

Many windows have a menu bar with many menu items. When you click on a menu item, a

submenu can also be opened, which in turn contains menu items. Menus and menu items are

also regarded as objects. The selection of a menu option triggers an event that is handled by a

callback.

You build a menu by creating a JMenuBar() object

and adding JMenuItem objects to it using add(). You

can also add a submenu. For this, create a JMenu

object, and add JMenuItem objects to it. Thus, a menu

is built hierarchically.

In order to simplify the code a bit, you can use the

same callback actionCallback() for all menu options.

Register it with each constructor of JMenuItem with

the parameter actionPerformed. In the callback, you

can determine by which menu option the callback was

triggered with getSource().

from gpanel import *

from javax.swing import *

def actionCallback(e):

if e.getSource() == goItem:

 wakeUp()

if e.getSource() == exitItem:

 dispose()

if e.getSource() == aboutItem:

 msgDlg("Pyramides Version 1.0")

def doIt():

 clear()

for i in range(1, 30):

 setColor(getRandomX11Color())

 fillRectangle(i/2, i - 0.35, 30 - i/2, i + 0.35)

Page 139

fileMenu = JMenu("File")

goItem = JMenuItem("Go", actionPerformed = actionCallback)

exitItem = JMenuItem("Exit", actionPerformed = actionCallback)

fileMenu.add(goItem)

fileMenu.add(exitItem)

aboutItem = JMenuItem("About", actionPerformed = actionCallback)

menuBar = JMenuBar()

menuBar.add(fileMenu)

menuBar.add(aboutItem)

makeGPanel(menuBar, 0, 30, 0, 30)

while not isDisposed():

 putSleep()

if not isDisposed():

 doIt()

MEMO

Remember to follow the rule that a callback should never execute lengthy code. You therefore

perform the drawing in the main block. To ensure that your program terminates with certainty

after you press the close button of the window or the exit option, use isDisposed() to test

whether the window was closed [more...].

EXERCISES

1. Edit the program Moiré from chapter 3.2 and add a text label, an input field for the delay

time, and an OK button. When you click on the OK button, the image will be recreated with

the specified delay time (in milliseconds).

2. Edit the program under "Elegant Thread

Graphic Algorithms" in chapter 3.8 and add

the following menu: The menu item

"Options" should contain a submenu with

the text "Red", "Green", and "Blue". The

menu item "Go" should draw the thread

graphics with the color selected under

Options. If no color is chosen yet, it will be

drawn using black.

3*. Take one of your favorite programs from the GPanel graphic and add some useful widgets

to it.

Page 140

Documentation GPanel

Module import: from gpanel import *

Function Action

makeGPanel()
creates a GPanel graphics window with coordinates (x = 0..1, y = 0..1). Current

cursor at (0, 0)

makeGPanel(xmin, xmax, ymin,

ymax)

creates a GPanel graphics window with given float coordinate system. Current

cursor at (0, 0)

makeGPanel(xmin, xmax, ymin,

ymax, False)
same as above, but invisible window (call visible(True), to make it visible)

makeGPanel(Size(width, height)) same as makeGPanel(), but window size user selectable (in pixels)

getScreenWidth() returns the screen width (in pixels)

getScreenHeight() returns the screen height (in pixels)

window(xmin, xmax, ymin, ymax) sets a new coordinate span

drawGrid(x, y)
draws a coordinate grid with 10 ticks in range 0..x, 0..y. Label text depends if x, y

or int or float

drawGrid(x, y, color) same with given grid color

drawGrid(x1, x2, y1, y2) same with given span x1..x2, y1..y2

drawGrid(x1, x2, y1, y2, color) same with given grid color

drawGrid(x1, x2, y1, y2, x3, y3) same with given number of ticks x3, y3 in x- and y-direction

drawGrid(x1, x2, y1, y2, x3, y3,

color)
same with given grid color

drawGrid(p, ...) same as drawGrid() with given GPanel references (for several GPanels)

visible(isVisible) shows/hides the window

resizeable(isResizeable) makes the window resizable (default: not resizeable)

dispose() closes the window and releases resources

isDisposed()
returns True, if window is disposed by title bar's close button or by calling

displose()

bgColor(color) sets background color (X11 color string or Color type returned my makeColor())

title(text) sets text in title bar

makeColor(colorStr) returns color as Color type that corresponds to given X11 color string

windowPosition(ulx, uly) sets screen position (in pixels)

windowCenter() sets the window in the center of the screen

storeGraphics() stores the current graphics in internal image buffer

recallGraphics() renders the content of the internal image buffer

clearStore(color) erases the internal image buffer by painting it with given color

delay(time) pauses the program execution for given amount of time (in ms)

getDividingPoint(pt1, pt2, ratio)
returns the point that divides the line from pt1 to pt2 with the given ratio (may be

negative and greater than 1)

getDividingPoint(c1, c2, ratio) same with complex

clear() clears the graphics window and sets the graphics cursor to (0, 0)

erase() clears the graphics window without changing the position of the graphics cursor

putSleep() pauses program execution until wakeUp() is called

wakeUp() resumes paused program execution

Page 141

linfit(X, Y)
performs a linear regression y = a*x + b with data in X- and Y-lists and returns (a,

b)

Drawing

lineWidth(width) sets the line width (in pixel)

setColor(color) sets die drawing color (X11 color string or Color type)

move(x, y) moves cursor to (x, y) without drawing a line

move(coord_list) moves cursor to point list [x, y] without drawing a line

move(c) moves cursor to complex(x, y) without drawiing a line

getPosX() returns the cursor's current x-coordinate

getPosY() returns the cursor's current y-coordinate

getPos() returns the cursor current x-, y-coordinates as list

draw(x, y) draws line to (x, y) and updates cursor

draw(coord_list) draws line to [x, y] and updates cursor

draw(c) draws line complex [x, y] and updates cursor

line(x1, y1, x2, y2) draws line from (x1, y1) to (x2, y2) without modifying cursor

line(pt1, pt2) draws line from pt1 = [x1, y1] to pt2 = [x2, y2] without modifying cursor

line(c1, c2) draws line complex(x1, y1) to complex(x2, y2) without modifying cursor

circle(radius) draws circle with center at current cursor position and given radius

fillCircle(radius)
draws fiilled circle with center at current cursor position and given radius (fill color

= pen color)

ellipse(a, b) draws ellipse with center at current cursor positon and given semiaxis

fillEllipse(a, b)
draws ellipse with center at current cursor positon and given semiaxis (fill color =

pen color)

rectangle(a, b) draws rectangle with center at current cursor position and given width and height

rectangle(x1, y1, x2, y2) draws rectangle with center at current cursor position and given diagonal

rectangle(pt1, pt2) same with diagonal point lists

rectangle(c1, c2) same with diagonal complex

fillRectangle(a, b)
draws filled rectangle with center at cursor and given width and height (fill color =

pen color)

fillRrectangle(x1, y1, x2, y2)
draws filled rectangle with center at cursor and given diagonal (fill color = pen

color)

fillRectangle(pt1, pt2) same with diagonal point lists

fillRrectangle(c1, c2) same with diagonal complex

arc(radius, startAngle, extendAngle)
draws arc with center at cursor and given radius, start and sector angle (0 to east,

positive counterclockwise)

fillArc(radius, startAngle,

extendAngle)
same, but filled (fill color = pen color)

polygon(x_list, y_list) draws polygon with vertexes from x_list and y_list

polygon((li[pt1, pt2,..) same with list of point lists pt1, pt2,...

polygon(li[c1, c2, c3,...]) same with list of complex c1, c2,...

fillPolygon(x_list, y_list) draws filled polygon with vertexes from x-list and y-list (fill color = pen color)

fillPolygon((li[pt1, pt2,..) same with list of point lists pt1, pt2,...

fillPolygon(li[c1, c2, c3,...]) same with list of complex c1, c2,...

quadraticBezier(x1, y1, xc, yc, x1,

y2)

draws quadratic Bezier-curve with 2 points (x1, y1), (x2, y2) and control point (xc,

yc)

Page 142

quadraticBezier(pt1, pc, pt2) same with point lists

quadraticBezier(c1, cc, c2) same with complex

cubicBezier(x1, y1, xc1, yc1, xc2,

yc2, x2, y2)

draws cubic Bezier-curve with 2 points (x1, y1), (x2, y2) and two control points

(xc1, yc1), (yc2, yc2)

cubicBezier(pt1, ptc1, ptc2, pt2) same with point lists

cubicBezier(c1, cc1, cc2, c2) same with complex

triangle(x1, y1, x2, y2, x3, y3) draws a triangle with vertexes from x-, y-coordinates

triangle(pt1, pt2, pt3) same with point lists

triangle(li[pt1, pt2, pt3]) same with list of point lists

triangle(c1, c2, c3) same with complex

fillTriangle(x1, y1, x2, y2, x3, y3) draws a filled triangle with vertexes from x-, y-coordinates (fill color = pen color)

fillTriangle(pt1, pt2, pt3) same with point lists

fillTriangle(li[pt1, pt2, pt3]) same with list of point lists

fillTriangle(c1, c2, c3) same with complex

point(x, y) draws one single point (pixel) at (x, y)

point(pt) same with point list

point(complex) same with complex

fill(x, y, color, replacementColor)
fills a closed area with point (x, y) inside by replacing each pixel with given color

by a pixel with replacementColor (floodfill)

fill(pt, color, replacementColor) same with point list

fill(complex, color,replacementColor) same with complex

image(path, x, y)

shows image in GIF , PNG oder JPG format at lower-left position x, y. The image

path may be relative to the TigerJython folder, in the distribution JAR (folder

sprites) or a URL starting with http://

image(path, pt) same with point list

image(path, complex) same with complex

imageHeighpath) returns the height of the image

imageWidth(path) returns the width of the image

enableRepaint(boolean) enables/disables automatic rendering of the offscreen buffer (default: enabled)

repaint()
renders the offscreen buffer on screen (necessary if the automatic rendering is

disabled)

setPaintMode() selects normal painting by overwriting the background

setXORMode(color) selects XOR-painting with given color. Painting twice removes without artefact.

getPixelColor(x, y) returns color of pixel at (x, y) as Color type

getPixelColor(pt) same with point list

getPixelColor(complex) same with complex

getPixelColorStr(x, y) returns color of pixel at (x, y) as X11 color string

getPixelColorStr(pt) same with point list

getPixelColorStr(complex) same with complex

Text

text(string) displays text starting at current cursor position

text(x, y, string) display text starting at given x-, y-coordinates

text(pt, string) same with point list

text(complex, string) same with complex

Page 143

text(x, y, string, font, textColor,

bgColor)
displays text at given x-, y-coordinates with given font, text and background color

text(pt, string, font, textColor,

bgColor)
same with point list

text(complex,string, font, textColor,

bgColor)
same with complex

font(font) selects another text font (see below for font format)

Callbacks

makeGPanel(mouseNNN =

onMouseNNN)

auch mehrere, durch Komma

getrennt

registers the callback function onMouseNNN(x, y) that is called when a mouse

event happens. Values for NNN: Pressed, Released, Clicked, Dragged, Moved,

Entered, Exited, SingleClicked, DoubleClicked

isLeftMouseButton(),

isRightMouseButton()
returns True, if the event is caused by the left/right mouse button

makeGPanel(keyPressed =

onKeyPressed)

registers the callback onKeyPressed(keyCode) that is called when a keyboard key

is hit. keyCode is a unique integer value that identifies the key

getKeyModifiers() returns an integer code for special keyboard keys (shift, ctrl, etc., also combined)

makeGPanel(closeClicked =

onCloseClicked)

registers the callback onCloseClicked() that is called when the title bar close

button is hit. The window must be closed manually by calling dispose()

Keyboard

getKey() returns the character (as string) of the last key pressed

getKeyCode() returns the key code of the last key pressed

getKeyWait()
stops the program until a key is pressed and returns the charactor (as string) of

the key

getKeyCodeWait() stops the program until a key is pressed and returns the key code of the key

kbhit() returns True, if a key was hit since the last call of getKey() or getKeyCode()

GUI Components

add(component) inserts a GUI component near the top border of the window

validate() repaints the window after a component has been added

Status Bar

addStatusBar(height) adds a status bar at the bottom of the window with given height (in pixels)

setStatusText(text) displays text in the status bar (old text is erased)

setStatusText(text, font, color) displays text in the status bar with given font and color (old text is erased)

Font Format

Font(name, style, size) creates a new font with given name, style and size

name
a string with a font name available on the system, e.g. "Times New Roman",

"Arial", "Courier"

style
One of the stype constants: Font.PLAIN, Font.BOLD, Font.ITALIC, may also be

combined: Font.BOLD + Font.ITALIC

size an integer with an available font size in pixels, e.g. 12, 16, 72

Dialogs

msgDlg(message) opens a modal dialolg with an OK button and given message

msgDlg(message, title = title_text) same with title text

Page 144

inputInt(prompt)
opens a modal dialog with OK/Cancel buttons. OK returns integer (the dialog is

shown again, if no integer is entered). Cancel or Close terminate the program

inputInt(prompt, False) same, but Cancel/Close do not terminate, but returns None

inputFloat(prompt)
opens a modal dialog with OK/Cancel buttons. OK returns float (the dialog is

shown again, if no float is entered). Cancel or Close terminate the program

inputFloat(prompt, False) same, but Cancel/Close do not terminate, but returns None

inputString(prompt)
opens a modal dialog with OK/Cancel buttons. OK returns string. Cancel or Close

terminate the program

inputString(prompt, False) same, but Cancel/Close do not terminate, but returns None

input(prompt)
opens a modal dialog with OK/Cancel buttons. OK returns integer, float or string.

Cancel or Close terminate the program

input(prompt, False) same, but Cancel/Close do not terminate, but returns None

askYesNo(prompt)
opens a modal dialog with Yes/No buttons. Yes returns True, No returns False.

Cancel or Close terminate the program

askYesNo(prompt, False) same, but Close do not terminate, but returns None

Module import: from fitter import *

Curve fitting:

polynomfit(xdata, ydata, n)
fits a polynom of order n and returns the fitted values in ydata. Return value: list

with n + 1 polynom coefficients

splinefit(xdata, ydata, nbKnots)
fits a spline function that passes through nbKnots aequidistant data points.

Returns the fitted data in ydata

functionfit(func, derivatives,

initialGuess, xdata, ydata)

fits the function func(x, param) with n parameters in list param. derivatives(x,

param) returns a list with the values of the partial derivatives to the n parameters.

initGuess is a list with n guessed values for the n parameters

functionfit(func, derivatives,

initialGuess, xdata, ydata, weights)
same but with a list weights that determines the relative weights of the data points

toAequidistant(xrawdata, yrawdata,

deltax)

returns two lists xdata, ydata with aequidistant values separated by deltax (linear

interpolation)

Page 145

 Learning Objectives

 You know how sound is digitized and stored.

 You are familiar with the term sampling and its implications.

You can record a sound with your own program, specifically change it, play it back, and save

it.

"As the sk ills that constitute literacy evolve to accommodate digital media, computer science education
finds itself in a sorry state. While students are more in need of computational sk ills than ever, computer
science suffers dramatically low retention rates and a declining percentage of women and minorities.
Studies of the problem point to the over-emphasis in computer science classes on abstraction over
application, technical details instead of usability, and the stereotypical view of programmers as loners
lack ing creativity. Media Computation, teaches programming and computation in the context of media
creation and manipulation."

In Forte, Guzdial, Not Calculation: Media
as a Motivation and Context for Learning

Page 146

4.1 PLAYING BACK SOUND

INTRODUCTION

In order to process a sound signal in the computer, it must first be digitized. To do this, one

samples it at equidistant time steps and converts the value of the signal to a number at every

sampling time using an analog-to-digital converter. The sound signal then yields a sequence of

numbers that can be stored and processed in the computer. The sampling frequency (or

sampling rate) is understood as the number of samples per second. This is standardized for the

WAV audio format and can have the following values: 8000, 11025, 16000, 22050 and 44100

Hertz. The higher the sampling frequency, the more precisely the sound can be restored by a

digital-to-analog conversion. The value range of the samples is also important for the quality. In

the TigerJython sound library, values are always stored as integers in a list in the 16-bit range

(-32768 and 32767).

We also need to distinguish whether we are dealing with a monaural or a binaural sound.

Depending on this, one or two channels are used. In the case of two channels (stereo), the

values for the left and the right channel are stored as consecutive numbers.

In this chapter you will need a computer with a sound card, the ability to listen to sound through

a speaker or headphones, and a microphone.

PROGRAMMING CONCEPTS: Sound digitization, audio signal, sample, sampling rate

LISTENING TO SOUND

Find a fun sound clip in WAV format that has a short duration (around 2 to 5 seconds long). You

can look on the Internet. Copy the sound file under the name mysound.wav in the same

directory as your program.

First, import all of the functions of the sound library. Next, copy the sound samples into the list

samplesand write the information of the sound file into the console window, for you need to

know the sampling rate. In the example shown here, its value is 22050 Hz. With

openMonoPlayer you have the ability to play back the sound. If you enter the wrong sampling

rate, the sound will be played with a different speed, hence with other frequencies.

from soundsystem import *

samples = getWavMono("mysound.wav")
print getWavInfo("mysound.wav")

openMonoPlayer(samples, 22050)
play()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The function getWavMono() provides the sound samples in a Python list. Each value is an

integer in the range between -32768 and 32767. The function openMonoPlayer() provides a

sound player so that the sound can be played with play().

Since lists can only have a certain maximum size that depends on the memory capacity of your

Page 147

computer, only relatively short sound clips can be read with getWavMono().

SOUND WAVE

It is interesting to also represent sound samples

graphically. To do this, simply use a GPanel window

and run through the list in a for loop.

from soundsystem import *

samples = getWavMono("mysound.wav")
print getWavInfo("mysound.wav")

openMonoPlayer(samples, 44100)
play()

from gpanel import *

makeGPanel(0, len(samples), -33000, 33000)
for i in range(len(samples)):
 draw(i, samples[i])

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

We have to choose the coordinate system of the GPanel conveniently. The values displayed in

the x-direction are between 0 and the number of sampling values, which is equal to the length

of the sample list. The values of the y-direction are between -32768 and 32767. This is why

we use a range of +-33000.

THERE IS AN EASIER WAY

If you just want to play a sound file, you only need three lines of code. You can even play long

sounds, for example your favorite songs.

from soundsystem import *

openSoundPlayer("myfavoritesong.wav")
play()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 148

MEMO

You can also use some sound clips that come in the distribution of TigerJython. Choose any of

the following file names:

Sound File Description

wav/bird.wav chirping bird

wav/boing.wav boing

wav/cat.wav meowing cat

wav/click.wav click

wav/dummy.wav empty sound

wav/explode.wav explosion

wav/frog.wav croaking frog

wav/mmm.wav eating sound

wav/notify.wav notification sound

wav/ping.wav ping sound

(The list is constantly updated. If you have a WAV sound file with the same name in your own

subdirectory wav, that one will be used.)

The sound player knows many control commands, just as a professional music player does.

You can, for example, stop the song with pause() and then continue playing the song at the

same spot using play().

The duration of the sound is not limited in these functions because the sound is only read and

played back in small packets (streaming player).

play() plays back a sound from the current position and returns immediately

blockingPlay()
plays back a sound from the current position and waits until it is finished

playing

advanceFrames(n) moves forward from the current position by the given number of samples

advanceTime(t) moves forward from the current position by the specified time

getCurrentPos() returns the current position

getCurrentTime() returns the current playing time

pause() pauses playback. play() will start it again

rewindFrames(n)
moves backwards from the current position by the given number of

samples

rewindTime(t) moves backwards from the current position by the specified time

stop() stops playback. The playback position is set to the beginning

setVolume(v) adjusts the volume (value between 0 and 1000)

PLAYING MP3 SOUND FILES

To play sounds in the MP3 format, you will need additional library files which you can download

and unzip separately here. Create the subdirectory Lib (if it does not already exist) in the

directory where tigerjython2.jar is located, and then copy the unzipped files into it.

Instead of using openSoundPlayer(), openMonoPlayer(), and openStereoPlayer() for MP3 files use

openSoundPlayerMP3(), openMonoPlayerMP3() and openStereoPlayerMP3() and indicate the

path to the sound file. To play, use the same functions mentioned above.

from soundsystem import *

openSoundPlayerMP3("song.mp3")
play()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 149

MEMO

To play MP3 sound files, you will need additional JAR library files that need to be located in the

directory Lib of the home directory to tigerjython2.jar.

EXERCISES

1. Explain why the tone frequencies are changed if you change the sampling rate during

playback

2. Show a sound wave in the GPanel representing a short range of 0.1 seconds starting at the 1

second mark. Explain the image.

3. Create a sound player with a GPanel where the following commands can be executed using

the keyboard:

Key Action

Cursor up play

Cursor down pause

Cursor left rewind by 10 s

Cursor right advance by 10 s

Buchstabe s stop

Write the command list as text in the window. With each key press, the action should be

written out in the title line.

Page 150

4.2 SOUND EDITING

INTRODUCTION

As you know, sound samples (sampling values of a sound) are stored in a list and can be played

back again with this list. If you want to edit the sound, you can easily change the list

accordingly.

PROGRAMMING CONCEPTS: Rectangular wave, integer division, modulo operation

CHANGING THE LOUDNESS/VOLUME

The program should reduce the volume of the sound by one quarter. To do this, copy the sound

list to another list, where each list element is set to ¼ of its original value.

from soundsystem import *

samples = getWavMono("mysound.wav")
soundlist = []
for item in samples:
 soundlist.append(item // 4)

openMonoPlayer(soundlist, 22010)
play()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

To copy a list, first create an empty list then fill it using append(). In order to get a list of

integers again, you need to use integer division (double division slash).

USING THE LIST INDEX

In the following example, you go through the list

using the list index and change the list elements

without creating a new list. Display the sound

graphically before and after the change.

from soundsystem import *
from gpanel import *

Page 151

samples = getWavMono("mysound.wav")

makeGPanel(0, len(samples), -33000, 33000)
for i in range(len(samples)):
 if i == 0:
 move(i, samples[i] + 10000)
 else:
 draw(i, samples[i] + 10000)

for i in range(len(samples)):
 samples[i] = samples[i] // 4

for i in range(len(samples)):
 if i == 0:
 move(i, samples[i] - 10000)
 else:
 draw(i, samples[i] - 10000)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

People often use the variable name i as a list index. If you run through a loop block using a for

structure

for i in range(10):

i is also called a stepper.

GENERATING SOUNDS

It is exciting to create your own sounds, not by loading a sound list from a sound file, but rather

by creating the list elements yourself. To make a "rectangular wave sound" you repeatedly store

the value 5000 in the list, for a certain index range, and subsequently -5000 for the same index

range.

from soundsystem import *

samples = []
for i in range(4 * 5000):
 value = 5000
 if i % 10 == 0:
 value = -value
 samples.append(value)

openMonoPlayer(samples, 5000)
play()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The sampling rate of 10000 Hz corresponds to a sound sample every 0.1 ms. We want to

change the sign (-/+) always after 10 values, in other words, every 1 ms. This corresponds to

a rectangular wave period of 2 ms, which yields a sound of 500 Hz. We use the modulo

operator %, which returns the remainder of the integer division. The condition i % 10 == 0 is

then true for i = 0, 10, 20, 30, etc.

Page 152

EXERCISES

1. Use the list operation reverse() to play a sound backwards, e.g. a spoken text.

2. With the slice notation list[start: end] you can create lists that contain only the elements

with the index start to end (without the last element). Using this, remove a part of your

present sound.

3. Load a sound clip and determine the maximum amplitude value. Write it in the title bar of

the GPanel and display the sound graphically. Now increase all of the sound samples, so that

the maximum amplitude value amounts to 32767 (the maximum volume) and display the clip

again. (This is an important function of most sound editors, called normalizing).

4*. Create a sine wave of about 500 Hz with a sampling rate of 10000 Hz using the sine function

math.sin(x), which always restarts after x = 2π = 6.28. To get access to the sine function

you have to include import math.

5*. Superimpose two sine waves with neighboring frequencies. What do you notice while

listening?

Page 153

4.3 RECORDING SOUNDS

INTRODUCTION

You can also record and save sounds with the sound system. To get started, you have to connect

the sound card input with an external source, e.g. a microphone or a playback device. Laptops

usually have a built-in microphone.

PROGRAMMING CONCEPTS: Blocking and non-blocking function

SOUND RECORDER

Before recording, call openMonoRecorder() to prepare the recording system. You have to

specify the sampling rate as a parameter. You can start recording with capture(). This function

is non-blocking and returns immediately. You will have to call stopCapture() later to end the

recording. The recorded sound samples are copied into a list that you can get with

getCapturedSound(). Here you make a recording of 5 seconds duration and then play the

sound.

from soundsystem import *

openMonoRecorder(22050)
print("Recording...");
capture()
delay(5000)
stopCapture()
print("Stopped");
sound = getCapturedSound()

openMonoPlayer(sound, 22050)
play()

MEMO

A command like capture(),which triggers an action and immediately returns, is also called a

non-blocking function. With such functions you are able to control tasks from your ongoing

program, while these tasks are executed in the background. For instance, you can abort them.

ILLUSTRATING RECORDED SOUND

Of course, we are often interested in the graphical representation of the recorded sound. You

should already know how you can do this with the GPanel.

The adjacent graphics shows the recording of the words

"one two three for five six seven eight nine ten".

Page 154

from soundsystem import *

openMonoRecorder(22050)
print("Recording...");
capture()
delay(5000)
stopCapture()
print("Stopped");
sound = getCapturedSound()

from gpanel import *
makeGPanel(0, len(sound), -33000, 33000)
for i in range(len(sound)):
 draw(i, sound[i])

MEMO

You can obtain the number of samples from the length of the sound list. For the graphical

representation, simply use a for structure. Play around for a while with different recorded

sounds and think about whether you understand the sound curve.

SAVING WAV FILES

You can also save the recorded sound as a WAV file with writeWavFile().

from soundsystem import *

openMonoRecorder(22050)
print("Recording...");
capture()
delay(5000)
stopCapture()
print("Stopped");
sound = getCapturedSound()

writeWavFile(sound, "mysound.wav")

MEMO

After saving, you can listen to the sound file with either Python or with any sound player that

is installed on your computer.

EXERCISES

1. Record individual words

2. Put these words together in a sentence..

3*. Let the computer speak in single digits a phone number given as a text.

Page 155

4.4 SPEECH SYNTHESIS

INTRODUCTION

In speech synthesis, a human voice is generated by the computer. A text-to-speech system (TTS)

converts written text into a speech output. The automatic generation of human language is

complicated, but it has made a lot of progress in recent years. Compared to the playback of

pre-made voice recordings, TTS has the advantage of being very flexible and able to speak any

text. Speech synthesis is a part of computational linguistics. Therefore, a close collaboration

between linguists and computer scientists is necessary in the development of a TTS.

The speech synthesis software used in TigerJython is called MaryTTS and was developed at the

Department of Computational Linguistics and Phonetics of the University of Saarland in Germany.

The system uses large library files that you download separately here and then unzip. In the

same directory as tigerjython2.jar, create the subdirectory Lib (only if it does not already exist)

and copy the unzipped files into it.

PROGRAMMING CONCEPTS: Speech synthesis, artificial speech, text-to-speech system

SPEAKING A TEXT IN 4 LANGUAGES

In this release, MaryTTS provides you with different voices speaking German, English, French and

Italien.. You can choose the voice with selectVoice(). After that you can call the function

generateVoice() by passing it the text to be spoken. It will return a list with the generated

sound samples that you can play back with a sound player.

from soundsystem import *

initTTS()

selectVoice("german-man")

#selectVoice("german-woman")

#selectVoice("english-man")

#selectVoice("english-woman")

#selectVoice("french-woman")

#selectVoice("french-man")

#selectVoice("italian-woman")

text = "Danke dass du mir eine Sprache gibst. Viel Spass beim Programmieren"

#text = "Thank you to give me a voice. Enjoy programming"

#text = "Merci pour me donner une voix. Profitez de la programmation"

#text = "Grazie che tu mi dia una lingua. Godere della programmazione"

voice = generateVoice(text)

openSoundPlayer(voice)

play()

MEMO

You can change the commented lines to let the program speak the text using the different

voices. You first always have to call initTTS() in order to prepare the speech synthesis

software.

You could also pass the function initTTS() a path to the directory containing the MaryTTS data

files as a parameter. By default it is the subdirectory Lib.

Page 156

ANNOUNCING TODAY'S DATE AND THE CURRENT TIME

There are numerous applications of speech synthesis. People with visual impairments can have

texts read aloud to them, and navigation systems or train station or train announcements often

use synthetically generated voices.

Many interactive computer games also use artificially generated voices.

Your program determines the current time from the computer system, and it reads it out loud

with a German or an English speaking voice.

from soundsystem import *

import datetime

language = "german"

#language = "english"

initTTS()

if language == "german":

 selectVoice("german-woman")

 month = ["Januar", "Februar", "März", "April", "Mai",

 "Juni", "Juli", "August", "September", "Oktober",

 "November", "Dezember"]

if language == "english":

 selectVoice("english-man")

 month = ["January", "February", "March", "April", "May",

 "June", "July", "August", "September", "October",

 "November", "December"]

now = datetime.datetime.now()

if language == "german":

 text = "Heute ist der " + str(now.day) + ". " \

 + month[now.month - 1] + " " + str(now.year) + ".\n" \

 + "Die genaue Zeit ist " + str(now.hour) + " Uhr " + str(now.minute)

if language == "english":

 text = "Today we have " + month[now.month - 1] + " " \

 + str(now.day) + ", "+ str(now.year) + ".\n" \

 + "The time is " + str(now.hour) + " hours " + str(now.minute)

 + " minutes."

print text

voice = generateVoice(text)

openSoundPlayer(voice)

play()

MEMO

By selecting the commented lines, you can decide between the German or the English speaker.

The class datetime.datetime.now() provides you with information about the current date and

the current time, via its attributes year, month, day, hour, minute, second, microsecond. As

you can see, you can use the backslash as a line extension in the definition of long strings.

CREATING YOUR OWN GRAPHICAL USER INTERFACE

As you have already learned in chapter 3.13 it is quite easy to create a simple dialog window

based on TigerJython's EntryDialog class. As usual in many programming environments the

classic controls like text fields, push, check and radio buttons, as well as sliders are modeled by

software objects. These objects appear in a surrounding rectangular pane and the dialog remains

open while the program continues (such a dialog is called a modeless dialog). For a

comprehensive information please consult the APLU documentation.

Page 157

Your program opens a modeless dialog where you select the speaker using radio buttons. When

clicking the confirmation button, the text in the text field is read by a synthetic voice.

from soundsystem import *

from entrydialog import *

speaker1 = RadioEntry("Mann (Deutsch)")

speaker1.setValue(True)

speaker2 = RadioEntry("Man (English)")

speaker3 = RadioEntry("Homme (Français)")

speaker4 = RadioEntry("Donna (Italiano)")

pane1 = EntryPane("Speaker Selection",

 speaker1, speaker2, speaker3, speaker4)

textEntry = StringEntry("Message:", "Viel Spass am Programmieren")

pane2 = EntryPane(textEntry)

okButton = ButtonEntry("Speak")

pane3 = EntryPane(okButton)

dlg = EntryDialog(pane1, pane2, pane3)

dlg.setTitle("Synthetic Voice")

initTTS()

while not dlg.isDisposed():

 if speaker1.isTouched():

 textEntry.setValue("Viel Spass am Programmieren")

 elif speaker2.isTouched():

 textEntry.setValue("Enjoy programming")

 elif speaker3.isTouched():

 textEntry.setValue("Profitez de la programmation")

 elif speaker4.isTouched():

 textEntry.setValue("Godere della programmazione")

 if okButton.isTouched():

 if speaker1.getValue():

 selectVoice("german-man")

 text = textEntry.getValue()

 elif speaker2.getValue():

 selectVoice("english-man")

 text = textEntry.getValue()

 elif speaker3.getValue():

 selectVoice("french-man")

 text = textEntry.getValue()

 elif speaker4.getValue():

 selectVoice("italian-woman")

 text = textEntry.getValue()

 if text != "":

 voice = generateVoice(text)

 openSoundPlayer(voice)

 play()

Page 158

MEMO

The while loop executes until the dialog is closed with the title bar's close button. You check

with isTouched() in every cycle, if the confirmation button was clicked since the last call of

this function. In this case you get the current values of the GUI elements by calling

getValue()and transform the text in the text field to a voice like in the preceding examples.

It is a bit dangerous to go through such "narrow" loops, because you waste lot of processing

time for nothing other than just a check whether the button was pressed. However, when you

call isTouched() the program will automatically stop for a short time (1ms) so that the

throughput is slightly slowed down.

EXERCISES

1. Find or write a short poem as a text file, for example:

Advice To A Son by Ernest Hemingway.

Never trust a white man,

Never kill a Jew,

Never sign a contract,

Never rent a pew.

Don't enlist in armies;

Nor marry many wives;

Never write for magazines;

Never scratch your hives.

Always put paper on the seat,

Don't believe in wars,

Keep yourself both clean and neat,

Never marry whores.

Never pay a blackmailer,

Never go to law,

Never trust a publisher,

Or you'll sleep on straw.

All your friends will leave you

All your friends will die

So lead a clean and wholesome life

And join them in the sky.

 Ernest Hemingway (Download)

With the line text = open("poem.txt", "r").read() you can read the text from the text file

sorcery.txt, in the same directory as your program, as string. Let the text be read by the

English voice.

2. Define the function fac(n) either iteratively or recursively, which returns the factorial

n! = 1 * 2 * ... *n

Your program should ask you for a number between 0 and 10 using readInt() and also speak

the question out loud. It then calculates the factorial n! of the entered number and outputs

the result as spoken text.

Page 159

4.5 ACOUSTIC EXPERIMENTS

INTRODUCTION

You can also use the computer in place of an experimental system, for example you could

investigate human hearing using the sound system. This is not only cheaper, but it also gives

you a huge amount of flexibility, especially when you perform the experiments with a self-written

program.

PROGRAMMING CONCEPTS: Concert pitch, beating, scale

TUNING A MUSICAL INSTRUMENT, BEATING

The hearing cannot distinguish two tones with almost the same frequencies when they are

played separately. However, if they are played simultaneously this results in a rise and fall in

volume which is very well audible. In order to experience this yourself, make your program play

a standard concert pitch A (440 Hz) for 5 seconds and later for the same period an only 1 Hz

higher pitch. There is no noticeable difference. When playing both tones at together you can

clearly hear the beating phenomenon.

import time

playTone(440, 5000)
time.sleep(2)
playTone(441, 5000)
time.sleep(2)
playTone(440, 20000, block = False)
playTone(441, 20000)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The global function playTone() has different parameter variations that you can read about in

the TigerJython Help file under APLU Documentation (coordinate graphic). Here you use the

parameter block, with which you can define whether the function blocks until the tone is done

being played, or whether it returns immediately after starting to play. You have to use the

non-blocking variant to play multiple sounds simultaneously.

To tune instruments in an orchestra, but also to tune a single instrument (string instrument,

piano, etc.), two notes are played at the same time while paying attention to the beating.

SCALES

The well-tempered musical scale is based on a standard concert pitch with the frequency 440 Hz

and divides the octave (frequency ratio 2) in 12 semitones with the same frequency ratio r. Thus

gives:

You can easily play the C major scale with this, which according to the notation, consists of

Page 160

whole and half steps. The concert pitch corresponds to the note a.

In the just or natural scale the tone frequencies are formed by multiplication with simple ratios

starting from the root tone. The ratios for the 8 tones of an octave are:

or as a series of numbers, they are: 24, 27, 30, 32, 36, 40, 45, 48. To play these, you can save

the frequencies in a list and call playTone(). Once you have played both scales individually, you

can listen to the two differently tuned instruments playing the scale together. As you will notice,

it sounds really bad.

r = 2**(1/12)
a = 440
c = a / r**9

scale_temp = [c, c * r**2, c * r**4, c * r**5, c * r**7,
 c * r**9, c * r**11, 2 * c]
scale_pure = [c, c * 9/8, c * 5/4, c * 4/3, c * 3/2 ,
 c * 5/3, c * 15/8, 2 * c]

playTone(scale_temp, 1000)
playTone(scale_pure, 1000)

playTone(scale_temp, 1000, block = False)
playTone(scale_pure, 1000)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

In the well-tempered scale, neighboring semitones always have the same frequency ratio (so,

not equal frequency differences!). The advantage of the well-tempered scale over just

intonation is that the frequency ratios are always the same for all keys (C major, D major,

etc.). [more...]

PLAYING MELODIES

You can also play a simple melody for fun using playTone(). For subsequent tones of equal

length, use tuples with a pitch and speed indication, and put them into a list. Finally, it is also

possible to choose a musical instrument. In this example you probably recognize a children's

tune. Which one is it?

v = 250
playTone([("cdef", v), ("gg", 2*v), ("aaaa", v//2), ("g", 2*v),
 ("aaaa", v//2), ("g", 2*v), ("ffff", v), ("ee", 2*v),
 ("dddd", v), ("c", 2*v)], instrument="harp")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 161

MEMO

It is really amazing how easily you can play a melody using playTone(). However, compared to

a real musical instrument, it sounds very synthetic.

EXERCISES

1. You can write down a song as a list of tone frequencies and then play it with a for loop:

melody = [262, 444, 349, 349, 392, 330, 262, 466, 440, 392, 392, 349]
v = 200
for f in melody:
 playTone(f, v)

a. Do you know this song? Play it back a bit slower.

b. Play the song one octave higher.

c. For your singing class, the first version is too low and the second is too high. Transpose

the melody so that it starts with g' instead of c'.

2. Play the chord c'', e'', g'' (third, fifth) for twenty seconds with the well-tempered intonation.

(For this, you can use playTone() giving it letters for the tones.) Now play the same chord,

but with just intonation. What do you notice?

Page 162

Sound Documentation

Sound

Function Action

playTone(freq) plays tone mit given frequency (in Hz) and duration 1000 ms (blocking function)

playTone(freq, blocking=False) same, but not-blocking function, used to play several tones at (about) the same time

playTone(freq, duration) plays tone with given frequency and given duration (in ms)

playTone([f1, f2, ...]) plays several tones in a sequence with given frequency and duration 1000 ms

playTone([(f1, d1), (f2, d2), ...]) plays serveral tones in a sequence with given frequency and given duration

playTone([("c", 700), ("e", 1500),

...])

plays serveral tones in a sequence with given (Helmholtz) pitch naming and

duration.

Supported are: great octave, one-line to three-line octave (range C, C# up to h'''

playTone([("c", 700), ("e", 1500),

...], instrument = "piano")

same, but selects instrument type. Supported are: piano, guitar, harp, trumpet,

xylophone, organ, violin, panflute, bird, seashore, ... (see MIDI specifications)

playTone([("c", 700), ("e", 1500),

...], instrument = "piano",

volume=10)

same, but selects sound volume (0..100)

Module import: from soundsystem import *

Playback:

getWavMono(filename)
provides lists of samples for the specified monaural sound file. "wav/xxx.wav" also

loads from the _wav directory in tigerjython2.jar

getWavStereo(filename)
provides lists of samples for the specified binaural sound file. "wav/xxx.wav" also

loads from the _wav directory in tigerjython2.jar

getWavInfo(file) provides a string with information about the sample rate, etc.

openSoundPlayer(filename)
opens a sound player with the specified sound file. Afterwards, it can be played with

the following player functions

openMonoPlayer(filename)
opens a monaural sound player with the specified sound file. It can also handle

binaural files (average of both channels)

openStereoPlayer(filename)
opens a binaural sound player with the specified sound files. It can also handle

monaural files (both channels are identical)

openSoundPlayerMP3(filename) just like openSoundPlayer(), but for MP3 files

openMonoPlayerMP3(filename) just like openMonoPlayer(), but for MP3 files

openStereoPlayerMP3(filename) just like openStereoPlayer(), but for MP3 files

play() plays the sound from the current position and returns immediately

blockingPlay()
plays the sound from the current position and then waits until the playing has

finished

advanceFrames(n) fast forwards the current position by a given number of samples

advanceTime(t) fast forwards the current position by a specified time

getCurrentPos() returns the current position

getCurrentTime() returns the current playing time

rewindFrames(n) rewinds the current position by the specified number of samples

rewindTime(t) rewinds the current position by the specified time

stop() stops playing and resets the current playhead to the beginning

setVolume(v) sets the volume (v = 0...100)

isPlaying() returns True if the clip has not yet finished playing

Page 163

mute(bool) turns to True when muted, and False when audible

playLoop() loops, and therefore plays the clip endlessly

replay() replays the clip once

delay(time) delays the program (in milliseconds)

Recording and Saving:

openMonoRecorder() opens a monaural sound recorder

openStereoRecorder() opens a binaural sound recorder

capture() begins recording

stopCapture() stops recording

getCapturedBytes() returns the recorded samples byte-by-byte

getCapturedSound() returns the recorded samples as integer list values (binaural: channels alternate)

writeWavFile(samples, filename) writes the samples into a WAV file

Fast Fourier Transform (FFT):

fft(samples, n) transforms the first n values of the specified list of samples (floats). Returns a list

with n // 2 equidistant spectral values (floats). At a sampling rate of fs these range

from 0 to fs/2 at a distance fs/n (resolution)

sine(A, f, t)
creates a sine wave with amplitude A and frequency f (phase 0) for each float value

t

square(A, f, t)
creates a square wave with amplitude A and frequency f (phase 0) for each float

value t

sawtooth(A, f, t)
creates a sawtooth wave with amplitude A and frequency f (phase 0) for each float

value t

triangle(A, f, t)
creates a triangle wave with amplitude A and frequency f (phase 0) for each float

value t

chirp(A, f, t)
creates a sine wave with amplitude A and a frequency that increases linearly with

time (initial value f) for each float value t

Page 164

 Learning Objectives

 You can describe what a robot is and you know some of their possible applications.

You know the difference between an autonomous and a remotely controlled robot, and you

know why robots are simulated.

 You can control EV3 or NXT robots with a Python program.

You can explain, using a few examples, what a learning robot is. You also understand the

difference between the teach and execute modes.

 You know the principles of a control system and can list some examples of controls.

 You can capture sensor values in a program using polling and events.

"Will robots inherit the earth? Yes, but they will be our children."

but:

"No computer has ever been designed that is ever aware of what it's doing; but most of the time, we
aren't either.”

Marvin Minsky, AI Researcher at MIT

Page 165

5.1 REAL AND SIMULATION MODE

INTRODUCTION

A robot is usually understood as a computer-controlled machine that can perform an activity,

previously done by humans. If the machine can also detect the surrounding environment with the

help of cameras and sensors and can then react appropriately with actuators (motors, valves,

speech synthesizers, etc.), we speak of an intelligent system. If the behavior of such a system

is human-like, we speak of an android. .

A typical example of this is the movie

robot WALL-E who has his own

consciousness, so much that he is

looking for spare parts for himself, as

well as special objects that catch his

interest, which he treasures in a

collection. He is also able to solve a

Rubik's cube, which is definitely seen

as a sign of intelligence.

Artificial Intelligence (AI) deals with the interesting question of exactly how a computer

system can be described as "intelligent". In order to answer this question, we must first define

what is meant by an “intelligent” machine. One possible approach to the definition of intelligence

is the Turing Test.

Here you will be concerned with more simple questions and you will learn to handle a simple

robot equipped with touch, light, sound, infrared, and ultrasound sensors, and also with two

wheels driven by electric motors, which allow it to move forwards and backwards, and even

rotate.

The motors and sensors are controlled by the built-in computer, which is why people also call

robots an embedded system. If it often consists in a simple computer chip, it is called a

microprocessor (or a microcontroller). Nowadays, embedded systems play an extremely

important role and you can find them in many everyday devices, for instance in smartphones.

Surprisingly, most coffee machines, washing machines, televisions, cameras, and other similar

electronics are also embedded systems. In a modern car, there are up to 100 microcontrollers

that act as embedded systems in places such as the engine control or the anti-blocking system.

Therefore, you should be aware that you are also getting to know many general principles for

embedded systems while learning about robots.

If the built-in processor runs a stand-alone program in order to control the robot, we speak of an

autonomous robot. The built-in processor can also simply send the data collected from the

sensors over a data communication canal to an external computer, and then obtain control

commands from this computer. In this case, we speak of an remotely controlled robot. Finally,

a robot can also be simulated, which usually means that the sensors, motors, etc. are depicted

as software objects. A class construction then corresponds to the real-world assembly of robot

components. In general practice, robots are usually first simulated on the computer since this can

create a behavior to be studied with little effort and without any risks to the environment.

With the world famous robotics kit by LEGO Mindstorms you can learn the important aspects of

robotics in a playful way. The kit consists of a microprocessor-controlled brick and a variety of

Page 166

components used to construct different robot models. The brick has gone through several stages

of development: earlier it was called RCX, then NXT, and more recently EV3.

The EV3 brick is an embedded system with motors and sensors controlled by a modern ARM

processor. If you open it, its electronic components will be visible.

PC port

4 motor ports

USB port

loudspeaker

SD card

32 bit ARM9 processor

Texas Instrument AM1808

with 64 MB RAM and

16 MB flash drive

4 sensor ports

Once you turn on the brick, a firmware starts on the microcontroller (or with EV3 the Linux

operating system) and a simple menu appears on the display. With this, you can already run

programs stored on the brick, in autonomous mode. For the external control mode on the EV3,

you have to start a helper program (BrickGate) which interprets commands that are received

through a Bluetooth connection, for example the command to turn on a motor in a certain

rotation direction or to report back the measured value of a senor. With the NXT, this program is

a part of the firmware.

As with all embedded systems in robotics, you need an external computer on which you develop

the robot programs. In autonomous mode the program is downloaded onto the brick, and in

external control mode it runs on the PC.

Autonomous mode External control mode

1. Edit the program

2. Download and end the

connection

3. Runs on the EV3

1. Edit the program

2. Runs on the PC.

Communicates with the EV3

PROGRAMMING CONCEPTS: Robots, androids, artificial intelligence, embedded systems,

microprocessors, microcontrollers, blocking/non-blocking methods

Page 167

PREPARATIONS

With TigerJython you can simulate the robot (simulation mode) or using autonomous or

external control modes (real mode). You thereby use different class libraries which, however,

offer the same programming interface (Application Programming Interface, API) so that the

programs are practically identical for all modes. The only things that have to be adjusted are

imports and possibly some timings used in the program.

Simulation mode:

If you do not have an NXT or an EV3 available to you, you can nonetheless work through the topic

in simulation mode. The images required for the simulation are already included in the

distribution of TigerJython.

Real mode:

Most examples will use the basic model of the LEGO Mindstorm

NXT or EV3 robot, which moves with two motors and can be

equipped with various sensors. As long as you do not change the

basic functionality, you can also use your own deviated model.

Since the robot communicates through Bluetooth, your PC must

be Bluetooth compatible and enabled. Moreover you have to

“pair” the brick with your computer.

Using the LEGO NXT:

Make sure that the Java firmware leJOS is installed onto the LEGO NXT. Here you find instructions

how to proceed: http://www.legorobotik.ch/lejosfirmware_en

To pair it with the computer, you proceed as you would with other external Bluetooth devices

such as smartphones, Bluetooth handsets, printers, etc.

With Python, you can use the NXT only in its external control mode. For this, you write a regular

Python program in TigerJython using the module ch.aplu.nxt and then hit the green Run button to

start. First you will be asked for the Bluetooth name and then the connection with the brick will

be established. During the program execution, a window with the connection information remains

open. If you close this window, the connection to the NXT is interrupted.

If there are several LEGO NXT's in the room, the names for each must be different so that there are no conflicts. You can find a tool for

changing the name here . You can also use the Bluetooth address instead of the Bluetooth name, which you can figure out with the help of

different tools (one place to find it is shown above: it is written out in the connection dialog each time that a connection is established).

The BlueCove library is necessary for Bluetooth communication. Download the files here and

unzip them in the subdirectory Lib of the directory in which tigerjython2.jar is located.

Using the LEGO EV3:

A Linux operating system runs on the EV3 that boots in conjunction with the leJOS software,

which is located on the SD card. You can find a detailed guide on how to create the SD card here.

If you remove the SD card you can use the EV3 in its original state. If the EV3 is started using

leJOS you communicate with it through a Bluetooth PAN connection. To do this, you have to pair

the PC with the brick and specify it as a network access point. You can find instructions here.

After booting the EV3 with leJOS and successfully connecting it via Bluetooth PAN, you need to

start the BrickGate server on the brick, which you can find in the menu "programs".

To use the EV3 in autonomous mode, check both boxes on the libraries tab in the settings of

Page 168

TigerJython, activate EV3 download and run after download. You will then find an additional EV3

icon on the toolbar.

For the external control mode, you click on the green Run button as usual. Just as with the NXT,

you will first be asked for the Bluetooth name and then a window will open with the connection

information. If you want to run the same program autonomously, simply click on the EV3 button.

The Python script is then downloaded onto the EV3 and executed there. Its name also appears on

the display of the EV3 and it can always be executed again with the Enter button, even without a

connection to the PC.

In the programs we assume that for the EV3 you are using the new motors and sensors from the EV3 product line. The EV3 color sensor also

serves as a light sensor. However, the old NXT motors and sensors are still supported for the EV3. You simply have to put "Nxt" everywhere

before the class name, i.e. NxtMotor, NxtGear, NxtTouchSensor, etc.

MOVING FORWARDS AND BACKWARDS, TURNING

In your first robot program, the robot should move for certain times, which are hard coded in the

program. The robot library is object-oriented and depicts reality by a model. So, when in reality

you pick up the LEGO brick when constructing the robot, in the software you create an instance of

the class LegoRobot() with robot = LegoRobot(). Next you take two motors and put them

together to a gear, which you can express as gear = Gear() in the software. Then you connect

the gear motors to the motor ports A and B, which you formulate as addPart() in the software.

With the command gear.forward() you turn on both engines

simultaneously with the same rotational speed and the robot

moves straight ahead. This state of movement will remain

the same until you undertake something else. However,

the call returns immediately and your program continues

onwards with the next instruction (this is called a non-blocking

method). Therefore, your program has to ensure that the robot

does something else after a certain amount of time. To do this,

you can tell the program to wait using Tools.delay() and then

change or stop the movement with another command.

Once you send a movement command to the robot, the current state is ended and replaced by

the new state. At the end of the program you should always call the method exit(). Once called,

all motors are stopped and in the real mode the Bluetooth connection is also interrupted, which is

necessary for the next program to start successfully. (If the program does not end correctly you

might have to turn the brick off and on again.)

from simrobot import *

#from nxtrobot import *

#from ev3robot import *

robot = LegoRobot()

gear = Gear()

robot.addPart(gear)

gear.forward()

Tools.delay(2000)

gear.left()

Tools.delay(545)

Page 169

gear.forward();

Tools.delay(2000)

robot.exit()

MEMO

A Gear has two motors. Instead of controlling the motors individually, you can use commands

that affect both engines simultaneously.

The class libraries for both the simulation and the real mode are designed so that their

programs are almost identical. You can first develop your program in the simulation mode and

then with a few adaptations you can execute it with the real robot.

You can use the EV3 autonomously or externally controlled. In both cases the BrickGate

program must be started on the EV3, which receives and appropriately interprets the

commands sent from Python. Since no errors are displayed while running in autonomous mode,

you should always first test the program in external control mode (green button) and only then

download it to the brick using the EV3 button and execute it there.

MOVING WITH BLOCKING METHODS

Instead of moving the robot forward with the command forward() and then telling the program

to wait 2000 ms with delay(2000), you can use the blocking method forward(2000) which also

moves the robot forward, but only returns after 2000 ms. There are also blocking variants for

left() and right().

You can simplify the previous program slightly with blocking methods.

from simrobot import *

#from nxtrobot import *

#from ev3robot import *

robot = LegoRobot()

gear = Gear()

robot.addPart(gear)

gear.forward(2000)

gear.left(545)

gear.forward(2000)

robot.exit()

MEMO

You must distinguish between blocking and non-blocking methods. Non-blocking commands

cause the robot to change state and return immediately. If you call a blocking method, the

program freezes a certen time interval, i.e. the next statement is only executed when the time

interval has expired.

At first glance, it might seem easier to always use blocking methods. But with them you get a

major disadvantage. While your program is blocked you cannot execute any other actions, so

for example, you could not read any sensor values! If the program hangs during execution, in

external control mode you can cancel it by closing the connection information window. In

autonomous mode in the case of an emergency, you can simultaneously press the two buttons

DOWN+ENTER .

Page 170

EXERCISES

1. Write a program that makes your robot trace a square, using blocking methods.

2. Write a program using non-blocking methods so

that the robot moves along half-circle curves.

3. Create a course with some objects and write a

corresponding program so that the robot moves from

the start to the finish line.

For simulation mode, you can use the background

image bg.gif located in the subdirectory sprites, by

displaying it with RobotContext.useBackground().

Using RobotContext.setStartPosition() you can set the

robot to a specific location at the start of the program.

(window coordinates are from 0 to 500, 0 is at the top

left corner).

RobotContext.setStartPosition(200, 455)

RobotContext.useBackground("sprites/bg.gif")

You can also create your own image (the image size should be 501x501).

ADDITIONAL MATERIAL

INFRARED REMOTE CONTROL

A versatile infrared sensor comes with the EV3 robot that can be used in many ways. It is already

included in the LEGO Home set (including the remote control box), but it must be purchased

separately if you have the Education set. You can use the IRSensor in one of the three following

ways:

Class Metrics

IRSeekSensor distance and direction to the IR source of the remote control

IRRemoteSensor pressed buttons of the remote control

IRDistanceSensor distance to a reflective target

The use of the remote control is fun and motivating for your

first "tentative steps" with the robot. As opposed to a

predetermined remote control program, you can set the

actions that which are triggered when pressing the remote

control through simple Python programming.

Page 171

You decide to use the following actions in your program:

Remote control button Action

Left-Up moves forward on a left bend

Right-Up moves forward on a right bend

Left-Down+Right-Up moves straight forward

Left-Down stops

Right-Down ends program

from ev3robot import *

robot = LegoRobot()

gear = Gear()

robot.addPart(gear)

irs = IRRemoteSensor(SensorPort.S1)

robot.addPart(irs)

isRunning = True

while not robot.isEscapeHit() and isRunning:

 command = irs.getCommand()

if command == 1:

 gear.leftArc(0.2)

if command == 3:

 gear.rightArc(0.2)

if command == 5:

 gear.forward()

if command == 2:

 gear.stop()

if command == 4:

 isRunning = False

robot.exit()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

The methods isEscapeHit(), isEnterHit(), isDownHit(), isUpHit(), isLeftHit(), isRightHit() return

True, if you click the corresponding buttons on the EV3 in autonomous mode.

However, in external control mode, they pertain to the keyboard keys ESCAPE, ENTER,

CURSOR-DOWN, CURSOR-UP, CURSOR-LEFT, CURSOR-RIGHT. For this, the connection

information window must be active (click in it with the mouse to activate it).

Page 172

5.2 INTELLIGENT ROBOTS

INTRODUCTION

Robots that can find their way in a changing environment

have many potential applications, for example as flying

objects, in underwater exploration, and in the examination of

sewer systems. Here you will learn step by step how you can

build a moving robot that is able to orient itself in a changing

environment

PROGRAMMING CONCEPTS: Externally controlled, autonomous, self-learning robot,

teach mode, execution mode, event loop

THE ROBOT KNOWS THE WAY

In the simplest case, a robot should be able to find a

path in a very special canal that consists of elements of

the same length arranged orthogonally.

Information about the constant length of the canal

elements and whether they consist of left or right

curves is hardcoded ("wired") in the program.

from simrobot import *
#from nxtrobot import *
#from ev3robot import *

RobotContext.useObstacle("sprites/bg.gif", 250, 250)
RobotContext.setStartPosition(310, 470)

moveTime = 3200
turnTime = 545

robot = LegoRobot()
gear = Gear()
robot.addPart(gear)
gear.forward(moveTime)
gear.left(turnTime)
gear.forward(moveTime)
gear.right(turnTime)
gear.forward(moveTime)
gear.right(turnTime)
gear.forward(moveTime)
gear.left(turnTime)
gear.forward(moveTime)
robot.exit()

Page 173

MEMO

You have to figure out moveTime and turnTime through a series of experiments and then

adjust accordingly. Naturally, they correlate to the speed of the robot. In reality, you would

probably rather specify the route to be traversed and the rotation angles instead of the times.

ROBOT CONTROLLED BY A HUMAN

The robot knows the constant lengths of the canal elements, but its turning movements are

controlled by a human. However, the robot is not capable of learning and it cannot remember the

path, so it remains "stupid". To control the robot in both the simulation and external control

mode, you use the left and right cursor keys of the keyboard, and in autonomous mode you use

the corresponding LEFT and RIGHT buttons. With the methods isLeftHit() and isRightHit() you can

ask whether the keys or the buttons were pressed and again released. Use the escape key or

ESCAPE button to exit the program.

from simrobot import *
#from nxtrobot import *
#from ev3robot import *

RobotContext.useObstacle("sprites/bg.gif", 250, 250)
RobotContext.setStartPosition(310, 470)

moveTime = 3200
turnTime = 545

robot = LegoRobot()
gear = Gear()
robot.addPart(gear)
gear.forward(moveTime)

while not robot.isEscapeHit():
 if robot.isLeftHit():
 gear.left(turnTime)
 gear.forward(moveTime)
 if robot.isRightHit():
 gear.right(turnTime)
 gear.forward(moveTime)
robot.exit()

MEMO

In this case, it makes less sense to use the autonomous mode since you actually want to

remote control the robot. You can also use the infrared remote control for this with the EV3

instead of using the keyboard (see Additional Material at the end of this chapter).

THE ROBOT LEARNS IN TEACH MODE

Computer-aided systems, whose behavior is not hardcoded and who can therefore later adapt

their behavior to an environment, are called adaptive systems. These are therefore capable of

learning, in a way. Industrial robots are “trained” by specialists in a "teach mode", for instance

which arm movements are to be carried out. In most cases, the operator uses an input system

similar to a remote control. The robot is successively moved to the desired positions and the

respective state is stored. In "execution mode" the robot runs through the stored states

independently (and with a higher speed).

Page 174

As before, your canal robot knows the constant length of the canal elements, but its turning

movements are controlled by a human. However, the robot is now able to learn, so it can

memorize the path and independently run through it any number of times.

It is often useful to imagine that in every moment, a robot is in a particular state. The states

are typically labeled with meaningful words and stored as a string. You assume the following

states: the robot is stopped, moving forward, turning left, or right, and you call them: STOPPED,

FORWARD, LEFT, RIGHT. [more...]

Instead of constantly querying the keys or buttons, here you use a more elegant event

programming model with registered callback functions, which are, independently of the currently

running program, always called automatically when an event occurs.

The main program, in an endless loop, is engaged in performing the corresponding actions in

each state. The state change takes place in the callback onButtonHit().

from simrobot import *
#from nxtrobot import *
#from ev3robot import *

RobotContext.useObstacle("sprites/bg.gif", 250, 250)
RobotContext.setStartPosition(310, 470)
RobotContext.showStatusBar(30)

def onButtonHit(buttonID):
 global state
 if buttonID == BrickButton.ID_LEFT:
 state = "LEFT"
 elif buttonID == BrickButton.ID_RIGHT:
 state = "RIGHT"
 elif buttonID == BrickButton.ID_ENTER:
 state = "RUN"

moveTime = 3200
turnTime = 545
memory = []
robot = LegoRobot(buttonHit = onButtonHit)
gear = Gear()
robot.addPart(gear)
state = "FORWARD"

while not robot.isEscapeHit():
 if state == "FORWARD":
 robot.drawString("Moving forward", 0, 3)
 gear.forward(moveTime)
 state = "STOPPED"

Page 175

 robot.drawString("Teach me!", 0, 3)
 elif state == "LEFT":
 memory.append(0)
 robot.drawString("Saved: LEFT-TURN", 0, 3)
 gear.left(turnTime)
 state = "FORWARD"
 elif state == "RIGHT":
 memory.append(1)
 robot.drawString("Saved: RIGHT-TURN", 0, 3)
 gear.right(turnTime)
 state = "FORWARD"
 elif state == "RUN":
 robot.drawString("Executing memory", 0, 1)
 robot.drawString(str(memory), 0, 2)
 robot.reset()
 robot.drawString("Moving forward", 0, 3)
 gear.forward(moveTime)
 for k in memory:
 if k == 0:
 robot.drawString("Turning left", 0, 3)
 gear.left(turnTime)
 else:
 robot.drawString("Turning right", 0, 3)
 gear.right(turnTime)
 robot.drawString("Moving forward", 0, 3)
 gear.forward(moveTime)
 gear.stop()
 robot.drawString("All done", 0, 3)
 state = "STOPPED"
robot.exit()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

Processing the states occurs in a while loop in the main part of the program, instead of in

callback functions. In computer science, such a loop is commonly called an event loop. Only

the corresponding state is selected in the callback (state switch). With this programming

technique, you can obtain a clear chronological synchronization between the longer lasting

actions and the call of the event-driven callback, which can occur at any given time. The

"memory" consists of a list where you store the numbers 0 or 1, depending on whether the path

branches off to the left or the right.

THE SELF-LEARNING ROBOT

In certain applications it is not possible for the robot to be taught by an operator. The robot

could, for example, be located somewhere outside of the immediate communication area (e.g. on

Mars).

In order to find the path, the robot now has to capture the environment using built-in sensors and

“act” accordingly. People know the environment mainly from seeing with their eyes. For robots,

image capture with a camera is easy, but the analysis of these images can get extremely

complicated [more...].

In order to orient itself in the canal, your robot uses only a touch sensor that will trigger an event

when pressed. The canal should always consist of canal elements of equal lengths. When the

robot receives a touch event after passing through a canal member, it knows that it is at a

turning point in the path. It then goes back a bit and tries to progress with a left turn.

If within a short amount of time it bumps into a wall again, it knows that it took the wrong path.

It then goes back again and this time moves to the right. The robot remembers whether it had to

turn to the right or to the left in order to go the right way, and it can later run through the canal
Page 176

any number of times on its own without bumping into a wall.

Let the robot run through the canal in teach mode. Then, you press the enter key or the ENTER

button in order to transfer it from teach mode into execution mode.

from simrobot import *
#from nxtrobot import *
#from ev3robot import *

import time

RobotContext.useObstacle("sprites/bg.gif", 250, 250)
RobotContext.setStartPosition(310, 470)
RobotContext.showStatusBar(30)

def onPressed(port):
 global startTime
 global backTime
 robot.drawString("Press event!", 0, 1)
 dt = time.clock() - startTime # time since last hit in s
 gear.backward(backTime)
 if dt > 2:
 memory.append(0)
 gear.left(turnTime) # turning left
 else:
 memory.pop()
 memory.append(1)
 gear.right(2 * turnTime) # turning right
 robot.drawString("Mem: " + str(memory), 0, 1)
 gear.forward()
 startTime = time.clock()

def run():
 for k in memory:
 robot.drawString("Moving forward", 0, 1)
 gear.forward(moveTime)
 if k == 0:
 robot.drawString("Turning left", 0, 1)
 gear.left(turnTime)
 elif k == 1:
 robot.drawString("Turning right", 0, 1)
 gear.right(turnTime)
 gear.forward(moveTime)
 robot.drawString("All done", 0, 1)
 isExecuting = False

moveTime = 3200
turnTime = 545
backTime = 700
memory = []
robot = LegoRobot()
gear = Gear()

robot.addPart(gear)
ts = TouchSensor(SensorPort.S3, pressed = onPressed)
robot.addPart(ts)
startTime = time.clock()
gear.forward()
robot.drawString("Moving forward", 0, 1)

while not robot.isEscapeHit():
 if robot.isEnterHit():
 robot.reset()
 run()
robot.exit()

Page 177

MEMO

The touch sensor is connected to the Port S3 (in the simulation mode, this corresponds to an

assembly position in the middle front). The sensor signals the touch events via the callback

onPressed(), which is registered using the named parameter press. The touch sensor is a robot

component that is added to the robot as usual with addPart(). To find out whether the robot has

moved into either a canal element or a dead end, determine the time since the last touch event

using the built-in Python clock. If it is more than two seconds, the robot moved forward into a

canal element, otherwise it was a dead end. Since the robot always turns to the left first and

writes a 0 in its brain, in the case of a dead end it has to substitute the incorrect 0 with 1.

THE ENVIRONMENT GETS MORE COMPLEX

You have probably noticed that the robot is perfectly able to figure out by itself how far forward it

has to go until the next turn occurs, since it can measure the time that it takes until it bumps into

the end of the canal element. This way, the robot is able to move appropriately in a canal with

differing lengths of canal elements as well. However, now it must not only keep the left-right

information in its head, but also the moving time. You best pack both related pieces of

information together in a list node = [moveTime, k], where moveTime is the moving time (in

ms), k = 0 is a left turn, and k = 1 is a right turn.

You will get moveTime after passing through the canal element, but you still have to correct it by

the time by which the robot has driven too far. Then you store it in a global variable, since you

will have to use it again in case the robot moved into a dead end.

from simrobot import *
#from nxtrobot import *
#from ev3robot import *

import time

RobotContext.useObstacle("sprites/bg2.gif", 250, 250)
RobotContext.setStartPosition(410, 460)
RobotContext.showStatusBar(30)

def pressCallback(port):
 global startTime
 global backTime
 global turnTime
 global moveTime
 dt = time.clock() - startTime # time since last hit in s
 gear.backward(backTime)
 if dt > 2:
 moveTime = int(dt * 1000) - backTime # save long-track time
 node = [moveTime, 0]
 memory.append(node) # save long-track time

Page 178

 gear.left(turnTime) # turning left
 else:
 memory.pop() # discard node
 node = [moveTime, 1]
 memory.append(node)
 gear.right(2 * turnTime) # turning right
 robot.drawString("Memory: " + str(memory), 0, 1)
 gear.forward()
 startTime = time.clock()

def run():
 for node in memory:
 moveTime = node[0]
 k = node[1]
 robot.drawString("Moving forward",0, 1)
 gear.forward(moveTime)
 if k == 0:
 robot.drawString("Turning left",0, 1)
 gear.left(turnTime)
 elif k == 1:
 robot.drawString("Turning right",0, 1)
 gear.right(turnTime)
 gear.forward() # must stop manually
 robot.drawString("All done, press DOWN to stop", 0, 1)
 isExecuting = False

turnTime = 545
backTime = 700

robot = LegoRobot()
gear = Gear()

robot.addPart(gear)
ts = TouchSensor(SensorPort.S3, pressed = pressCallback)
robot.addPart(ts)
startTime = time.clock()
moveTime = 0
memory = []
gear.forward()

while not robot.isEscapeHit():
 if robot.isDownHit():
 gear.stop()
 elif robot.isEnterHit():
 robot.reset()
 run()
robot.exit()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

At first sight, the data structure of memory as a list of node lists may seem complicated.

However, data belonging together (in this case, the running time of the next track and the

subsequent left-right information) should always be stored in a shared data structure. Enjoy

that, with the same program, the robot can also find its way in a completely different canal

(bg3.gif).

Page 179

EXERCISES

1. The robot should independently pass through a canal shown on

the right using a touch sensor, but without learning. For the

simulation mode, use the following RobotContext options:

RobotContext.useObstacle("sprites/bg2gif", 250, 250)
RobotContext.setStartPosition(400, 480)

2. Write a program for a lawn mower robot using a touch sensor that mows the grass strip by

strip. It bumps into the boundary of the lawn above and below.

For the simulation mode, use the following RobotContext options:

RobotContext.useBackground("sprites/fieldbg.gif")
RobotContext.useObstacle("sprites/field1.gif", 250, 250)
RobotContext.setStartPosition(350, 300)

3. Unfortunately the boundary of the lawn now has a hole where the robot is able to escape.

Create a program with a learning robot that knows how long the strips are after cutting the

first strip of grass and thus no longer has to use the touch sensor.

For the simulation mode, use the following RobotContext options:

RobotContext.useBackground("sprites/fieldbg.gif")
RobotContext.useObstacle("sprites/field2.gif", 250, 250)
RobotContext.setStartPosition(350, 300)

ADDITIONAL MATERIAL

TEACH MODE WITH THE INFRARED REMOTE CONTROL

(only EV3 autonomous mode)

You've already learned in the last chapter, how to use the EV3 infrared remote control. Here you

uses it to guide the robot in teach mode through the channel. Both in teach as in execute mode,

the program runs autonomously on the EV3.

This approach is very close to reality as it is common in industrial robots, they "learn" with a

remote control and then execute the "learned" program.

In the teach mode, you use the top two buttons of the remote control to move the robot to the

left or right. If you press the lower left button, the execute mode is started. Again, it is elegant to

work with states.

from ev3robot import *

def onActionPerformed(port, command):
 global state

Page 180

 if command == 1:
 state = "LEFT"
 elif command == 3:
 state = "RIGHT"
 elif command == 2:
 state = "RUN"

moveTime = 3200
turnTime = 545
memory = []
robot = LegoRobot()
gear = Gear()
gear.setSpeed(50)
robot.addPart(gear)
irs = IRRemoteSensor(SensorPort.S1, actionPerformed = onActionPerformed)
robot.addPart(irs)
state = "FORWARD"
robot.drawString("Learning...", 0, 3)

while not robot.isEscapeHit():
 if state == "FORWARD":
 gear.forward(moveTime)
 state = "STOPPED"
 elif state == "LEFT":
 memory.append(0)
 gear.left(turnTime)
 gear.forward(moveTime)
 state = "STOPPED"
 elif state == "RIGHT":
 memory.append(1)
 gear.right(turnTime)
 gear.forward(moveTime)
 state = "STOPPED"
 elif state == "RUN":
 robot.drawString("Executing...", 0, 3)
 robot.reset()
 gear.forward(moveTime)
 for k in memory:
 if k == 0:
 gear.left(turnTime)
 else:
 gear.right(turnTime)
 gear.forward(moveTime)
 gear.stop()
 robot.drawString("All done", 0, 3)
 state = "STOPPED"
robot.exit()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 181

5.3 CONTROLLING AND REGULATING

INTRODUCTION

When working with machines, which also include robots, we often face the problem of controlling

them in a way that a particular measured variable complies as well as possible with a

predetermined value (the target value or set point). For example, the cruise control in a car

should keep a predetermined speed even when the car drives on a slope or an incline. To do this,

a control system with a sensor needs to determine the current speed (the actual value) and

then adjust the power of the motor accordingly with an actuator, so in a way it needs to operate

the gas pedal.

Other examples of technical regulation systems:

Maintaining the temperature of a refrigerator (thermostat control)

Keeping an airplane on a specific course (autopilot)

Maintaining the fill level of a liquid reservoir (e.g. toilet flushing)

Many human activities can be considered as regulatory processes. Some examples:

Steering a car so that it stays on the road

Working just as much as you need to barely pass your degree

Maintaining your balance while standing on one foot

PROGRAMMING CONCEPTS: Control system, actual value, target value, measurement error

SELF-DRIVING CAR

Driving is a complex control process with many input signals that affect the driver not only

visually, but also tactually (forces on the body). The mental processing of these signals leads to

the driver's behavior (rotation of the steering wheel, pressing the pedals, etc.).

In the future,vehicles will be able to drive themselves without a human, even in complex traffic

situations. Several research groups around the world are working on this problem, and it is

possible that you might even participate in this interesting research at some point. You can

already try out some of your skills here in a highly simplified situation.

Page 182

Your task is to guide the robot, which is equipped with

a chassis and a light sensor that can measure the

brightness of the underlying layer, along a green road

that is bounded by a yellow and a black area. When on

the green part, the sensor signals a middle light value,

on the yellow part a large light value, and a small one

on the black part. It is the task of the control system to

create a control signal for the motors from the

measured light values, so that the robot is able to move

along the road as well as possible.

Schematically, you can represent this process in a control loop. The light sensor measures the

current light value (actual value) and delivers it to the controller, which compares it to the

desired value (target value) on the green road. The controller calculates the control quantity for

the chassis, meaning that the two motors are switched accordingly, using a control algorithm

invented by you, which takes decisions based on the difference between the target and actual

values.

Control loop

As you can see, this scheme is indeed a "loop", from the vehicle sensor to the regulatory system,

and then back again to the vehicle engines.

Before you can write the program, you need to know

the light values that are provided by the sensor for the

yellow, green, and black areas. To figure this out, write

a small test program that displays the measured values

on the console or the display. In the real mode, you do

not have to move the robot. Instead, you can just place

it on the corresponding area. In the simulation mode,

you move through the areas colored accordingly (this

process is called calibration). Use the NXT Light

Sensor for the NXT and the EV3 Color Sensor for the

EV3.

from simrobot import *
#from nxtrobot import *
#from ev3robot import *

RobotContext.setStartPosition(250, 490)
RobotContext.useBackground("sprites/roadtest.gif")

robot = LegoRobot()
gear = Gear()
robot.addPart(gear)

Page 183

ls = LightSensor(SensorPort.S3)
robot.addPart(ls)
ls.activate(True)
gear.forward()

while not robot.isEscapeHit():
 v = ls.getValue()
 print v
 Tools.delay(100)
robot.exit()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

You are using an obvious control algorithm in your program: If the actual value is larger than the

target value, the vehicle is in the yellow area and has to make a right turn. If the actual value is

less than the target value, the vehicle is in the black area and has to make a left turn.

Otherwise, it can move straight ahead.

from simrobot import *
#from nxtrobot import *
#from ev3robot import *

RobotContext.setStartPosition(50, 490)
RobotContext.useBackground("sprites/road.gif")

robot = LegoRobot()
gear = Gear()
robot.addPart(gear)
ls = LightSensor(SensorPort.S3)
robot.addPart(ls)
ls.activate(True)
gear.forward()
nominal = 501

while not robot.isEscapeHit():
 actual = ls.getValue()
 if actual == nominal:
 gear.forward()
 elif actual < nominal:
 gear.leftArc(0.1)
 elif actual > nominal:
 gear.rightArc(0.1)

robot.exit()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

The regulation works well in the simulation mode, but not in the real mode. You probably

realize why this is: The measured values of the sensor vary, even when the sensor is located

on an uniformly colored area. But then this can be expected since the brightness, even on the

same surface, never remains exactly the same due to the differences in lighting, and also

because of measurement errors from the sensor. Try to find a solution for this problem! The

curve radius at leftArc() or rightArc() is a sensitive parameter. A smaller value leads to smaller

"outliers" away from the street, but to an unsettled oscillating behavior [more...], while a

larger value results in a calmer movement, but with less precise guidance on the street.

Confirm this through some trials with varied curve radiuses.

Page 184

EXERCISES

1. Move along a black-green edge with a light sensor. Use the

following RobotContext for the simulation mode:

RobotContext.useBackground("sprites/edge.gif")
RobotContext.setStartPosition(250, 490)

2. Move along a circular path with two light sensors.

Use the following RobotContext in the simulation mode:

RobotContext.useBackground("sprites/roundpath.gif")
RobotContext.setStartPosition(250, 250)
RobotContext.setStartDirection(-90)

Change the starting position and direction so that the robot

begins on the track.

3. Ride on a roller coaster with two light sensors. Use the

background track.gif in the simulation mode.

RobotContext.useBackground("sprites/track.gif")

Page 185

5.4 SENSOR TECHNOLOGY

INTRODUCTION

A sensor is a measuring device for a physical quantity such as temperature, light intensity,

pressure, or distance. In most cases the value delivered by the sensor can be any number within

the measuring range. However, there are also sensors that only know two states, similar to a

switch, for example fill level detectors, touch sensors, etc.

The physical quantity in the sensor is usually converted into an electrical voltage and processed

further by evaluation electronics [more...]. The interior structure of sensors can be highly

complex, such as in ultrasonic sensors, gyroscope sensors, or laser distance measurers. The

characteristic curve of the sensor describes the relationship between the physical

measurement value and the value delivered by the sensor. With many sensors the characteristic

curve is fairly linear, but one has to determine the conversion factor and the zero offset. For this,

the sensor is calibrated in a series of measurements with known quantities.

The ultrasonic sensor determines the distance to an object via the running time required for a

short ultrasonic pulse to travel from the sensor to the object and back again. For distances

between about 30 cm and 2 m, the sensor yields values between 0 and 255, where 255 (in

simulation mode -1) is returned when there is no object in the measuring range.

Ultrasonic sensor Characteristics

In most applications, a sensor is integrated in a program in such a way that its value is

periodically retrieved. This is called "polling the sensor". In a repeating loop, the sensor values

are processed further in the program. The number of measurements per second (temporal

resolution) depends on the sensor type, the speed of the computer, and the data connection

between the Brick and the program. The ultrasonic sensor is only capable of about 2

measurements per second.

The state of the sensors that have only two states can also be detected through polling. However,

it is often easier to conceive of the changing of state as an event and to process it

programmatically with a callback.

PROGRAMMING CONCEPTS: Sensor, sensor calibration, polling & event, trigger level

USING POLLING OR EVENTS?

In many cases you can decide whether you would prefer to handle a sensor via polling or events.

This is somewhat dependent on the application. You can compare both procedures by connecting

a motor and a touch sensor to the brick. Here, a click on the touch sensor should turn the motor

Page 186

on, and another click should turn it off again.

Events are much smarter for this application because they inform you about the pressing of the

touch sensor through a function call. You simply have to pass this function as a named parameter

when creating the TouchSensor. With polling, on the other hand, it is necessary to use a flag in

order to process only the transition from a non-pressed state to a pressed state.

With polling:

from nxtrobot import *
#from ev3robot import *

def switchMotorState():
 if motor.isMoving():
 motor.stop()
 else:
 motor.forward()

robot = LegoRobot()
motor = Motor(MotorPort.A)
robot.addPart(motor)
ts = TouchSensor(SensorPort.S3)
robot.addPart(ts)

isOff = True
while not robot.isEscapeHit():
 if ts.isPressed() and isOff:
 isOff = False
 switchMotorState()
 if not ts.isPressed() and not isOff:
 isOff = True

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

With events:

#from nxtrobot import *
from ev3robot import *

def onPressed(port):
 if motor.isMoving():
 motor.stop()
 else:
 motor.forward()

robot = LegoRobot()

motor = Motor(MotorPort.A)
robot.addPart(motor)
ts = TouchSensor(SensorPort.S1,
 pressed = onPressed)
robot.addPart(ts)
while not robot.isEscapeHit():
 pass
robot.exit()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

Sensors can be handled with polling or events. You must know both of the methods and be able

to determine which one is more appropriate in a given situation. In the event model, you

define functions whose name usually begins with “on”. These are called callbacks because

Page 187

they are automatically called by the system upon the occurrence of the event ("recalled"). You

have to register callbacks using named parameters during the generation of the sensor object.

POLLING AN ULTRASONIC SENSOR

Preliminary note: If you do not have an ultrasonic sensor in your EV3 kit, you can use the EV3

infrared sensor instead.

You must always poll a sensor if you need its measured data at a constant rate. Now you will take

on a task where the robot, after you put anywhere on the floor, has to find an object (an aim or

target) and travel to it.

You use an ultrasonic sensor to detect a target, which is implemented similarly to a radar target

recognition system. To learn about the properties of a sensor and to try it out, you should not shy

away from writing a short test program that you will have no need for later on. It is advisable to

write out the sensor values and to also make them potentially audible, since you would then have

your hands and eyes free to move the robot and the sensor. You request the sensor values in a

loop, the period of which adjusts itself, depending on whether you are in autonomous or the

external control mode.

from nxtrobot import *
from ev3robot import *

robot = LegoRobot()
us = UltrasonicSensor(SensorPort.S1)
robot.addPart(us)
isAutonomous = robot.isAutonomous()
while not robot.isEscapeHit():
 dist = us.getDistance()
 print "d = ", dist
 robot.drawString("d=" + str(dist), 0, 3)
 robot.playTone(10 * dist + 100, 50)
 if dist == 255:
 robot.playTone(10 * dist + 100, 50)
 if isAutonomous:
 Tools.delay(1000)
 else:
 Tools.delay(200)
robot.exit()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

In order to find and get to a target, you rotate the robot

like a radar antenna and constantly search for the target

with the ultrasonic sensor. If you detect the target, you

should note the direction and continue to rotate until the

echo stops. You do this in order to determine the apparent

size of the target (the angle range in which the target is

“visible”). You then move the robot along the middle of

the angle of the range and stop at a certain distance.

In simulation mode, you can visualize the distance

measuring with setBeamAreaColor() and

setProximityCircleColor(). The displayed target

corresponds to the image file that is specified in

RobotContext.useTarget().

Page 188

However, for the registration of the target by the

simulated sensor it is not that picture that will be

used, but a web of triangle meshes. These consists of

a common central point and two vertices. The

displayed target has the meshes:

PP0P1, PP1P2, PP2P3, PP3P4, PP4P0.

In the program, you indicate the vertices of the

meshes as a parameter of the method useTarget().

The coordinates refer to a pixel coordinate system

with its origin at the center, the positive x-axis

pointing to the right, and the positive y-axis pointing

downwards.

The mesh coordinates for a hexagon with a diameter

of 100 are:

[50, 0] , [25, 43], [-25, 43], [-50, 0], [-25, -43], [25,

-43].

from simrobot import *
#from nxtrobot import *
#from ev3robot import *

mesh = [[50, 0], [25, 43], [-25, 43], [-50, 0],
 [-25, -43], [25, -43]]
RobotContext.useTarget("sprites/redtarget.gif", mesh, 400, 400)

def searchTarget():
 global left, right
 found = False
 step = 0
 while not robot.isEscapeHit():
 gear.right(50)
 step = step + 1
 dist = us.getDistance()
 print "d = ", dist
 if dist != -1: # simulation
 #if dist < 80: # real
 if not found:
 found = True
 left = step
 print "Left at", left
 robot.playTone(880, 500)
 else:
 if found:
 right = step
 print "Right at ", right
 robot.playTone(440, 5000)
 break

left = 0
right = 0
robot = LegoRobot()
gear = Gear()
robot.addPart(gear)
us = UltrasonicSensor(SensorPort.S1)
robot.addPart(us)
us.setBeamAreaColor(makeColor("green"))
us.setProximityCircleColor(makeColor("lightgray"))
gear.setSpeed(5)

Page 189

print "Searching..."
searchTarget()

gear.left((right - left) * 25) # simulation
#gear.left((right - left) * 100) # real

print "Moving forward..."
gear.forward()

while not robot.isEscapeHit() and gear.isMoving():
 dist = us.getDistance()
 print "d =", dist
 robot.playTone(10 * dist + 100, 100)
 if dist < 40:
 gear.stop()
print "All done"
robot.exit()

MEMO

You can usually determine the sensor value through the repeated queries (polling) of a getter

method (getValue(), getDistance(), etc.). When switching between simulation mode and real

mode you have to adjust certain values, especially time intervals. You must also note that the

sensor returns -1 in the simulation mode and 255 in the real mode if it cannot find the target.

In simulation mode, the viewing direction of the ultrasonic sensor is determined by the sensor

port used:

Sensor port Viewing direction

S1 forwards

S2 left

S3 backwards

EVENTS WITH A TRIGGER LEVEL

Sensors that provide continuous values can be

implemented with the event model, too. Here, we

define a certain measurement value as a

threshold, usually called a trigger level. An event

is triggered when this level is crossed, either from

smaller to larger values or vice versa.

The sensors have a default value for the trigger level, but you

can change this with setTriggerLevel().Your program ensures

that the moving robot stays within a circular area (for

example, so that it does not fall off a table). In this case, you

use the light sensor, and it must react only to light and dark.

If the surface is dark, the callback onDark is triggered. With

the NXT in real mode, it is important that you turn on the LED

illumination of the sensor with activate(True).

from simrobot import *
#from nxtrobot import *
#from ev3robot import *

Page 190

RobotContext.setStartPosition(250, 200)
RobotContext.setStartDirection(-90)
RobotContext.useBackground("sprites/circle.gif")

def onDark(port, level):
 gear.backward(1500)
 gear.left(545)
 gear.forward()

robot = LegoRobot()
gear = Gear()
robot.addPart(gear)
ls = LightSensor(SensorPort.S3,
 dark = onDark)
robot.addPart(ls)
ls.setTriggerLevel(100) # adapt value
gear.forward()
while not robot.isEscapeHit():
 pass
robot.exit()

MEMO

The crossing of a particular measured value can be interpreted as an event. This is called

triggering. Default values of the trigger levels:

Sensor Trigger level(standard)

Sound sensor 50

Light sensor 500

Ultrasonic ensor 10

The advantages and disadvantages of the event model, compared to polling:

Advantages of the event model Disadvantages of the event model

A simplified and clearer programming style,

since the code in the callback is separate

from the rest of the program.

The program currently running is interrupted at

unpredictable times (asynchronous). This can

interfere with the rest of the program flow.

The event is always detected, even when the

PC is slow.

Callbacks can have unwanted side effects, e.g. if

they change global variables or the state of the

robot.

The main program can continue normally

and does not need take care of the sensor.

Callbacks run in a separate process, so there

may be conflicts between processes (threads).

Triggering is a central concept of

measurement technology.

Only a certain value can be detected (the trigger

level).

The event model fits thinking in states (the

event puts the system in a new state).

Callbacks should, in principle, only contain short-

lasting code, otherwise the other events may

get lost.

EXERCISES

1. At a first clap the robot should start moving, and with any further clapping it should change

its direction. Solve this problem in both real mode and simulation mode. In real mode, use

the sound sensor. In simulation mode, you need a microphone on your PC and you have to

correctly set up the microphone level in the control panel.

Page 191

2. Connect a motor and a touch sensor to the Brick and write a program, where the motor

turns on when you press the sensor button and turns off again when you release it.

3. Make a robot with an ultrasonic sensor and a touch sensor that

finds 3 taller objects (candles, cans...), runs into them, and

knocks them over. In simulation mode, you can interpret the

knocking over as a touch event and you can use squaretarget.gif

to represent the objects. The image is 60x60 pixels in size. You

can use the following template for the RobotContext. Try to

understand the information under mesh.

mesh = [[-30, -30], Point[-30, 30], Point[30, -30], Point[30, 30]]
RobotContext.useTarget("sprites/squaretarget.gif", mesh, 350, 250)
RobotContext.useObstacle("sprites/squaretarget.gif", 350, 250)
RobotContext.useTarget("sprites/squaretarget.gif", mesh, 100, 150)
RobotContext.useObstacle("sprites/squaretarget.gif", 100, 150)
RobotContext.useTarget("sprites/squaretarget.gif" ,mesh, 200, 450)
RobotContext.useObstacle("sprites/squaretarget.gif", 200, 450)
RobotContext.setStartPosition(40, 450)

4*. A robot with an ultrasonic sensor is placed at a random position in

a rectangular field to begin. Its task is to find the exact middle of

the field as quickly as possible. This task can be done in either

simulation mode or real mode.

You can use the image file bar0.gif and bar1.gif as a target.

ADDITIONAL MATERIAL: ARDUINO-SENSORS

In contrast to the EV3 the familiar Arduino-

microcontroller board has a standard I/O system

with digital input and output ports. Analog inputs

are also available to connect simple sensors that

deliver a voltage proportional to the measured

quantity. This allows you to use a variety of

inexpensive sensors/actuators and to connect

easily home-built electronic circuits. If you connect

the EV3 to an Arduino through a suitable

communication link, you can access these devices

from EV3 programs. The connection between the

two systems is simple, if you use an I2C link, since

both systems support the I2C protocol.

Here the EV3 acts as I2C master and the Ardunio as I2C slave. The additional software support

is already included in the distribution of TigerJython. The EV3 can be operated in direct or

autonomous mode. For more information consult the website http://www.aplu.ch/ev3.

Page 192

Documentation robotics

Module import: from simrobot import *

from ev3robot import *

from nxtrobot import *

LegoRobot:

Function Action

LegoRobot() generates a robot (without motors) and establishes a connection to the robot

addPart(part) adds a component to the robot

clearDisplay() clears the display [Simulation mode: status bar]

drawString(text, x, y) writes text at position x, y [Simulation mode: in the status bar, (x, y) is irrelevant]

isEnterHit()
indicates True if ESCAPE button is pressed [NXT and simulation mode: use

keyboard key escape]

isLeftHit()
indicates True if LEFT button is pressed [NXT and simulation mode: use keyboard

key cursor left]

isRightHit()
indicates True if RIGHT button is pressed [NXT and simulation mode: use keyboard

key cursor right]

isUpHit()
indicates True if UP button is pressed [NXT and simulation mode: use keyboard

key cursor up]

playTone(frequency, duration)
plays a tone with a given? frequency (in Hz) and duration (ms) [Simulation mode:

not available]

setVolume(volume) sets the volume for all sound output (0..100)

setLED(pattern) sets the EV3 LEDS: 0: off, 1: green, 2: red, 3: bright red, 4: flashing green, 5:

flashing red, 6: flashing bright red, 7: double flashing green, 8: double flashing red,

9: double flashing bright red

exit() stops the robot and ends the connection

isConnected() indicates True if the connection is broken, or if the simulation window is closed

reset() in simulation mode: puts the robot to the starting position/direction

Gear:

Gear() generates a chassis/gear with 2 synchronized motors at port A, B

backward() moves/drives backwards (non-blocking method)

backward(ms) moves backwards during a given time (in ms) (blocking method)

isMoving() indicates True if the chassis is moving

forward() moves forwards (non-blocking method)

forward(ms) moves forwards during a given time (in ms) (blocking method)

left() turns left (non-blocking method)

left(ms) turns left during a given time (in ms) (blocking method)

leftArc(radius) moves on a left curve with a given radius (non-blocking method)

leftArc(radius, ms) moves during a given time (in ms) on a left curve (blocking method)

right() turns right (non-blocking method)

right(ms) turns right during a given time (in ms) (blocking method)

rightArc(radius) moves on a right curve with a given radius (non-blocking method)

rightArc(radius, ms) moves during a given time (in ms) on a right curve (blocking method)

setSpeed(speed) sets the speed

Page 193

stop() stops the chassis/gears

getLeftMotorCount() returns current value of left motor counter [not available in sim]

getRightMotorCount() returns current value of left motor counter [not available in sim]

resetLeftMotorCount() sets left motor counter to 0 [not available in sim]

resetRightMotorCount() sets right motor counter to 0 [not available in sim]

TurtleRobot:

TurtleRobot() generates a robot with a chassis with motors at port A, B

backward() moves backwards (non-blocking method)

backward(step) moves the given number of steps backward (blocking method)

forward() moves forwards (non-blocking method)

forward(step) moves the given number of steps forward (blocking method)

left() turns left (non-blocking method)

left(angle) turns around the given angle to the left (blocking method)

right() turns right (non-blocking method)

right(angle) turns around the given angle to the right (blocking method)

setTurtleSpeed(speed) sets the speed

Motor:

Motor(MotorPort.port) generates a motor at the motor port A, B, C, or D

backward() rotates the motor backwards

forward() rotates the motor forwards

setSpeed(speed) sets the speed

isMoving() indicates True if the motor is moving

stop() stops the motor

getMotorCount() returns current value of motor counter [not in sim]

resetMotorCount() sets motor counter to 0 [not in sim]

rotateTo(count) sets counter to 0, moves motor until count und stops (blocking) [not available in sim]

rotateTo(count, blocking) same as rotateTo(count), but not blocking for blocking = False [not available in sim]

continueTo(count) same as rotateTo(count), but counter is not set to 0 [not available in sim]

continueTo(count, blocking) same as rotateTo(count, blocking), but counter is not set to 0 [not available in sim]

continueRelativeTo(count) same as continueTo(count), but count is increment [not available in sim]

continueRelativeTo(count,

blocking)
same as continueTo(count, blocking), but count is increment [not available in sim]

LightSensor:

LichtSensor(SensorPort.port) generates a light sensor at the port S1, S2, S3, or S4

LightSensor(SensorPort.port,

dark = onDark)
registers the callback function onDark

LightSensor(SensorPort.port,

bright = onBright)
registers the callback function onBright

activate(True) activates the LED of the light sensor (only when NXT is required)

activate(False) disconnects the LED of the light sensor

getValue() indicates the value of the light sensor (a number somewhere between 0 and 1000)

setTriggerLevel(level) sets a trigger level

bright(port, level), dark(port, level) callback functions that may be registered by named parameters

Page 194

ColorSensor:

ColorSensor(SensorPort.port) generates a color sensor at the port S1, S2, S3, or S4

getColor()
indicates the measured color as a color type with the methods getRed(),

getGreen(), and getBlue(), which provides the RGB value from 0 to 255

getColorID()
indicates a color identification number: 1: black, 2: blue, 3:green, 4: yellow, 5: red,

6: white

getColorStr()
provides the color as a string (BLACK, BLUE, GREEN, YELLOW, RED, WHITE and

UNDEFINED)

getLightValue() indicates the brightness (from the HSG model) of the measured color

TouchSensor:

TouchSensor(SensorPort.port) generates a touch sensor at the port S1, S2, S3, or S4

TouchSensor(SensorPort.port,

pressed = onPressed)
registers the callback function onPressed

TouchSensor(SensorPort.port,

release = onRelease)
registers the callback function onRelease

isPressed() indicates True if the touch sensor is pressed

pressed(port), released(port) callback functions that may be registered by named parameters

SoundSensor:

SoundSensor(SensorPort.port) generates a sound sensor at the port S1, S2, S3, or S4

SoundSensor(SensorPort.port,

loud = onLoud)
registers the callback function loudCallback

SoundSensor(SensorPort.port,

quiet = onQuiet)
registers the callback function quietCallback

getValue() indicates the level of the volume (from 0 to 100)

setTriggerLevel(level) sets a trigger level

loud(port, level), quiet(port, level) callback functions that may be registered by named parameters

UltrasonicSensor:

UltrasonicSensor(SensorPort.port) generates a ultrasonic sensor at the port S1, S2, S3, or S4

getDistance() returns the measured distance (in cm approx.; 255, if measurement fails)

setTriggerLevel(level) setzt den Triggerlevel (default: 10)

far(port, level), near(port, level) callback functions that may be registered by named parameters

setProximityCircleColor(color) Simulation: sets the color of the proximity circle

setMeshTriangleColor(color) Simulation: sets the color of the mesh triangles

eraseBeamArea() Simulation: erases the beam area

InfraredSensor (nur EV3):

IRRemoteSensor(SensorPort.port) creates an infrared sensor for remote control at SensorPort S1, S2, S3 or S4

getCommand(l)

returns the current command ID: 0:Nothing,1: TopLeft,2:BottomLeft,3:TopRight,

4:bottomRight 5:TopLeft&TopRight, 6:TopLeft&BottomRight,7:BottomLeft&TopRight,

8:bottomLeft&BottomRight,

9:Centre,10:BottomLeft&TopLeft,11:TopRight&BottomRight The channel is selected

by the red slider switch: 1: top, 4: bottom. It corresponds to the port number, where

the sensor is attached.

actionPerformed(port, command) callback function that may be registered by a named parameter

IRSeekSensor(SensorPort.port)
creates tn infrared search sensor at SensorPort S1, S2, S3 or S4 . The active IR

source of the remote control must be switched on (centre button)

Page 195

v = getValue()

v.bearing returns the direction (-12..12) and v.distance the distance (in cm) to the

source. The channel is selected by the red slider switch: 1: top, 4: bottom. It

corresponds to the port number, where the sensor is attached

IRDistanceSensor(SensorPort.port)
creates a infrared distance sensorer at SensorPort S1, S2, S3 or S4 (reflecting

target)

getDistance() returns the distance to the target (in cm)

TemperatureSensor (only EV3)):

TemperatureSensor(SensorPort.port)
creates a temperature sensor at SensorPort S1, S2, S3, S4 (Lego NXT

Temperature Sensor 9749)

getTemperature() returns the temperature in range -55..128 degrees Celsius

ArduinoLink (only EV3):

ArduinoLink(SensorPort.port)
creates an I2C master for the connection to the Arduino at SensorPort S1, S2, S3,

S4

getReply(request, reply)
sends the request (integer 0..255) to the Arduino and returns the answer in the

given list reply (max.16 integers 0..255)

getReplyInt(request)
sends the request (integer 0..255) to the Arduino und returns the answer as integer

0..255

getReplyString(request)
sends the request (integer 0..255) to the Arduino und returns the answer as string

(max. 15 ASCII-characters)

RobotContext (nur Simulation)

setStartDirection(angle) sets the starting direction (0 to east, positive clockwise)

setStartPosition(x, y) sets the starting position (in pixels, zero at upper-left vertex)

showStatusBar(height) adds a status bar with given height at the bottom of the window

setStatusText(text) inserts text into the status bar (old text is erased)

useBackground(filename) inserts the given image into the background to be used by a light or color sensor

useObstacle(filename, x, y) inserts an obstacle at given position to be used by a the touch sensor

useTarget(filename, mesh, x, y) inserts a target at given position to be used by the ultrasonic sensor

Page 196

 Learning Objectives

 You know the data type string and can work with important string methods.

 You know what a HTML-formatted document is and you also know some HTML tags.

You can open a HTML document as a file or download it from a web server and display it in a

browser window.

You know the client-server model and can request a file from the web server with the HTTP

GET command.

 You know a procedure of how to search a HTML document for specific information.

 You can describe the data type dictionary and know in which cases it is especially beneficial.

 You can programmatically perform a search on Google.

Page 197

6.1 HTML, STRINGS

INTRODUCTION

HTML (Hyper Text Markup Language) is a document description language for websites. A website

shown in the browser, however complicated it might appear, is generated from an ordinary text

file that contains markups for the layout in addition to the visible text. These consist of a tag

pair with both a start and end tag. The start tag begins with the angle bracket < and closes with

the angle bracket >; the end tag starts with </ and is also closed with >.

The basic structure of a HTML text file consists of the tags <html> and <body> as well as the

corresponding end tags.

<html>
 <body>
 TigerJython Web-Site
 </body>
</html>

The letter case of the tags, as well as the line breaks and indentation, do not matter for the

layout of the document.

PROGRAMMING CONCEPTS: HTML, hyperlink, string, constant data type

WHAT ARE STRINGS?

In many programs, including in the context of the web, you need a data type in order to store

text. This consists in a stringing together of letters (a character string) that you can type with

the keyboard. In addition, you will need some control characters to do things such as indicating a

line break. In Python you use the data type str for character strings.

The text of a string is placed between double or single quotes. You can interpret strings as lists

whose elements are individual characters. Most familiar operations for lists are also applicable to

strings, but with one important difference: You can get a single character from the string with an

index (square parentheses), but you cannot change the character with an allocation because the

string is a fixed data type. If you want to change a string, you have to create a new one.

Your program defines HTML-formatted text as a string html and writes it out to the console.

html = "<html><body>TigerJython Web Site</body></html>"
print html

In order to run through a string character by character, you cann use a for loop with an index:

html = "<html><body>TigerJython Web Site</body></html>"

for i in range(len(html)):
print html[i]

It is more elegant, however, to use a for loop with the keyword in:

Page 198

html = "<html><body>TigerJython Web Site</body></html>"
for c in html:

print c

A string can also contain special control characters. These escape character are initiated with a

backslash, for example the character for a new line \n (newline, also called a linefeed <lf>).

One example is creating the format shown in the very beginning of the chapter with:

html = "<html>\n <body>\n TigerJython Web Site\n </body>\n</html>"
print html

You can also read texts from a text file. To do this, create the file welcome.html with any text

editor in the directory where your program is located in, with the following content:

<html>
 <body>
 <h1>TigerJython Web-Site</h1>
 Good morning
 </body>
</html>

You draw a heading with the tag <h1>. Your program reads the text file in the html string and

then writes it out again to the console.

html = open("welcome.html").read()
print html

MEMO

A string is a constant object consisting of individual characters. You can read individual

characters with an index. However, if you try to replace a character with an allocation you will

get an error message. There is no character type in Python, since single characters are also

considered as strings.

Text files are opened with open(). With this, you deliver the path to the file. The path can be

relative to the directory where tigerjython2.jar is located, but also absolute when you prepend

a fraction line (in Windows, possibly also a drive letter), for example:

 open("test/welcome.html")
welcome.txt in the subdirectory test of the home

directory of tigerjython2.jar

 open("/myweb/test/welcome.html")
welcome.txt in the directory /myweb/test of the

drive where tigerjython2.jar is located

 open("d:/myweb/test/welcome.html")

(only for Windows)

welcome.txt in the directory \myweb\test of the

drive d:

You can connect two strings with the addition operator + (concatenate). However, it is

important that both operands are really strings. For example, "pi = " + 3.1459 leads to an

error message. In this case, you have to write "pi = " + str(3.14159) so that the number is first

converted into a string.

Page 199

The most important operations with strings:

s = "Python"

s[i]

s[start:end]

s[start:]

s[:end]

s.index(x)

s.find(x)

s.find(x, start)

s.find(x, start, end)

s.count(x)

x in s

x not in s

s1 + s2

s1 += s2

s * 4

len(s)

defines a string (or with the single quotes s = 'Python')

accesses string character with index i

new sub-string of characters start to end, but without end

new sub-string with characters from start

new sub-string with characters from end, but without end

index of the first occurrence of x (-1: not found)

index of the first occurrence of x (-1: not found)

index of the first occurrence of x from start

index of the first occurrence of x from start to end

returns the number of occurrences of x

returns True if x is contained in s

returns True if x is not contained in s

concatenation of s1 and s2 as a new string

replaces s1 by the concatenation of s1 and s2

repeats new string with characters s four times

returns the number of characters

WEB BROWSER

The most important task of web browsers is to interpret the HTML tags and display the page on

a screen window according to the layout information. You can display the file welcome.html on

your PC after installing a web browser (Firefox, Explorer, Chrome, Safari, Opera, etc.).

TigerJython provides you with a simple

browser window as an instance of the class

HtmlPane. The method insertText() causes

the input string to appear as a web page in

the window.

from ch.aplu.util import HtmlPane

html = open("welcome.html").read()
pane = HtmlPane()
pane.insertText(html)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 200

MEMO

A web browser interprets the HTML markups and displays the document according to its layout

information.

HtmlPane knows only the basic HTML tags. Displaying complex HTML pages is not supported.

You can also use a HtmlPane to display your program output in a separate window with a

pleasing layout, rather than write it out to the console.

HYPERLINKS

The explosive propagation of the web is essentially attributed to the fact that a website can

contain elements that lead, by a simple mouse click, to other websites that could be located on

any other web server, even far away on the world. Elements of this type are called hyperlinks.

Hyperlinks can build an interconnected information structure, similar to a spider web.

Create the file welcomey.html again with a text editor that contains the link tag <a>. Now we

also use the paragraph tag <p> which defines a new section with a line break.

<html>
 <body>
 <h1>TigerJython Web-Site</h1>
 <p>Good morning!</p>
 TigerJython Home
 </body></html>

You have to enable hyperlinks in your program by defining the function linkCallback() (or any

other name) and registering it with the named parameter linkListener. Clicking on the link leads

to the invocation of the callback whereby the URL contained in the link tag is delivered.

from ch.aplu.util import HtmlPane

def linkCallback(url):
 pane.insertUrl(url)

html = open("welcomex.html").read()
pane = HtmlPane(linkListener = linkCallback)
pane.insertText(html)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

Hyperlinks are cross references in a document with which you can jump to other documents.

Linked documents are a characteristic feature of the World Wide Web.

Unfortunately, the display of web pages with HtmlPane is incomplete. However, you can use

the default browser with HtmlPane.browse() [more...].

from ch.aplu.util import HtmlPane
HtmlPane.browse("www.tigerjython.com")

Page 201

EXERCISES

1. With the tag

you can embed an image that is located in the subdirectory gifs of the directory with the

HTML file. The values of width and height should match the image size in pixels.

Create a file showlogo.html and a program that shows the following in a HtmlPane:

You can download the image tigerlogo.png here.

2. Define the strings last name, first name, street, and location as well as the house number

and zip code either with your personal information or with something made up. Link these

strings together into a single string address with the + sign, so that print(address) writes out

the formatted information:

first name, last name

house number, street

zip code, location

3. The same information from exercise 2 (above) should appear in a HtmlPane, but with the zip

code and location in bold.

Write a corresponding HTML-formatted string and deliver it to the HtmlPane with

insertText().

Note: the tag
 creates a line break and the tag makes the text bold.

Page 202

6.2 CLIENT SERVER MODEL, HTTP

INTRODUCTION

You should already know that a web page displayed in your web browser is described by an

ordinary HTML text file, which is typically located on an Internet server (also called a host). In

order to locate the file, the browser uses the URL in the form http://servername/filepath.

http stands for Hypertext Transfer Protocol and refers to the process of how the file is

transferred from the server to your PC browser, called a client. The server name, also called its

IP address (IP: Internet Protocol), is either in the "dotted" form, e.g. 192.41.150.141, or it is an

alias, e.g. www.tigerjython.com. The file path of the HTML file begins with a slash, but it is

relative to a specific document path on the server.

In the communication between the client and the server we employ the request-response

method, which is one of the most important principles of computer communication. It assumes

that a server program is started on the server that waits for a client request on a specific TCP

port (for the web port 80).

The exchange of data consists of the following four phases:

Phase 1:

The client creates a socket object

and connects to the server. The

server accepts the connection and

remembers the client address.

Phase 2:

The client sends a request to the

server and passes it the path to the

desired file.

Phase 3:

The server processes the request

and sends the file to the client in

response.

Page 203

Phase 4:

The client receives the response

and processes it (displayed in the

browser window).

PROGRAMMING CONCEPTS: Host, client, IP address, request-response model, HTTP, parsing

REQUESTING A WEBSITE WITH HTTP

Your client program performs the phases 1, 2, and 4 and fetches the file welcomex.html located

in the subdirectory py of the server document path.

The method socket() of the socket class provides a socket object to the variable s. Two

constants must be passed that define the correct socket type.

import socket
import sys

host = "www. tigerjython.ch"
port = 80
remote_ip = socket.gethostbyname(host)

Phase 1
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((remote_ip , port))
print "Socket Connected to " + host + " on ip " + remote_ip

Phase 2
request = "GET /py/welcome.html HTTP/1.1\r\nHost: " + host + "\r\n\r\n"
s.sendall(r equest)

Phase 4
reply = s.recv(4096)
print "\nReply:\n"
print reply

MEMO

The request for a website from a web server uses the HTTP protocol. This is an agreement

between the client and the server and it determines the procedure of the data transfer in full

detail. The GET command is documented in the HTTP as follows :

1. Zeile GET /py/welcomeex.html HTTP/1.1\r\n The command to fetch the file in the directory path of

the server, version of the protocol <carriage

return><line feed> (line break)

2. Zeile Host: hostname\r\n Name of the host <carriage return><line feed>

3. Zeile \r\n Blank line as a marker for the end of the command

Page 204

HTTP HEADER AND CONNECT

The response consists of a header with status information and the content with the requested file.

In order to represent the website, you cut off the header and deliver the contents to a HtmlPane.

import socket
import sys
from ch.aplu.util import HtmlPane

host = "www. tigerjython.ch"
port = 80
remote_ip = socket.gethostbyname(host)

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((remote_ip , port))
request = "GET /py/welcome.html HTTP/1.1\r\nHost: " + host + "\r\n\r\n"
s.sendall(r equest)
reply = s.recv(4096)

index = reply.find("<html")
html = repl y[index:]

pane = HtmlPane()
pane.insertText(html)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

The function recv(4096) returns maximum 4096 characters from a data buffer, in

which the received characters are copied. To cut away the header use the string method

find(str), which searches the string for the given substring str and returns the index of the

first occurrence. (If the substring is not found, -1 is returned.) Afterwards you can neatly filter

out the substring with a slice operation, starting at the index and going to the end.

READING THE WEATHER FORECASTS

You will probably wonder why you should apply such a complicated procedure to display a web

page, when you can do the same thing using a single line insertUrl() from HtmlPane. What you

have just learned makes perfect sense, however, if you do not want to display the content of the

website in a browser window, for example, but if you are rather interested in only certain

information embedded there. As a sensible application your program fetches the current weather

forecast from the website of Australian's Bureau of Meteorology and writes it out as text.

You can make your life as a programmer even easier, if you use the library urllib2 instead of the

socket class to fetch the file from the web server [more...].

To find out where the desired information is located, you can create an analysis program that

simultaneously represents the page as a text in the console window and as a web page in your

default browser.

import urllib2
from ch.aplu.util import HtmlPane

url = "http : //www.bom.gov.au/nsw/forecasts/sydney.shtml"
HtmlPane.browse(url)
html = url l ib2.urlopen(url).read()
print html

Page 205

MEMO

The use of software libraries such as urllib2 simplifies the code, but obscures the basic

mechanisms.

PARSING OF TEXTS

You now have the interesting and challenging task of fetching the relevant information from a long

string of text, which is the parsing of a text.

At first you have the subtask of removing all HTML tags from the string with the function

remove_html_tags()

The procedure is typical and the applied algorithm can be described as follows:

You go through the text character by character. You thereby imagine that you remember two

states: you are either inside or outside of a HTML tag. You should only copy the character to the

end of an output string if you are outside of a HTML tag. The change of state takes place while

reading the tag angle brackets < or >.

To extract the information of interest you analyze the text after removing the HTML tags by

copying it into a text editor and looking for a token that is unique for the beginning of the

information. With the string method find(), you can get the index start if this token. You then look

for a token that characterizes the end of the information and search its index end beginning at the

start index. For this website the start token is "Sydney area" and the end token is "Summary".

The text in between is extracted by a slice operation [start:end].

import urllib2

def remove_html_tags(s):
 inTag = False
 out = ""

for c in s:
if c == '<' :

 inTag = True
elif c == '>' :

 i nTag = False
elif not inTag:

 out = out + c
return out

url = "http: //www.bom.gov.au/nsw/forecasts/sydney.shtml"
html = urllib2.urlopen(url).read()
html = remo ve_html_tags(html)

start = html.find("Sydney area")
end = html. find("Summary" , start)
html = html [start:end].strip()

print html

from soundsystem import *

initTTS()
sel ectVoice("english-man")
sound = ge nerateVoice(html)
openSoundPlayer(sound)
play()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 206

MEMO

The parsing of texts is usually done character by character. In many cases, however, methods

of the string class may help as well [more...].

VOICE/SPEECH SYNTHESIS OF WEATHER FORECASTS

With your knowledge from the previous chapter Sound, you can have the text of the weather

forecast read by a synthetic voice with just a few extra lines of code. You can simply add the

following lines to the program:

from soundsystem import *

initTTS()
sel ectVoice("german-man")
sound = ge nerateVoice(html)
openSoundPlayer(sound)
play()

EXERCISES

1. Various interesting information is offered under the URL http://www.timeanddate.com that

can be extracted and reused with a self-written program. One example is that you can get

the weather information of any city in the world. Look, for example, at the website

http://www.timeanddate.com/weather/canada/halifax with a web browser.

The program should write out the current temperature in an arbitrarily chosen city.

The procedure: First write out the entire text that you get from the above URL and search

for the temperature value. Your program must extract this value using appropriate string

methods. Let the user select the country aud town with inputString() or an EntryDialog and

write the temperature value to the console or to a StringEntry of the EntryDialog.

2*. The method urllib2.urlopen(url) throws an exception in case the URL is not found. Putting the

call in a try-except block makes the program branch at an error in the except block.

try :
 urllib2 . urlopen(url)
except :

print "Error"

If the city is not found, add a sensible error output to the program from exercise 1.

Page 207

6.3 BING SEARCH, DICTIONARY

INTRODUCTION

It is possible to use known search engines such as Google, Bing or Yahoo to programmatically

perform a web search. For this you have to provide additional parameters to the specific URL of

the provider that contain the search string, and perform an HTTP GET request with this. This data

is evaluated by a web application, i.e. a program that runs on the web server, and the results

are returned to you as a HTTP response [more...].

Moreover some Web search providers make available search services that can be used via a

programming interface (API, Application Programming Interface). Although these services are

mostly with costs, there is sometimes a limited, but free version for training and development

purposes. For example, using the Bing Search API, you can create your own search machine with

an individualized layout.

Search APIs mostly return results in a special format, namely the JavaScript Object Notation

(JSON). With the Python module json it is easy to convert the format into a Python dictionary. But

to extract data of your interest, you have first to learn what is a Python dictionary.

PROGRAMMING CONCEPTS: Web application, Python dictionary

UNDERSTANDING A DICTIONARY

As the name suggests, a dictionary is a data structure similar to a dictionary book. You can

imagine word pairs with words on the left being in a language you already know and ones on the

right in a foreign language (we disregard any ambiguities). The example below shows some

names of colors from English to German:

 Deutsch Englisch

 blau blue

 rot red

 grün green

 gelb yellow

(In a real-world dictionary words are arranged alphabetically so that finding a specific word is

simplified.)

The word on the left is the key and the word on the right is the value. A dictionary thus consists

of key-value pairs [more..]. Both keys and values can have any data type [more...].

Your program translates the above colors from German to English. If the input is not in the

dictionary, the error is caught and an error message appears.

Page 208

dict = {"blau":"blue", "rot":"red", "grün":"green", "gelb":"yellow"}

print "All entries:"

for key in dict:

 print key + " -> " + dict[key]

while True:

 farbe = input("color (deutsch)?")

 if farbe in dict:

 print farbe + " -> " + dict[farbe]

 else:

 print farbe + " -> " + "(not translatable)"

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

A dictionary consists of key-value pairs. In contrast to a list, these pairs are not ordered. In the

definition, you use a pair of curly brackets, separate the respective pairs with commas, and

key and value with a colon.

Important operations:

 dict[key] provides the value for the key

 dict[key] = value adds a new key-value pair

 len(dict) provides the number of key-value pairs

 del dict(key) deletes the pair (key and value) with the key

 key in dict returns True when the key exists

 dist.clear() deletes all entries, what remains is an empty dictionary

A dictionary can be iterated through with a for loop

for key in dict:

.

DICTIONARIES ARE EFFICIENT DATA STRUCTURES

You are right if you object to the thought that paired information can be saved in a list. It would

be obvious to save each pair as a short list, all of which would be elements of a parent list. Why

then is there a dictionary as a separate data structure?

The big advantage of dictionaries is that you can easily and quickly access its values when

specifying the key with the bracket notation. So in other words, dictionaries are able to be

browsed efficiently. Of course, the efficient retrieval of information only really matters when

there are large amounts of data involved, for example when dealing with around a hundred or

even thousands of key-value pairs.

As an interesting and useful application, your program should find the postal code of any city in

Switzerland. For this, use the text file chplz.txt, which you can download by clicking on the

hyperlink. Copy it into the directory where your program is located. The file is structured line by

line as follows (and has no blank line, not even at the end):

Page 209

Aarau:5000

Aarburg:4663

Aarwangen:4912

Aathal Seegraeben:8607

...

Your first task is to convert this text file into a dictionary. In order to do this, first load it in as a

string with read() and then split it into individual lines using split("\n") [more...].

To create the dictionary, separate the key and value in each row once again at the colon and add

the new pairs to the (originally empty) dictionary using the bracket notation. Just like before

with the colors example, you can now access the postal codes using the bracket notation.

file = open("chplz.txt")

plzStr = file.read()

file.close()

pairs = plzStr.split("\n")

print str(len(pairs)) + " pairs loaded"

plz = {}

for pair in pairs:

 element = pair.split(":")

 plz[element[0]] = element[1]

while True:

 town = input("City?")

 if town in plz:

 print "The postal code of " + town + " is " + str(plz[town])

 else:

 print "The city " + town + "was not found."

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

 It is very easy and quick to access a value for a certain key in a dictionary [more...].

USING BING FOR YOUR OWN PURPOSES

Your program uses the Bing search engine to search for websites with a search string entered by

the user and to write out the information provided. In order to access the Bing search machine,

you need a personal authentication key. To acquire it, proceed as follows:

Visit the site https://www.microsoft.com/cognitive-services/en-us/apis and choose "Get started

for free." You will be prompted to use your existing Microsoft account or create a new one. In the

page titled Microsoft Cognitive Services you choose "APIs" and "Bing Web Search" and click on

"Request new trials". Scroll down and select "Search Bing-Free". After confirmation with

"Subscribe" you get two key values. Save one of them with copy&paste for further use a a local

text file. You can retrieve the keys any time under your Microsoft account.

In your program you send a GET request supplemented with the search string. The response from

Bing is a string in which information is structured by curly brackets. The formatting is consistent

with the JavaScript Object Notation (JSON). Using the method json.load() it can be converted

into a nested Python dictionary, that can then be parsed more efficiently. During a test phase,

you can analyze the nesting by writing out the appropriate information to the console. You can

comment out or remove these lines later. What does Bing find for the search string "Hillary

Clinton"?

Page 210

import urllib2

import json

def bing_search(query):

 key = 'xxxxxxxxxxxxxxxxxxxxx' # use your personal key

 url = 'https://api.cognitive.microsoft.com/bing/v5.0/search?q=' + query

 urlrequest = urllib2.Request(url)

 urlrequest.add_header('Ocp-Apim-Subscription-Key', key)

 responseStr = urllib2.urlopen(urlrequest)

 response = json.load(responseStr)

 return response

query = input("Enter a search string(AND-connect with +):")

results = bing_search(query)

#print "results:\n" + str(results)

webPages = results['webPages']

print "Number of hits:", webPages["totalEstimatedMatches"]

print "Found URLs:"

values = webPages.get('value')

for item in values:

 print item["displayUrl"]

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

As you can see, a dictionary can in turn contain other dictionaries as values. Thus, hierarchical

information structures can be created, similar to XML.

The authentication key is used in a additional header entry of your GET request. You can modify

the Bing search by additional query parameters. For example if you append "&count=20" to the

URL, you get a total of 20 replies. For more information consult the API reference.

EXERCISES

1. Improve the postal code program step by step so that a city will be found even if you:

a. input spaces before or after the name of the city

b. do not consistently adhere to the use of upper and lower case letters

c. write umlauts as Ae, Oe, ae, oe, and ue

d. omit accents (note: there is a conflict with ö)

Some places are ambiguous, but have additional information. How will you deal with this?

2. Use Bing Search to write out the title and the content of the search results with the highest

ranking in a HtmlPane. For example, something similar to the following should appear for

the search string “tigerjython”:

Page 211

 Learning Objectives

You know how to define and use a class consisting of a constructor, instance variables, and

methods in Python.

 You know what a class hierarchy is and how to define and use derived classes.

 You can explain what a polymorphism is in simple words.

You know the basic design of the game library JGameGrid and you can program a simple

computer game using it.

"Today, digital media are not imaginable without computer games. Due to the games' high importance
for adolescents, many educators are motivated to investigate the didactic potential of the medium.
Game-Based Learning (GBL) is the subject of many scientific studies and is part of todays curriculum.
In computer science courses, games can be approached from the perspective of the producers. As
highly dynamic programs, they encourage beginners to think in procedures and with their moving
graphics objects (sprites), they are exceptionally well suited for the introduction into object-oriented
programming."

Jarka Arnold, Aegidius Plüss
in "Games as an Introduction to Object-Oriented Programming"

Page 212

7. 1 OBJECTS EVERYWHERE

INTRODUCTION

In daily life, you are surrounded by a multitude of different objects. Since software often builds

of models of reality, it is straightforward to also introduce objects in computer science. This is

called object-oriented programming (OOP). For more than decades, the concept of OOP has

proved to be groundbreaking in computer science to the extent that it is applied in virtually all

developed software systems today [more...]. In the following chapter you will learn the main

concepts of OOP so that you can participate in the hype.

You have already gotten to know the turtle as an object. A turtle has properties (it has a

certain color, is located at a certain position, and has a specific viewing direction) and skills (it

can move forward, rotate, etc.). In OOP, objects with similar properties and skills are grouped in

classes. The turtle objects belong to the Turtle class, we also say that they are instances of the

Turtle class. In order to create an object, you must first define a class or use a predefined class

such as with the turtles.

When programming, the properties are also called attributes or instance variables, and the

skills are also called operations or methods. These are variables and functions, except for the

fact that they belong to a certain class and are thus "encapsulated" in this class. In order to use

them outside of the class, you have to prefix a class instance and the dot operator.

PROGRAMMING CONCEPTS: Class, object (instance), property, ability,

attribute/instance variable, method, inheritance, base/super class,

constructor

AN ADAPTIVE GAME WINDOW

It is not possible to create a computer game with reasonable effort without OOP, since the game

performers and other objects of the game board are obviously objects. The game board is a

rectangular screen window and it is modeled by the class GameGrid from the game library

JGameGrid. TigerJython provides you with an instance when calling makeGameGrid() and

displays the window with show(). Here you can customize the look of the game window with

parameter values. With makeGameGrid(10, 10, 60, Color.red, "sprites/town.jpg", False)

a square game window is displayed, the size of which is

10 horizontal by 10 vertical cells of the size 60 pixels.

You will see red grid lines and a background image

town.jpg. (The last parameter causes the navigation bar

to be disabled, which is not needed in this case.)

from gamegrid import *

makeGameGrid(10, 10, 60, Color.red, "sprites/town.jpg", False)
show()

Page 213

MEMO

The methods of the class GameGrid are available to you as functions using makeGameGrid().

However, you can also generate an instance yourself and call the methods using the dot

operator.

from gamegrid import *

gg = GameGrid(10, 10, 60, Color.red, "sprites/town.jpg", False)
gg.show()

The game window is constructed of square cells, and as specified above, each cell is 60 pixels

in size with 10 horizontal and 10 vertical cells. This means that when the right and bottom

gridline is displayed, the window has a size of 601 x 601 pixels. This corresponds to the

(minimum) size of the background image.

The last Boolean parameter determines whether a navigation bar appears.

DEFINING A CLASS WITH DERIVATION

When defining a class, you can decide whether your new class is fully independent, or derived

from a previously existing class. All the properties and skills of the parent class (also called

base class or superclass) are available to you in the derived class. Simply said, the derived

class (or subclass) inherits properties and skills.

In the game library JGameGrid, game characters are called actors and are instances of the

predefined class actor. If you need your own performer, define a class that is derived from an

actor.

Your class definition should begin with the keyword class. This is followed by any selected class

name and a pair of parentheses. In the parentheses, you write down the name of the class from

which you derived your class. Since you want to derive your character from Actor, you provide

that class name.

The class definition contains the definition of the methods that are defined like regular

functions, with the difference that they mandatorily must have the parameter self as the first

parameter. With this parameter you can access other methods and instance variables of your

class and its base class.

The list of method definitions usually begins with the definition of a special method named

__init__ (with two leading and trailing underlines). This is called a constructor and it is

automatically called when an object of the class is created. In our case, you call the constructor

of the base class Actor in the constructor of Alien, to which you deliver the path to the sprite

image.

Next, you define the method act() which plays a central role in game animation, as it is called

automatically by the game manager in each simulation cycle. This is a particularly smart trick so

that you do not have to worry about animation in a looping structure.

You can define what the game character should do in each simulation cycle with act(). As a

demonstration, you only move it to the next cell with move() in this example. Since move() is a

method of the base class Actor, you have to call it with prefixed self.

Page 214

Once you have defined your class Alien, you create an

alien object by calling the class name and assigning a

variable to it. Typical of OOP, you can create as many

aliens as you would like. As in everyday life, they each

have their own individuality, therefore they "know"

how they should move from their act() method.

To add the created aliens to the game board you use

addActor(), where you have to specify the cell

coordinates with Location() (the cell with the

coordinates (0,0) is at the top left, x increases to the

right, y increases going down). To finally start the

simulation cycle, call doRun().

from gamegrid import *

---------------- class Alien ----------------
class Alien(Actor):
 def __init__(self):
 Actor.__init__(self, "sprites/alien.png")
 def act(self):
 self.move()
makeGameGrid(10, 10, 60, Color.red, "sprites/town.jpg", False)
spin = Alien() # object creation, many instances can be created
urix = Alien()
addActor(spin, Location(2, 0), 90)
addActor(urix, Location(5, 0), 90)
show()
doRun()

MEMO

A class definition begins with the keyword class and encapsulates the methods and instance

variables of the class. The constructor with the name __init__ is called automatically when an

object is created. To create an object (an instance), write the corresponding class name and

pass it the parameter values that __init__ asks for. All game characters are derived from the

class Actor. You define what the game character should do in each simulation cycle in the

method act(). With addActor() you can add a game character to the game board. You must

indicate its starting position (Location) and its starting direction (in degrees) (0 goes east,

positive is clockwise).

ATTACK OF THE ALIENS

You notice the strengths and benefits of the object-

oriented programming paradigm when you see how

easily you are able to populate the game board with

many aliens falling from the sky by using just a few

lines of code.

Using a repeating loop in the main part, design an alien

figure so that every 0.2 seconds a new alien is placed at

a random location somewhere in the top grid line.

from gamegrid import *
Page 215

import random

---------------- class Alien ----------------
class Alien(Actor):
 def __init__(self):
 Actor.__init__(self, "sprites/alien.png")

 def act(self):
 self.move()

makeGameGrid(10, 10, 60, Color.red, "sprites/town.jpg", False)
show()
doRun()

while not isDisposed():
 alien = Alien()
 addActor(alien, Location(random.randint(0, 9), 0), 90)
 delay(200)

MEMO

An endless loop in the main part of the program should test using isDisposed() whether the

game window was closed, so that the program is able to end correctly.

Note: Sometimes it is necessary to close TigerJython and reopen it, so that sprites and

background images with the same name but changed content are reloaded.

SPACE INVADERS LIGHT

In your first self-written computer game, the player should try to fight off an alien invasion by

removing the invading aliens with a mouse click. Each alien landed in the city subtracts one

point.

To get mouse support in the program, you have to add a mouse callback with the name

pressCallback and register it as the named parameter mousePressed. In the callback, you first

fetch the cell position of the mouse click from the event parameter e. If there is an Actor located

in that cell you will get it with getOneActorAt(). If the cell is empty, None will be returned.

removeActor() removes the actor from the game board.

from gamegrid import *
import random

---------------- class Alien ----------------
class Alien(Actor):
 def __init__(self):
 Actor.__init__(self, "sprites/alien.png")

 def act(self):
 self.move()

def pressCallback(e):
 location = toLocationInGrid(e.getX(), e.getY())
 actor = getOneActorAt(location)
 if actor != None:
 removeActor(actor)
 refresh()

makeGameGrid(10, 10, 60, Color.red, "sprites/town.jpg", False,
 mousePressed = pressCallback)
setSimulationPeriod(800)
show()
doRun()

Page 216

while not isDisposed():
 alien = Alien()
 addActor(alien, Location(random.randint(0, 9), 0), 90)
 delay(1000)

MEMO

Since act() is called once in every simulation cycle, the period is responsible for the execution

speed of the game. The default value of the simulation period is 200 ms. It can be set to a

different value using setSimulationPeriod().

The game board is rebuilt in each simulation cycle (rendered), and therefore a change in the

game situation is only visible at this moment. If you want to immediately display the new

situation at a mouse click, you can manually execute the rendering with refresh().

EXERCISES

1. Create your own background image with an image editor. Add it to the directory sprites, in

the same directory where your program is located (or in <userhome>/gamegrid/sprites) or

specify the fully qualified file path.

2. Add a 30 pixel high status bar with addStatusBar(30) and write the number of aliens that

were able to land in the city (despite the defense system) into it using setStatusText().

3. The landed aliens should not simply disappear, rather they should be transformed into a

different form at the landing spot ("sprites/alien_1.png" or your own image) and remain

there.

(Hint: with removeSelf() you can remove an old alien and with addActor() you can generate

a new actor in the same place.)

4*. The landed aliens report back to the attacking alien

where they have landed so that new aliens can jump

into the “open” columns. Once all the columns are

occupied, the game ends and displays "Game Over"

("sprites/gameover.gif").

(Hint: the game manager can be stopped using

doPause())

5*. Expand the game with some of your own ideas

Page 217

7.2 CLASSES AND OBJECTS

INTRODUCTION

.

You have already been acquainted with important concepts of object-oriented programming and

noticed that it would be very difficult to write a computer game in Python without OOP. It is

therefore important that you get to know the concepts of OOP and their implementation in

Python a little more systematically.

PROGRAMMING CONCEPTS: Inheritance, class hierarchy, overriding, is-a relationship,

multiple inheritance

INSTANCE VARIABLES

Animals are well suited to be modeled as objects. First, define a class Animal that displays the

corresponding animal image in the background of the game board. When creating an object (or

an instance) of this class, you pass the file path of the animal image to the constructor so that

the method showMe() is able to display the image. It does this using the drawing methods of the

class GGBackground.

The constructor that receives the file path has to save it as an initial value in a variable so that

all methods can access it. One such variable is an attribute or an instance variable of the class.

In Python, instance variables are given the prefix self and are generated at the first allocation of

a value. As you already know, the constructor has the special name __init__ (with two leading

and trailing underlines). Both the constructor and the methods must have self as the first

parameter, which is often forgotten.

So, you first define the constructor,

def __init__(self, imgPath):

as well as a method.

def show Me(self, x, y):

Once you have generated an animal object myAnimal

using

myAnimal = Animal(bildpfad)

you call this method with

myAnimal.showMe(x, y)

It especially makes sense to use OOP when you are using multiple objects of the same class. To

experience this close up, a new animal should pop up in your program at each mouse click.

from gamegrid import *

---------------- class Animal ----------------
class Animal ():
 def __init__(self, imgPa t h):
 self.imagePath = im gPath # Instance variable

 def showMe(self, x, y): # Method definition
 bg.drawImage(self.imagePath, x, y)

def pressCallback(e):

Page 218

 myAnimal = Animal("sprites/animal.gif") # Obj ect creation
 myAnimal.showMe(e.getX(), e.getY()) # Method call

makeGameGrid(600, 600, 1, False, mousePressed = pressCallback)
setBgColor(Color. green)
show()
doRun()
bg = getBg()

MEMO

The properties or attributes of an object are defined as instance variables. They have

individual values for each object of the class. Accessing instance variables inside of the class is

done by prepending self. A class has also access to the variables and functions of the main

part of the program, for example all methods of the class GameGrid and with bg the

backgroundof the game window. The methods can even modify a variable of the main part, if it

is declared as global in the method. If the object does not require initialization, the definition

of the constructor can also be omitted. Instead of passing the sprite image to the constructor,

use the variable imagePath in the following program so that you can forego the constructor.

from gamegrid import *
import random

---------------- class Animal ----------------
class Animal ():
 def showMe(self, x, y):
 bg.drawImage(image Path, x, y)

def pressCallback(e):
 myAnimal = Animal()
 m yAnimal.showMe(e.getX(), e.getY())

imagePath = "sprites/animal.gif"
makeGameGrid(600, 600, 1, False, mousePressed = pressCallback)
setBgColor(Color. green)
show()
doRun()
bg = getBg()

INHERITANCE, ADDING METHODS

Class hierarchies are created through a class derivation or an inheritance, and with it you can

add additional properties and behaviors to an existing class.

Objects of the derived class are also automatically

objects of the parent class (also called base class or

super class) and can therefore use all the properties

and methods of the parent class as if they were defined

in the derived class itself. For example, a pet is an

animal that also has its own name, which it is should

write out using tell(). Hence, you define a class Pet that

is derived from Animal. Since you want to specify the

name of the animals for each pet individually during its

creation, you provide it to the constructor of Pet as an

initialization value, which then stores it in an instance

variable.

from gamegrid import *
from java.awt import Point

Page 219

---------------- class Animal ----------------
class Animal ():
 def __init__ (self, imgPat h):
 self.imagePath = im gPath

 def showMe(self, x, y):
 bg.drawImage(self. imagePath, x, y)

---------------- class Pet ----------------
class Pet (Animal): # Derived from Animal
 def __init__(self, imgPath, name):
 self.imagePath = im gPath
 self.name = name
 def tell(self, x, y): # Additional method
 bg.drawText(self.name, Point(x, y))

makeGameGrid(600, 600, 1, F alse)
setBgColor(Color.green)
show()
doRun()
bg = getBg()
bg.setPaintColor(Color.black)

for i in range(5):
 myPet = Pet("sprites/pe t .gif" , "Trixi")
 myPet.showMe(50 + 100 * i, 100)
 myPet.tell(72 + 100 * i, 145)

MEMO

As you can see, you can call myPet.showMe() even though showMe() is not defined in the class

Pet, because a pet is also an animal. The relationship of Pet and Animal is therefore called an

is-a relationship.

Since imagePath is set by the Animal constructor, you may replace the line self.imagePath =

imgPath in the Pet constructor by Animal.__init__(self, imagePath) to initialize the Animal base

class.

For derived classes, the base classes are placed in parentheses after the class name. In Python

you can also derive a class from several base classes (multiple inheritance).

CLASS HIERARCHIES, OVERRIDING METHODS

Methods of the base class can also be changed in a

derived class by being redefined (overridden) with the

same name and parameter list. If you want to model

dogs that also bark with tell(), derive the class Dog

from Pet and override the method tell(). You can get a

cat to meow by deriving a class Cat from Pet and

overriding tell() there as well.

Page 220

The four classes can be visualized in a class

diagram. The is-a relationship becomes particularly

clear with it [more...].

The classes are displayed as a rectangular box in the

class diagram, into which you first write the class

name. The instance variables follow separated by a

horizontal dividing line and then, led by the

constructor, follow the methods of the class. The

class hierarchy is easy to follow thanks to a clever

arrangement and connecting arrows.

from gamegrid import *
from java.awt import Point

---------------- class Animal ----------------
class Animal ():
 def __init__(self, imgPa t h):
 self.imagePath = im gPath

 def showMe(self, x, y):
 bg.drawImage(self. imagePath, x, y)

---------------- class Pet ----------------
class Pet (Animal):
 def __init__(self, imgPat h, name):
 self.imagePath = im gPath
 self.name = name
 def tell(self, x, y):
 bg.drawText(self.na me, Point(x, y))

---------------- class Dog ----------------
class Dog(Pet):
 def __init__(self, imgPa t h, name):
 self.imagePath = im gPath
 self.name = name
 def tell(self, x, y): # Overriding
 bg.setPaintColor(Color.blue)
 bg.drawText(self.na me + " tells 'Waoh'" , Point(x, y))

---------------- class Cat ----------------
class Cat (Pet):
 def __init__(self, imgPat h, name):
 self.imagePath = im gPath
 self.name = name
 def tell(self, x, y): # Overriding
 bg.setPaintColor(Color.gray)
 bg.drawText(self.na me + " tells 'Meow'" , Point(x, y))

makeGameGrid(600, 600, 1, F alse)
setBgColor(Color.green)
show()
doRun()
bg = getBg()

alex = Dog("sprites/dog.gif" , "Alex")
alex.showMe(100, 100)
alex. t ell(200, 130) # Overriden method is called

rex = Dog("sprites/dog.gif" , "Rex")
rex.showMe(100, 300)

Page 221

rex.tell(200, 330) # Overriden method is cal l ed

xara = Cat("sprites/cat.gif" , "Xara")
xara.showMe(100, 500)
xara.t ell(200, 530) # Overriden method is called

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

By overriding methods, you can change the behavior of the base class in the derived classes.

When calling methods of the same class or the base class, you have to prepend self. However,

self does not have to be provided in the parameter list.

Sometimes you might want to use the identical method of the base class in an override

method. To invoke it, you have to prefix the class name of the base class and provide self in

the parameter list [more...].

This rule also applies to the constructor: if the constructor of the base class is used in the

constructor of the derived class, it has to be called by prepending the class name of the base

class and passing the parameter self.

TYPE-BASED METHOD CALLS: POLYMORPHISM

Polymorphism is a bit more difficult to understand, but it is a particularly important feature of

object-oriented programming. It refers to the calling of overridden methods, where the call is

automatically adjusted to the class affiliation. With a simple example you can see what this

means. You use a list Animals with the previously defined classes in which there are two dogs

and a cat

animals = [Dog(), Dog(), Cat()]

A problem occurs when going through the list and calling tell() because there are three different

methods of tell() (one in the class Pet, Dog and Cat).

for animal in animals:
 animal.tell()

The computer can resolve this ambiguity in one of three ways:

It can give an error message.1.

It can call tell() of the base class Pet.2.

It can find out what kind of pets you have and then call the appropriate tell().3.

In a polymorphic programming language such as Python, the last and best option applies.

from gamegrid import *
from soundsystem import *

---------------- class Animal ----------------
class Animal ():
 def __init__(self, imgPat h):
 self.imagePath = im gPath

 def showMe(self, x, y):
 bg.drawImage(self . imagePath, x, y)

---------------- class Pet ----------------
class Pet (Animal):
 def __init__(self, imgPa t h, name):

Page 222

 self.imagePath = imgPath
 self.name = name
 def tell(self, x, y):
 bg.drawText(self.na me, Point(x, y))

---------------- class Dog ----------------
class Dog(Pet):
 def __init__(self, imgPat h, name):
 self.imagePath = i mgPath
 self.name = name
 def tell(self, x, y): # Overridden
 Pet.tell(self, x, y)
 openSoundPlayer("wa v/dog.wav")
 play()

----------- ----- class Cat ----------------
class Cat (Pet):
 def __init__(self, imgPa t h, name):
 self.imagePath = im gPath
 self.name = name
 def tell(self, x, y): # Overridden
 Pet.tell(self, x, y)
 openSoundPlayer("wav /cat.wav")
 play()

makeGameGrid(6 00, 600, 1, False)
setBgColor(Color.green)
show()
doRun()
bg = getBg()

animals = [Dog("sprites/dog.gif" , "Alex"),
 Dog("sprites/dog.gif" , "R ex"),
 Cat("sprites/cat.gif" , "X ara")]

y = 100
for animal in animals:
 animal.showMe(100, y)
 animal.tell(200, y + 30) # Which tell()????
 show()
 y = y + 200
 delay(10 00)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

Polymorphism ensures that the class affiliation decides which method is called in overridden

methods. Since the affiliation to classes in Python is only determined at runtime anyway,

polymorphism is self-evident.

The dynamic data binding of Python is called duck test or duck typing, according to the

quote attributed to James Whitcomb Riley (1849 – 1916):

“When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call

that bird a duck.”

There are some cases where an overridden method is defined in the base class, but it should

not do anything. This can be achieved either with an immediate return or with the empty

statement pass.

Page 223

EXERCISES

1. Define a class TurtleKid derived from the class Turtle that draws a square with shape(). Try

to get the following main part to work:

tf = TurtleFrame()
john is a Turtle
john = Turtle(tf)
john knows all commands of Turtle
john.setColor("green")
john.forward(100)
john.right (90)
john.forward(100)

laura is a TurtleKid, but also a Turtle
laura knows all commands of Turtle
laura = TurtleKid(tf)
laura.setColor("red")
laura.le f t(45)
laura.forward(100)
laura knows a new command too
laura.shape()

2. Define two derived classes, TurtleBoy and TurtleGirl, from TurtleKid which override shape()

so that a TurtleBoy draws a solid triangle and a TurtleGirl draws a solid circle. The following

main part has to work:

tf = TurtleFrame()

aGirl = TurtleGirl(tf)
aGirl.setColor("red")
aGirl.left(45)
aGirl.forward(100)
aGirl.shape()

aBoy = TurtleBoy(tf)
aBoy.setColor("green")
aBoy.right(45)
aBoy.forward(1 00)
aBoy.shape()

aKid = TurtleKid(tf)
aKid.back(100)
aKid.left(45)
aKid.shape()

3. Draw the class diagram for exercise 2.

ADDITIONAL MATERIAL

STATIC VARIABLES AND STATIC METHODS

Classes can also be used to group related variables or functions, thus making the code easier to

read. For example, you can condense the main physical constants in the class Physics. Variables

defined in the same class header are called static variables and we call them by prefixing the

class name. Unlike with instance variables, it is not necessary to create an instance of the class.

import math

---------------- class Physics ----------------
class Physics ():
 # Avogadro constant [mo l -1]
 N_AVOGADRO = 6.0221419947e23

Page 224

 # Boltzmann constant [J K-1]
 K_BOLTZMANN = 1.3806 50324e-23
 # Planck constant [J s]
 H_PLANCK = 6.6260687652e-34;
 # Speed of light in vacu o [m s-1]
 C_LIGHT = 2.99792458e8
 # Molar gas constant [K- 1 mol-1]
 R_GAS = 8.31447215
 # Faraday constant [C mo l-1]
 F_FARADAY = 9.6485341539e4;
 # Absolute zero [Celsius]
 T_ABS = -273.15
 # Charge on the electron [C]
 Q_ELECTRON = -1.60217646263e-19
 # Electrical permittivit y of free space [F m-1]
 EPSILON_0 = 8.854187817e-12
 # Magnetic permeability of free space [4p10-7 H m-1 (N A-2)]
 MU_0 = math.p i *4.0e-7

c = 1 / math.sqrt(Physics.E PSILON_0 * Physics.MU_0)
print ("Speed of light (calulated): %s m/s" %c)
print ("Speed of light (table): %s m/s" %Physics.C_LIGHT)

You can also group a collection of related functions by defining them as static methods in a

meaningfully designated class. You can use these methods by directly prepending the class

name, without having to create an instance of the class [more...] .

To make a static method, you have to write the line @staticmethod before the definition.

---------------- class OhmsLaw ----------------
class OhmsLaw():
 @staticmethod
 def U(R, I):
 return R * I
 @stati cmethod
 def I(U, R):
 return U / R
 @stat icmethod
 def R(U, I):
 return U / I
r = 10
i = 1.5
u = OhmsLaw.U(r, i)
print ("Voltage = %s V" %u)

MEMO

Static variables (as opposed to instance variables, also called class variables) belong to the

class as a whole and in contrast to instance variables, all objects of the class have the same

value. They can be read and changed with prepended class names.

A typical use of static variables is an instance counter, which is a variable that counts the

number of generated objects of the relevant class.

Related functions can be grouped as static methods in a suggestively designated class. The

line @staticmethod (called a function decorator) must be prepended when defining the

function.

Page 225

7.3 ARCADE GAMES, FROGGER

INTRODUCTION

Many computer games found on game consoles and the Internet consist of images moving over a

background. Sometimes even the background moves too, especially in situations where the game

characters move to the edge of the window allowing the player to have the impression of a

scenario that is substantially larger than the display window. Even though game animation

requires a lot of computational power, it is generally easy to understand: at time points in quick

succession, the so-called game loop recalculates the screen content, copies the background and

the images of the game characters into an invisible image buffer, and then displays (renders) it

as a whole in the window. With anything more than around 25 frames per second, you will see a

smooth, flowing movement, but with anything less the movement will be jerky.

In many games, characters interact through collisions, and therefore dealing with collisions is

fundamental. Well developed game libraries such as JGameGrid provide programmers with

built-in collision detection under the use of event models. One defines the potential collision

partners and the system automatically calls a callback when a collision occurs.

PROGRAMMING CONCEPTS: Game design, sprite, actor, collision, supervisor

GAME-SCENARIO

When developing a computer game it is important that you first think of a game scenario that is

as detailed as possible, and then write out notes as functional program specifications. Often your

goals are set too high in your first attempt, and so you should try to simplify the game a bit so

that you can develop executable subversions that can then gradually be expanded. The trick is to

write the program as generally as possible so that you will not have to modify the existing code

with following extensions. Instead, you will only need to add to it. However, this rarely succeeds

right off the bat, even with professional programmers, and it is thus common that feelings of

euphoria and frustration lie close together when developing a game. This will make your pleasure

and satisfaction even greater once you can finally show off your very own personal computer

game and let people play it.

Along the way of becoming a competent game programmer, it is advisable to learn by developing

well-known games that you can implement in your own personal way using your own sprite

images. It is not very important that these games are readily available in the training phase,

because it is not about playing a lot, but rather about learning how it is developed. One

well-known game is Frogger. It has the following fun scenario:

A frog tries to move across a busy road and

get to a pond. If it hits a car, the frog loses its

life. The goal is to use the cursor keys to bring

it safely across the road.

You should implement four lanes: two of the

lanes with trucks and buses moving in

opposite directions, and the other two with

vintage cars (see the adjacent image).

Page 226

There are two possible development paths available: you can either first implement the

movement of the frog, or the movement of the vehicles. After this, you add the collision

mechanism and the calculation of the game points, as well as the end of the game (game over).

In GameGrid the vehicles are modeled as instances of the class Car derived from Actor. The

movement of the vehicles is programmed in the method act().

Use the images car0.gif,..car19.gif as sprites, located in the distribution of TigerJython. You can,

of course, also use your own images (they should be a maximum of 70 pixels high and 200

pixels wide with a transparent background).

With arcade games it is common to use a game board with a size of 1 pixel, i.e. the grid

corresponds to the pixel grid. Choose 800 x 600 pixels as a window size and display the road

scenario using the background image lane.gif with the size 801 x 601 pixels. Generate 20 car

objects in the function initCars() and think about where and with which viewing direction you

want to add them to the game board.

Moving the cars with the method act() is easy: you push them on with move(), and let the cars

moving from left to right jump to the far left as soon as they have driven out of the window, and

similarly let the cars moving from right to left jump to the right. Remember that the location

coordinates of actors can also be outside of the screen.

from gamegrid import *

---------------- class Car ----------------
class Car (Actor):
 def __init__(self, path):
 Actor.__init__(self , path)

 def act(self):
 self.move()
 if self.getX() < -100:
 self.setX(1650)
 if self.getX() > 1650:
 self.setX(-100)

def initCars():
 for i in range(20):
 car = Car("sprites/c ar" + str(i) + ".gif")
 if i < 5:
 a ddActor(car, L ocation(350 * i, 100), 0)
 if i >= 5 and i < 10:
 addActor(car, L ocation(350 * (i - 5), 220), 180)
 if i >= 10 and i < 15:
 addActor(car, L ocation(350 * (i - 10), 350), 0)
 if i >= 15:
 addActor(car, L ocation(350 * (i - 15), 470), 180)

makeGameGrid(800, 600, 1, None, "sprites/lane.gif" , False)
setSimulationPeriod(50)
initC ars()
show()
doRun()

MEMO

Usually a game grid with a cell size of 1 pixel is used in arcade games (pixel game).

The game scene is rendered 20 times per second in a simulation period lasting 50 ms,

resulting in a relatively good flow of movement. Sporadic jerks are caused by a computer's low

processing power. Due to the limit of computing power, the simulation period cannot be

significantly reduced.

Page 227

MOVING THE FROG WITH THE CURSOR KEYS

Now you can start thinking about how to incorporate the frog into the game. It should first

appear at the bottom of the screen, and should then move with the up, down, left, and right

cursor keys.

Since the frog is also an Actor, first write the class Frog which you derive from Actor. You do not

need any methods besides the constructor, since the frog is moved by keyboard events. For this,

define the callback onKeyRepeated, that you register through the call makeGameGrid() with

the parameter named keyRepeated. This callback is not only called once when you press the key,

but also periodically if you hold it down.

You test the key code in the callback and move the frog 5 steps further accordingly.

from gamegrid import *

---------------- class Frog ----------------
class Frog (Actor):
 def __init__(self):
 Ac t or.__init__(self, " sprites/frog.gif")

---------------- class Car ----------------
class Car (Actor):
 def __init__(self, path):
 Actor.__init__(self , path)

 def act(self):
 self.move()
 if self.getX() < -100:
 self.setX(1650)
 if self.getX() > 1650:
 self.setX(-100)

def initCars():
 for i in range(20):
 c ar = Car("sprites/c ar" + str(i) + ".gif")
 if i < 5:
 addActor(car, L ocation(350 * i, 100), 0)
 if i >= 5 and i < 10:
 addActor(car, L ocation(350 * (i - 5), 220), 180)
 if i >= 10 and i < 15:
 addActor(car, L ocation(350 * (i - 10), 350), 0)
 if i >= 15:
 addActor(car, L ocation(350 * (i - 15), 470), 180)

def onKeyRepeated(keyCode):
 if keyCode == 37: # left
 frog.setX(frog.getX() - 5)
 elif keyCode == 38: # up
 frog.setY(frog.getY() - 5)
 elif keyCode == 39: # righ t
 frog.setX(frog.getX() + 5)
 elif keyCode == 40: # down
 frog.setY(frog.getY() + 5)

makeGameGrid(800, 600, 1, N one, "sprites/lane.gif" , False,
 keyRepeated = onKeyRepeated)
setSimulationPeriod(50);
frog = Frog()
addActor(frog, Location(400, 560), 90)
initCars()
show()
doRun()

Page 228

MEMO

In order to capture keyboard events, you can also register the callbacks keyPressed(e) and

keyReleased(e). In contrast to keyRepeated(code), the key code must be fetched from the

parameter e with e.getKeyCode(). Moreover, keyPressed(e) is less suitable in this game

because there is a delay after pressing and holding down the button until the following press

events are triggered.

If you do not know the key codes, you should write a small test program that writes them out:

from gamegrid import *

def onKeyPressed(e):
 print "Pressed: " , e.getKe y Code()

def onKeyReleased(e):
 print "Released: " , e.getKe yCode()

makeGameGrid(800, 600, 1, N one, "sprites/lane.gif" , False,
 keyPressed = onKeyPressed , keyReleased = onKeyReleased)
show()

COLLISION EVENTS

The procedure to detect collisions between actors is simple: When generating a vehicle car, you

say that the frog should trigger an event when colliding with a car, using the method

frog.addCollisionActor(car)

The collision event triggers the method collide(), located in the class Frog. There, you treat the

event according to your own wishes, for example you could make the frog jump back to the

starting position.

from gamegrid import *

---------------- class Frog ----------------
class Frog (Actor):
 def __init__(self):
 Actor.__init__(self , "sprites/frog.gif")
 self.setCollisionCi rcle(Point(0, -10), 5)

 def collide(self, actor1, actor2):
 self.setLocation(Lo cation(400, 560))
 return 0

---------------- class Car ----------------
class Car (Actor):
 def __init__(self, path):
 Actor.__init__(self , path)

 def act(self):
 self.move()
 if self.getX() < -100:
 self.setX(1650)
 if self.getX() > 1650:
 self.setX(-100)

def initCars():
 for i in range(20):
 car = Car("sprites/c ar" + str(i) + ".gif")
 frog.addCollisionAc tor(car)
 if i < 5:

Page 229

 addActor(car, Location(350 * i, 100), 0)
 if i >= 5 and i < 10:
 addActor(car, L ocation(350 * (i - 5), 220), 180)
 if i >= 10 and i < 15:
 addActor(car, L ocation(350 * (i - 10), 350), 0)
 if i >= 15:
 addActor(car, L ocation(350 * (i - 15), 470), 180)

def onKeyRepeated(keyCode):
 if keyCode == 37: # left
 frog.setX(frog.getX() - 5)
 elif keyCode == 38: # up
 frog.setY(frog.getY() - 5)
 elif keyCode == 39: # righ t
 frog.setX(frog.getX() + 5)
 elif keyCode == 40: # down
 frog.setY(frog.getY() + 5)

makeGameGrid(800, 600, 1, None, "sprites/lane.gif" , False,
 keyRepeated = onKeyRep eated)
setSimulationPeriod(50)
frog = Frog()
addActor(frog, Location(400, 560), 90)
initCars()
show()
doRun()

MEMO

The method collide() is not an actual callback, but rather a method of the class Actor that is

overridden in Frog. This is why you do not need to register collide() with a named parameter.

By default, the collision event is triggered when the bounding rectangles of the sprite images

overlap. However, you can also change the collision areas in shape, size, and position to fit the

sprite image. For this, you can use the following methods of the class Actor:

Methode Collision area

setCollisionCircle(centerPoint, radius) circle with a given center and radius (in pixels)

setCollisionImage()
non-transparent image pixels (only with a partner

that has a circle, line, or point as a collision area)

setCollisionLine(startPoint, endPoint) line between the given start and end points

setCollisionRectangle(center, width,

height)
rectangle with a given center, width, and height

setCollisionSpot(spotPoint) an image pixel

All methods use a relative pixel coordinate system with the zero point in the center of the

sprite image, a positive x-axis going to the right, and a positive y-axis going down.

The frog image is 71 x 41 pixels in size. So, for example,

you can add the following to the constructor of Frog

self.setCollisionCircle(Point(0, -10), 5)

so that a vehicle has to drive over the circle with a radius of

5 pixels around the head of the frog to trigger a collision

event.

(Since the collision area is cached for efficiency reasons, it may be necessary to restart

TigerJython so that your changes are taken into effect.)

Page 230

GAME SUPERVISOR AND SOUND

In many games it is necessary that an "independent game supervisor" is made responsible for

the compliance with the game rules, the distribution of points, and the proclamation of the

winner at game over. Similar to daily life, it is also better if the task is not allocated to a

character in the game, but rather to an independent part of the program. The main part of the

program is especially well suited for this, which continues to runs after the initialization of the

game. Add a loop to the end of the existing program so that it periodically checks the game and

reacts accordingly. You should, however, not implement a very tight loop without a delay(), as

this will unnecessarily waste computing power, which can lead to delays in the remaining

execution of the program. The loop should stop when the game window is closed. You can ensure

this with isDisposed = True. The supervisor can, for example, limit the number of attempts and

also count and display the number of successful and unsuccessful crossings of the road.

Dealing with the game over situation is often especially tricky, since one has to consider different

variants. It is also often the case that you want to play the game several times without

restarting the program.

You can use your knowledge from the chapter Sound to include sound effects. The easiest way to

do this is to use the function playTone().

from gamegrid import *

---------------- class Frog ----------------
class Frog (Actor):
 def __init__(self):
 Actor.__init__(self , "sprites/frog.gif")

 def collide(self, actor1, actor2):
 global nbHit
 nb Hit += 1
 pl ayTone([("c''h'a'f'" , 100)])
 self.setLocation(Lo cation(400, 560))
 return 0

 def act(self):
 globa l nbSuccess
 if self.getY() < 15:
 nbSuccess += 1
 playTone([("c'e'g'c''" , 200)])
 self.setLocatio n(Location(400, 560))

---------------- class Car ----------------
class Car (Actor):
 def __init__(self, path):
 Actor.__init__(self , path)

 def act(self):
 self.move()
 if self.getX() < -100:
 self.setX(1650)
 if self.getX() > 1650:
 self.setX(-100)

def initCars():
 for i in range(20):
 c ar = Car("sprites/c ar" + str(i) + ".gif")
 frog.addCollisionA c tor(car)
 if i < 5:
 addActor(car, L ocation(350 * i, 90), 0)
 if i >= 5 and i < 10:
 addActor(car, Location(350 * (i - 5), 220), 180)
 if i >= 10 and i < 15:
 addActor(car, L ocation(350 * (i - 10), 350), 0)

Page 231

 if i >= 15:
 addA c tor(car, L ocation(350 * (i - 15), 470), 180)

def onKeyRepeated(keyCode):
 if keyCode == 37: # left
 frog.setX(frog.getX() - 5)
 elif keyCode == 38: # up
 frog.setY(frog.getY() - 5)
 elif keyCode == 39: # righ t
 frog.setX(frog.getX() + 5)
 elif keyCode == 40: # down
 frog.setY(frog.getY() + 5)

makeGameGrid(800, 600, 1, N one, "sprites/lane.gif" , False,
 keyRepeated = onKeyRepe ated)
setSimulationPeriod(50)
setTitle("Frogger")
frog = Frog()
addActor(frog, Location(400, 560), 90)
initCars()
show()
doRun()

Game supervision
maxNbLifes = 3
nbHit = 0
nbSuccess = 0
while not isDisposed():
 if nbHit + nbSuccess == m axNbLifes: # game over
 addActor(Actor("sprites/gameover.gif"), Location(400, 285))
 removeActor(frog)
 doPause()
 setTitle("#Success: " + str(nbSuccess) + " #Hits " + str(nbHit))
 delay(100)

MEMO

The counting of successes with nbSuccess and failures with nbHit takes place in the class

Frog. This is why these variables have to be declared as globals. You could also use static or

instance variables of the Frog class. At game over an Actor image with a text is inserted, the

frog is removed, the simulation cycle is stopped with doPause(), and finally, the supervisor

loop is left with break. You could also use a TextActor, which makes it possible to adjust the

text at runtime.

rate = nbSuccess / (nbSuccess + nbHit)
ta = TextActor(" Game Over: Success Rate = " + str(rate) + " % " ,
 DARKGRAY, YELLOW, Font ("Arial" , Font.BOLD, 24))
addActor(ta, Location(200, 287))

EXERCISES

1. Replace the background image and the vintage car photos with animal images that swim in

a river (crocodiles, etc.).

2. Introduce a scoring system and a time limit for the crossing: Each successful crossing

should give you 5 points, each hit should take away 5 points. Exceeding the time limit

should minus 10 points and put the frog back at the starting point.

3. Add some of your own ideas to the game.

Page 232

7.4 GRID GAMES, SOLITAIRE BOARD GAME

INTRODUCTION

In a certain class of computer games, tokens are restricted to be located on cells in a grid

structure whereby the cells often have the same size and are arranged in a matrix. The

consideration of this location restriction on a grid structure substantially simplifies the

implementation of the game. As the name implies, the game library JGameGrid is particularly

optimized for grid-like games.

In this chapter you will gradually develop the peg solitaire with the English board layout. You will

get to know important solution methods that you can apply to all grid games.

PROGRAMMING CONCEPTS: Game board, game rules, specifications, game over

BOARD INITIALIZATION, MOUSE CONTROL

There is a regular arrangement of holes or recesses in a

board into which you can either plug pegs or put marbles.

The best-known Solitaire board uses a board with a

cross-like arrangement of 33 holes and is called the English

board. At the start of the game, all the holes except for the

center hole are filled with marbles. As the name Solitaire

implies, the game is usually played by a single person.

The following rules apply: a turn consists of moving a

marble onto a free hole by skipping exactly one marble

either horizontally or vertically. The skipped marble is

removed from the game board.

An English Solitaire board from India, 1830
© 2003 puzzlemuseum.com

The goal is to "clear up" all the marbles from the board, except for the last marble. If the last

marble ends up in the center, the game is considered to be solved especially well. When Solitaire

is implemented as a computer game, you should be able to "grab" a certain marble by pressing

the mouse button and move it by holding down and dragging. When you release the mouse

button, the game checks if the turn followed the rules of the game. If you make an illegal move

the marble will jump back to its previous location, and if you make a legal move the marble will

appear at the new location and the skipped marble will be removed from the board.

With this, the specification is clear and you can start with the implementation. As always, this is

done step by step, and you should make sure that your program is running at each of these

steps. It is perfectly obvious to use a game grid with 7x7 cells, without using the corner cells.

First you draw the board in the function initBoard() using the background image

solitaire_board.png which is included in the distribution of TigerJython.You implement the mouse

controls with the mouse callbacks mousePressed, mouseDragged, and mouseReleased.

At a Press event you keep track of the current cell location and the marble currently in it. You

can obtain the marble with getOneActorAt() and you will receive None if the cell is empty. If

you write out important results in a status bar (or in the console), the development process will

be easier to control and mistakes easier to find.

Page 233

During the Drag event you move the visible image of the

marble to the current cursor position using

setLocationOffset(). You also move it to any mouse

position away from the middle of the cells, so that a

continuous motion arises. It is important that this does

not move the marble actor itself, but only its sprite image

(hence the term offset). With this, you can avoid any

difficulties with superimposed actors.

In this first version, the marble should simply jump back

to its original position upon a Release event. You can do

this by calling setLocationOffset(0, 0).

from gamegrid import *

def isMarbleLocation(loc):
if loc.x < 0 or loc.x > 6 or loc.y < 0 or loc.y > 6:

return False
if loc.x in [0, 1, 5, 6] and loc.y in [0, 1, 5, 6]:

return False
return True

def initBoard():
for x in range(7):

for y in range(7):
 loc = Location(x, y)

if isMarbleLocation(loc):
 marble = Actor("sprites/marble.png")
 addActor(marble, loc)
 removeActorsAt(Location(3, 3)) # Remove marble in center

def pressEvent(e):
global startLoc, movingMarble

 startLoc = toLocationInGrid(e.getX(), e.getY())
 movingMarble = getOneActorAt(startLoc)

if movingMarble == None:
 setStatusText("Pressed at " + str(startLoc) + ". No marble found")

else:
 setStatusText("Pressed at " + str(startLoc) + ". Marble found")

def dragEvent(e):
if movingMarble == None:

return
 startPoint = toPoint(startLoc)
 movingMarble.setLocationOffset(e.getX() - startPoint.x,
 e.getY() - startPoint.y)

def releaseEvent(e):
if movingMarble == None:

return
 movingMarble.setLocationOffset(0, 0)

makeGameGrid(7, 7, 70, None, "sprites/solitaire_board.png", False,
 mousePressed = pressEvent, mouseDragged = dragEvent,
 mouseReleased = releaseEvent)
setBgColor(Color(255, 166, 0))
setSimulationPeriod(20)
addStatusBar(30)
setStatusText("Press-drag-release to make a move.")
initBoard()
show()
doRun()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 234

MEMO

Instead of moving the actual actor while dragging, you can just move its sprite image. For this,

use setLocationOffset(x, y) where x and y are coordinates relative to the current center

point of the actor.

You have to carefully distinguish between the coordinates of the mouse and the cell coordinates

when dealing with mouse movements. You can use the functions toLocationInGrid(pixel_coord)

and toPoint(location_coord) to convert between these coordinates.

If you start at an empty cell, the drag and release events lead to an infamous program crash.

This is because you are trying to call a method with movingMarble that has the value None.

In order to avoid this error, leave the callbacks with an immediate return right at the

beginning.

IMPLEMENTING THE GAME RULES

How would you verify the game rules with the real game? You would have to know which marble

you started with, so you would need to know its starting location start. You would then need to

know where you want to move the marble to, which is the cell location dest. The following

conditions must be met in order to make a legal move:

1. At start there is a marble

2. At dest there is no marble

3. dest is a cell belonging to the board

4. start and dest are either horizontally or vertically two cells apart

5. There is a marble in the cell between them, too

It is a good idea to implement these conditions in a function getRemoveMarble(start, dest)

that returns the marble to be removed after a legal turn and returns None after an illegal turn.

Thus, you should call this function at the release event and remove the returned Actor from the

board using removeActor() if the turn was legal.

from gamegrid import *

def getRemoveMarble(start, dest):
if getOneActorAt(start) == None:

return None
if getOneActorAt(dest) != None:

return None
if not isMarbleLocation(dest):

return None
if dest.x - start.x == 2 and dest.y == start.y:

return getOneActorAt(Location(start.x + 1, start.y))
if start.x - dest.x == 2 and dest.y == start.y:

return getOneActorAt(Location(start.x - 1, start.y))
if dest.y - start.y == 2 and dest.x == start.x:

return getOneActorAt(Location(start.x, start.y + 1))
if start.y - dest.y == 2 and dest.x == start.x:

Page 235

return getOneActorAt(Location(start.x, start.y - 1))

def isMarbleLocation(loc):
if loc.x < 0 or loc.x > 6 or loc.y < 0 or loc.y > 6:

return False
if loc.x in [0, 1, 5, 6] and loc.y in [0, 1, 5, 6]:

return False
return True

def initBoard():
for x in range(7):

for y in range(7):
 loc = Location(x, y)

if isMarbleLocation(loc):
 marble = Actor("sprites/marble.png")
 addActor(marble, loc)
 removeActorsAt(Location(3, 3)) # Remove marble in center

def pressEvent(e):
global startLoc, movingMarble

 startLoc = toLocationInGrid(e.getX(), e.getY())
 movingMarble = getOneActorAt(startLoc)

if movingMarble == None:
 setStatusText("Pressed at " + str(startLoc) + ". No marble found")

else:
 setStatusText("Pressed at " + str(startLoc) + ". Marble found")

def dragEvent(e):
if movingMarble == None:

return
 startPoint = toPoint(startLoc)
 movingMarble.setLocationOffset(e.getX() - startPoint.x,
 e.getY() - startPoint.y)

def releaseEvent(e):
if movingMarble == None:

return
 destLoc = toLocationInGrid(e.getX(), e.getY())
 movingMarble.setLocationOffset(0, 0)
 removeMarble = getRemoveMarble(startLoc, destLoc)

if removeMarble == None:
 setStatusText("Released at " + str(destLoc) + ". Not a valid move.")

else:
removeActor(removeMarble)

 movingMarble.setLocation(destLoc)
 setStatusText("Released at " + str(destLoc)+ ". Marble removed.")

startLoc = None
movingMarble = None

makeGameGrid(7, 7, 70, None, "sprites/solitaire_board.png", False,
 mousePressed = pressEvent, mouseDragged = dragEvent,
 mouseReleased = releaseEvent)
setBgColor(Color(255, 166, 0))
setSimulationPeriod(20)
addStatusBar(30)
setStatusText("Press-drag-release to make a move.")
initBoard()
show()
doRun()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 236

MEMO

Instead of using several early returns to leave the function getRemoveMarble(), you could also

combine the conditions with a Boolean operation. Which programming technique is considered

to be more appropriate is a matter of opinion.

CHECKING FOR GAME OVER

Now all that remains is checking if the game is over at the end of each turn. The game is

certainly over if only a single marble is left in the game, which means you have achieved the goal

of the game.

However, you may forget that there are other game constellations

where the game is considered to have ended, namely when there is

more than one marble on the board, but you can no longer make a legal

turn. It is not certain whether you will ever run into this situation with

legal moves, but you have to program defensively to make sure that

you always stay on the safe side. You can expect Murphy's law to also be

true for programming: "If anything can go wrong, it goes wrong".

In order to get the situation under control, you can test for each remaining marble individually

whether it can be used in a legal move, by implementing a function isMovePossible(). There,

you check for each marble whether there is a removable intermediary marble in combination

with any empty spot [more...].

from gamegrid import *

def checkGameOver():
global isGameOver

 marbles = getActors() # get remaining marbles
if len(marbles) == 1:

 setStatusText("Game over. You won.")
 isGameOver = True

else:
check if there are any valid moves left
if not isMovePossible():

 setStatusText("Game over. You lost. (No valid moves available)")
isGameOver = True

def isMovePossible():
for a in getActors(): # run over all remaining marbles

for x in range(7): # run over all holes
for y in range(7):

 loc = Location(x, y)
if getOneActorAt(loc) == None and \

 getRemoveMarble(a.getLocation(), Location(x, y)) != None:
return True

return False

def getRemoveMarble(start, dest):

if getOneActorAt(start) == None:
return None

if getOneActorAt(dest) != None:
return None

if not isMarbleLocation(dest):
return None

if dest.x - start.x == 2 and dest.y == start.y:
return getOneActorAt(Location(start.x + 1, start.y))

if start.x - dest.x == 2 and dest.y == start.y:
return getOneActorAt(Location(start.x - 1, start.y))

if dest.y - start.y == 2 and dest.x == start.x:
return getOneActorAt(Location(start.x, start.y + 1))

Page 237

if start.y - dest.y == 2 and dest.x == start.x:
return getOneActorAt(Location(start.x, start.y - 1))

return None

def isMarbleLocation(loc):
if loc.x < 0 or loc.x > 6 or loc.y < 0 or loc.y > 6:

return False
if loc.x in [0, 1, 5, 6] and loc.y in [0, 1, 5, 6]:

return False
return True

def initBoard():
for x in range(7):

for y in range(7):
 loc = Location(x, y)

if isMarbleLocation(loc):
 marble = Actor("sprites/marble.png")
 addActor(marble, loc)
 removeActorsAt(Location(3, 3)) # Remove marble in center

def pressEvent(e):
global startLoc, movingMarble
if isGameOver:

return
 startLoc = toLocationInGrid(e.getX(), e.getY())
 movingMarble = getOneActorAt(startLoc)

if movingMarble == None:
 setStatusText("Pressed at " + str(startLoc) + ".No marble found")

else:
 setStatusText("Pressed at " + str(startLoc) + ".Marble found")

def dragEvent(e):
if isGameOver:

return
if movingMarble == None:

return
 startPoint = toPoint(startLoc)
 movingMarble.setLocationOffset(e.getX() - startPoint.x,
 e.getY() - startPoint.y)

def releaseEvent(e):
if isGameOver:

return
if movingMarble == None:

return
 destLoc = toLocationInGrid(e.getX(), e.getY())
 movingMarble.setLocationOffset(0, 0)
 removeMarble = getRemoveMarble(startLoc, destLoc)

if removeMarble == None:
 setStatusText("Released at " + str(destLoc)
 + ". Not a valid move.")

else:
 removeActor(removeMarble)
 movingMarble.setLocation(destLoc)
 setStatusText("Released at " + str(destLoc)+

". Valid move - Marble removed.")
 checkGameOver()

startLoc = None
movingMarble = None
isGameOver = False

makeGameGrid(7, 7, 70, None, "sprites/solitaire_board.png", False,
 mousePressed = pressEvent, mouseDragged = dragEvent,
 mouseReleased = releaseEvent)
setBgColor(Color(255, 166, 0))
setSimulationPeriod(20)
addStatusBar(30)

Page 238

setStatusText("Press-drag-release to make a move.")
initBoard()
show()
doRun()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

After each turn, you check if the game is over using checkGameOver(), If it is over, the

game is in a very specific state that you can distinguish with the Boolean variable (a flag)

isGameOver = True .

In particular, you must remember to stop all the mouse actions in Game Over. You can do this

with an immediate return from the mouse callbacks.

EXERCISES

1. Create a French Solitaire board.

2. Expand the Solitaire board with a score that counts and writes out the number of turns. The

game should also be able to restart by pressing the space bar.

3. Familiarize yourself with solution strategies of Peg solitaire with the help of a teacher or the

Internet [more...].

4. Create a Solitaire board from your own imagination.

Page 239

7.5 SPRITE ANIMATION

INTRODUCTION

When working with the game library JGameGrid, all tokens should be derived from the class

Actor so that they already include many important features and capabilities without any

necessary programming effort. However, they get their specific appearance loaded from an

image file, called a sprite.

Actors in a game are animated in various ways: they move across the game area and change

their appearance in the process, e.g. their posture or expression. For this reason, an Actor object

can be assigned any number of different sprite images that are distinguished by an integer index

(the sprite ID). This is simpler than modeling Actors with different sprites via class derivation.

Game tokens also often change their place, direction, and rotation angle. The rotation angle

should automatically be adjusted to the direction of the movement. In JGameGrid, for efficiency

reasons, one has to already specify at their definition whether Actors can be rotated and which

sprite images they are assigned. The latter are, at the creation of the Actor object, loaded into an

image buffer that also contains the rotated images. At runtime, the images therefore do not have

to be loaded from the hard drive or otherwise transformed. By default, 60 sprite images are

generated for every 6 degrees of rotation. JGameGrid uses an animation concept also available in

other game libraries, particularly Greenfoot [more...] .

Fundamental animation principle:

The method act(), defined for the class Actor(), has an empty definition part, and so it

returns immediately. The user-defined derived actors then override act() and thereby

implement the specific behavior of the actor.

When adding a character to the game window with addActor(), it will be inserted into an

act-order list (ordered by Actor classes). An internal game loop (in this case also called a

simulation cycle) periodically runs through this list and subsequently calls all the actors'

specific act() methods due to polymorphism.

For this ingenious principle to work, the actors have to be cooperative, i.e. act() must have

short running code. Loops and delays have especially catastrophic effects, since other actors

must wait for their own call of act().

The drawing of the sprite images happens according to the following principle. In the game loop,

the images of all Actors are copied into a screen buffer according to the order in the paint-order

list and finally rendered in the game window. The order of execution thus determines the

visibility of the sprite images: images of later actors cover the ones of all previously drawn

actors, they lie above them, so to speak. Since the actors are added to the paint-order list when

addActor() is called, sprites added later will lie above the others. [more...]

Although any number of sprite images can be assigned at the initialization of an Actor, they

cannot be changed at runtime.

PROGRAMMING CONCEPTS: Simulation cycle, cooperative code, factory class, static variable,

decoupling

Page 240

MOVING A BOW AND SHOOTING ARROWS

You want to shoot arrows that move on a natural trajectory (parabola) using a crossbow that you

control with the keyboard. You will use these arrows later to slice flying fruit in half.

You write a class Crossbow that is derived from the class Actor. When calling the constructor of

the base class Actor, you use True to say that it is a rotatable actor. The value 2 indicates that

there are 2 sprite images, namely one with a cocked crossbow that has an arrow attached to it

and the other for a relaxed crossbow without an arrow. The image files are automatically

searched for under the name sprites/crossbow_0.gif and sprites/crossbow_1.gif and are found in

the distribution of TigerJython.

Actor.__init__(self, True, "sprites/crossbow.gif" , 2)

The crossbow is controlled with keyboard events: You can change the direction using the cursor

up/down keys and you can shoot the arrow with the spacebar. The callback keyCallback() is

registered in makeGameGrid() as keyPressed.

The arrow class Dart already gets a bit more complicated, as the arrows have to move on a

parabolic trajectory in an x-y coordinate system, with the horizontal x-axis and the vertical y-axis

pointing down. The trajectory is not determined by a curve equation, but rather iteratively as a

change in the short time dt. It is known from kinematics that the new speed coordinates (vx',

vy') and the new location coordinates (px', py') after the time difference dt are calculated as

follows (g = 9.81m/s^2 is the gravitational acceleration):

vx' = vx

vy' = vy + g * dt

px'= px + vx * dt

py' = py + vy * dt

You determine the starting values (initial conditions) in the

method reset(), which is automatically called when you add

the Dart instance to the game area.

You can give the arrow a new location and direction in act().

To save some resources, you remove it from the board as

soon as it is outside of the visible window and then bring the

crossbow into the firing position again.

from gamegrid import *
i mport math

------------------- class Crossbow -----------------------
cl ass Crossbow (Actor):

def __init__(self):
 Ac tor.__init__(self, True, "sprites/crossbow.gif" , 2)

------ class Dart ----------------
class Dart (Actor):

def __init__(self, speed):
 Ac tor.__init__(self, True, "sprites/dart.gif")
 se lf.speed = speed
 self.dt = 0.005 * getSimulationPeriod()

Called when actor is added to GameGrid
def reset(self):

 s elf.px = self.getX()
 self.py = self.getY()
 self.vx = self.speed * math.cos(math.radians(self.getDirection()))
 self.vy = self.speed * math.sin(math.radians(self.getDirection()))

def act(self):
 s elf.vy = self.vy + g * self.dt

Page 241

 self.px = self.px + self.vx * self.dt
 s elf.py = self.py + self.vy * self.dt
 self.setLocation(Location(int(self.px), int(self.py)))
 self.setDirection(math.degrees(math.atan2(self.vy, self.vx)))

if not self.isInGrid():
 self.removeSelf()
 crossbow.show(0) # Load crossbow

------ E nd of class definitions --------------------

def keyCallback(e):
 code = e.getKeyCode()

if code == KeyEvent.VK_UP:
 cr ossbow.setDirection(crossbow.getDirection() - 5)

elif code == KeyEvent.VK_DOWN:
 cr ossbow.setDirection(crossbow.getDirection() + 5)

elif code == KeyEvent.VK_SPACE:
if crossbow.getIdVisible() == 1: # Wait until crossbow is loaded

return
 crossbow.show(1) # crossbow is released
 dart = Dart(100)
 a ddActorNoRefresh(dart, crossbow.getLocation(),
 crossbow.getDirection())

screenWidth = 600
screenHeight = 400
g = 9.81

makeGameGrid(screenWidth, screenHeight, 1, False, keyPressed = keyCallback)
setTitle("Use Cursor up/down to target, Space to shoot.")
setBgColor (makeColor("skyblue"))
crossbow = Crossbow()
addActor(crossbow, Location(80, 320))
setSimulationPeriod(30)
doRun()
show()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

When calling the constructor of the class Actor you indicate whether the actor is rotatable and

whether it is assigned more than one sprite image. [more...]

You rotate the direction of the arrow continuously into the direction of the velocity so that it has

a natural flight appearance.

FRUIT FACTORY AND MOVING FRUITS

Your program should use three different types of fruits: melons, oranges and strawberries. The

fruits are continuously generated in a random order and then move from the upper right edge to

the left with a randomly varied horizontal speed on a parabolic trajectory. The three different

types of fruit have many similarities and just a few small differences. It would therefore not be a

good idea to derive the classes Melon, Orange, and Strawberry directly from Actor, because you

would have to re-implement the shared properties in each class which leads to frowned-upon

duplicated code. In this situation, it is appropriate to define a helper class Fruit where the the

similarities can be implemented and where the specific fruits Melon, Orange, and Strawberry can

be derived from..

You delegate the generation of fruit to a type of class called factory class. Although it does not

have a sprite image, you can (also) derive it from Actor so that act() can be used to produce new

fruits. A Factory class has a specific feature: Although it produces multiple fruits, there is only a

Page 242

single instance [more...]. Because of this, it is not common to include a constructor which is

intended for the creation of multiple instances. Factory classes therefore have a method called

create() (or a similarly meaningful name), that creates a single object of the class and returns it

as a function value. Each subsequent call of create() then merely provides the already created

factory instance.

Since the method create() is invoked without an instance,

it must be statically defined with @staticmethod.

At the creation of the FruitFactory, the maximum number of

fruits that the factory can create is specified in the variable

capacity. Also, each Actor can call setSlowDown() to slow

down the calling frequency of act().

from gamegrid import *
i mport random

---------- class Fruit ------------------------
class Fruit (Actor):

def __init__(self, spriteImg, vx):
 Ac tor.__init__(self, True, spriteImg, 2) # rotatable, 2 sprites
 self.vx = vx
 se lf.vy = 0

def reset(self): # Called when Fruit is added to GameGrid
 self.px = self.getX()
 se lf.py = self.getY()

def act(self):
 se lf.movePhysically()
 self.turn(10)

def movePhysically(self):
 s elf.dt = 0.002 * getSimulationPeriod()
 self.vy = self.vy + g * self.dt # vx = const
 self.px = self.px + self.vx * self.dt
 se lf.py = self.py + self.vy * self.dt
 self.setLocation(Location(int(self.px), int(self.py)))
 self.cleanUp()

def cleanUp(self):
if not self.isInGrid():

 self.removeSelf()

------ class Melon -----------
class Melon (Fruit):

def __init__(self, vx):
 Fr uit.__init__(self, "sprites/melon.gif" , vx)

------ class Orange -----------
class Orange (Fruit):

def __init__(self, vx):
 Fr uit.__init__(self, "sprites/orange.gif" , vx)

------ class Strawberry -----------
class Strawberry (Fruit):

def __init__(self, vx):
 F r uit.__init__(self, "sprites/strawberry.gif" , vx)

------------------- class FruitFactory -------------------
c l ass FruitFactory (Actor):
 myFrui tFactory = None
 myCapacity = 0

Page 243

 nbGenerated = 0

 @sta t icmethod
def create(capacity, slowDown):

if FruitFactory.myFruitFactory == None:
 FruitFactory.myCapacity = capacity
 FruitFactory.myFruitFactory = FruitFactory()
 FruitFactory.myFruitFactory.setSlowDown(slowDown)

slows down act() call for this actor
return FruitFactory.myFruitFactory

def act(self):
if FruitFactory.nbGenerated == FruitFactory.myCapacity:

print "Fact ory expired"
return

 vx = -(random.random() * 20 + 30)
 r = random.randint(0, 2)

if r == 0:
 fruit = Melon(vx)

elif r == 1:
 fruit = Orange(vx)

else :
 fruit = Strawberry(vx)
 FruitFactory.nbGenerated += 1
 y = int(random.random() * screenHeight / 2)

addActorNoRefresh(fruit, Location(screenWidth-50, y), 180)

------ End of class definitions --------------------

FACTORY_CAPACITY = 20
FACTORY_SLOWDOWN = 35
screenWidth = 600
screenHeight = 400
g = 9.81

makeGameGrid(screenWidth, screenHeight, 1, False)
setTitle("Use Cursor up/down to target, Space to shoot.")
setBgColor (makeColor("skyblue"))
factory = FruitFactory.create(FACTORY_CAPACITY, FACTORY_SLOWDOWN)
addActor(factory, Location(0, 0)) # needed to run act()
setSimulationPeriod(30)
doRun()
sho w()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

In a static method, the parameter self is not available. Therefore, all variables assigned in

create() must be static variables (the class name is prepended) [more...].

Certain functions or methods may still be incompletely coded in a development phase. You can,

for example, merely write out to the console that they have been called. You do this here by

printing "Factory expired". With the adding of actors in the GameGrid using addActor(), the

image buffer is automatically rendered on the screen so that the actor is immediately visible.

As soon as the simulation cycle is started, the rendering happens at every cycle anyway. That

is why in this case, you should use addActorNoRefresh() since rendering too frequently can

cause the screen to flicker.

ASSEMBLING AND DEALING WITH COLLISIONS

The two program parts just written may well have been developed by two research groups. The

Page 244

next task is to merge these parts, which is not always easy. However, if the programming style

is consistent and mostly decoupled as it is here, merging the code is significantly easier.

Additionally, you will incorporate a new functionality where the fruits are cut in half when they

are hit by an arrow. We have already prepared this, as the fruits have two sprite images: one for

the whole fruit and one for the halved fruit.

As you already know, collisions between actors are detected by a collision event. For this, you

determine what the possible collision partners are for each actor. Consider the following: when

creating an arrow, all currently existing fruits are potential collision partners.

However, do not forget that more fruits are added during the movement of the arrow. That is

why you also need to declare all existing arrows (maybe there is only one) as collision partners

when creating a fruit.

In JGameGrid you can also pass addCollisionActors() a whole list of actors as collision partners

(more specifically an ArrayList). With getActors(class) you will get a list with all the actors of the

specified class, which you can pass on after converting it to an ArrayList.

from gamegrid import *
i mport random
import math

---------- class Fruit ------------------------
class Fruit (Actor):

def __init__(self, spriteImg, vx):
 A c tor.__init__(self, True, spriteImg, 2)
 self.vx = vx
 self.vy = 0
 self.isSliced = False

def reset(self): # Called when Fruit is added to GameGrid
 self.px = self.getX()
 se lf.py = self.getY()

def act(self):
 se lf.movePhysically()
 self.turn(10)

def movePhysically(self):
 se lf.dt = 0.002 * getSimulationPeriod()
 self.vy = self.vy + g * self.dt
 self.px = self.px + self.vx * self.dt
 self.py = self.py + self.vy * self.dt
 self.setLocation(Location(int(self.px), int(self.py)))
 self.cleanUp()

def cleanUp(self):
if not self.isInGrid():

 self.removeSelf()

Page 245

def sliceFruit(self):
if not se l f.isSliced:

 self.isSliced = True
 self.show(1)

def collide(self, actor1, actor2):
 act or1.sliceFruit()

return 0

------ class Melon -----------
class Melon (Fruit):

def __init__(self, vx):
 Fr uit.__init__(self, "sprites/melon.gif" , vx)

------ class Orange -----------
class Orange (Fruit):

def __init__(self, vx):
 F r uit.__init__(self, "sprites/orange.gif" , vx)

------ class Strawberry -----------
class Strawberry (Fruit):

def __init__(self, vx):
 Fr uit.__init__(self, "sprites/strawberry.gif" , vx)

------------------- class FruitFactory -------------------
cl ass FruitFactory (Actor):
 myCapa city = 0
 myFruitFactory = None
 nbGenerated = 0

 @staticmethod

def create(capacity, slowDown):
if FruitFactory.myFruitFactory == None:

 FruitFactory.myCapacity = capacity
 FruitFactory.myFruitFactory = FruitFactory()
 FruitFactory.myFruitFactory.setSlowDown(slowDown)

return FruitFactory.myFruitFactory

def act(self):
 s elf.createRandomFruit()

def createRandomFruit(self):
if FruitFactory.nbGenerated == FruitFactory.myCapacity:

print "Fact ory expired"
return

 vx = -(random.random() * 20 + 30)
 r = random.randint(0, 2)

if r == 0:
 fruit = Melon(vx)

elif r == 1:
 fruit = Orange(vx)

else :
 fruit = Strawberry(vx)
 FruitFactory.nbGenerated += 1
 y = int(random.random() * screenHeight / 2)
 addActorNoRefresh(fruit, Location(screenWidth-50, y), 180)

for a new fruit, the collision partners are all existing da rts
 fruit.addCollisionActors(toArrayList(getActors(Dart)))

------------------- class Crossbow -----------------------
cl ass Crossbow (Actor):

def __init__(self):
 A c tor.__init__(self, True, "sprites/crossbow.gif" , 2)

------ class Dart ----------------
class Dart (Actor):

def __init__(self, speed):

Page 246

 Actor.__init__(self, True, "sprites / dart.gif")
 se lf.speed = speed
 self.dt = 0.005 * getSimulationPeriod()

Called when actor is added to GameGrid
def reset(self):

 se lf.px = self.getX()
 self.py = self.getY()
 dx = math.cos(math.radians(self.getDirectionStart()))
 self.vx = self.speed * dx
 dy = math.sin(math.radians(self.getDirectionStart()))
 self.vy = self.speed * dy

def act(self):
 se lf.vy = self.vy + g * self.dt
 self.px = self.px + self.vx * self.dt
 self.py = self.py + self.vy * self.dt
 self.setLocation(Location(int(self.px), int(self.py)))
 self.setDirection(math.degrees(math.atan2(self.vy, self.vx)))

if not self.isInGrid():
 self.removeSelf()
 crossbow.show(0) # Load crossbow

def collide(self, actor1, actor2):
 ac tor2.sliceFruit()

return 0

------ End of class definitions --------------------

def keyCallback(e):
 code = e.getKeyCode()

if code == KeyEvent.VK_UP:
 cr ossbow.setDirection(crossbow.getDirection() - 5)

elif code == KeyEvent.VK_DOWN:
 cr ossbow.setDirection(crossbow.getDirection() + 5)

elif code == KeyEvent.VK_SPACE:
if crossbow.getIdVisible() == 1: # Wait until crossbow is loaded

return
 crossbow.show(1) # crossbow is released
 dart = Dart(100)
 a ddActorNoRefresh(dart, crossbow.getLocation(),
 crossbow.getDirection())

for a new dart, the collision partners are all existing fru its
 dart.addCollisionActors(toArrayList(getActors(Fruit)))

FACTORY_CAPACITY = 20
FACTORY_SLOWDOWN = 35
screenWidth = 600
screenHeight = 400
g = 9.81

makeGameGrid(screenWidth, screenHeight, 1, False, keyPressed = keyCallback)
setTitle("Use Cursor up/down to target, Space to shoot.")
setBgColor (makeColor("skyblue"))
factory = FruitFactory.create(FACTORY_CAPACITY, FACTORY_SLOWDOWN)
addActor(factory, Location(0, 0)) # needed to run act()
crossbow = Crossbow()
addActor(c rossbow, Location(80, 320))
setSimulationPeriod(30)
doRun()
show()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 247

MEMO

Once you have declared the collision partners of your actor with addCollisionActor() or

addCollisionActors(), you have to insert the method collide() in the class of the actor which is

automatically called at each collision. The return value must be an integer that determines how

many simulation cycles collision will now be deactivated (in this case 0). A number greater than

0 is sometimes necessary so that the two partners have time to separate before collisions

become active again.

Also note that in collide(self, actor1, actor2)) actor1 is the actor of the class, in which

collide() is defined.

Collision areas are the surrounding rectangles of the sprite image by default (of course they are

rotated along with the rotation of the actors). For the dart, you could also set the collision area

to a circle around the arrowhead, so that the fruits that collide with the back part of the arrow

do not get halved.

setCollisionCircle(Point(20, 0), 10)

DISPLAYING THE GAME STATE AND DEALING WITH GAME OVER

For dessert, you refine the code by incorporating a game score and user information. The easiest

way is to write them out in a status bar.

As you already know, it is favorable to implement a game supervisor in the main part of the

program. It should write out the number of the hit and missed fruits and end the game when the

fruit factory reaches its capacity. It shows the final score, generates a Game Over actor, and

prevents the game from continuing on.

from gamegrid import *
import random
import math

---------- class Fruit ------------------------
class Fruit (Actor):

def __init__(self, spriteImg, vx):
 A c tor.__init__(self, True, spriteImg, 2)
 self.vx = vx
 self.vy = 0
 self.isSliced = False

def reset(self): # Called when Fruit is added to GameGrid
 self.px = self.getX()
 se lf.py = self.getY()

def act(self):
 se lf.movePhysically()
 self.turn(10)

def movePhysically(self):
 se lf.dt = 0.002 * getSimulationPeriod()
 self.vy = self.vy + g * self.dt
 self.px = self.px + self.vx * self.dt
 self.py = self.py + self.vy * self.dt
 self.setLocation(Location(int(self.px), int(self.py)))
 self.cleanUp()

def cleanUp(self):
if not self.isInGrid():

if not self.isSliced:
 FruitFactory.nbMissed += 1
 self.removeSelf()

Page 248

def sliceFruit(self):
if not se l f.isSliced:

 self.isSliced = True
 self.show(1)
 FruitFactory.nbHit += 1

def collide(self, actor1, actor2):
 act or1.sliceFruit()

return 0

------ class Melon -----------
class Melon (Fruit):

def __init__(self, vx):
 Fr uit.__init__(self, "sprites/melon.gif" , vx)

------ class Orange -----------
class Orange (Fruit):

def __init__(self, vx):
 F r uit.__init__(self, "sprites/orange.gif" , vx)

------ class Strawberry -----------
class Strawberry (Fruit):

def __init__(self, vx):
 Fr uit.__init__(self, "sprites/strawberry.gif" , vx)

------------------- class FruitFactory -------------------
cl ass FruitFactory (Actor):
 myCapa city = 0
 myFruitFactory = None
 nbGenerated = 0
 nbMissed = 0
 nbHit = 0

 @staticmethod

def create(capacity, slowDown):
if FruitFactory.myFruitFactory == None:

 FruitFactory.myCapacity = capacity
 FruitFactory.myFruitFactory = FruitFactory()
 FruitFactory.myFruitFactory.setSlowDown(slowDown)

return FruitFactory.myFruitFactory

def act(self):
 s elf.createRandomFruit()

 @staticmethod
def createRandomFruit():

if FruitFactory.nbGenerated == FruitFactory.myCapacity:
return

 vx = -(random.random() * 20 + 30)
 fr uitClass = random.choice([Melon, Orange, Strawberry])
 fruit = fruitClass(vx)
 FruitFactory.nbGenerated += 1
 y = int(random.random() * screenHeight / 2)
 addActorNoRefresh(fruit, Location(screenWidth-50, y), 180)

for a new fruit, the collision partners are all existing da rts
 fruit.addCollisionActors(toArrayList(getActors(Dart)))

------------------- class Crossbow -----------------------
cl ass Crossbow (Actor):

def __init__(self):
 Ac tor.__init__(self, True, "sprites/crossbow.gif" , 2)

------ class Dart ----------------
class Dart (Actor):

def __init__(self, speed):
 A c tor.__init__(self, True, "sprites/dart.gif")
 se lf.speed = speed
 self.dt = 0.005 * getSimulationPeriod()

Page 249

Called when actor is added to GameGrid
def reset (self):

 se lf.px = self.getX()
 self.py = self.getY()
 dx = math.cos(math.radians(self.getDirectionStart()))
 self.vx = self.speed * dx
 dy = math.sin(math.radians(self.getDirectionStart()))
 self.vy = self.speed * dy

def act(self):
if isGameOver:

return
 self.vy = self.vy + g * self.dt
 se lf.px = self.px + self.vx * self.dt
 self.py = self.py + self.vy * self.dt
 self.setLocation(Location(int(self.px), int(self.py)))
 self.setDirection(math.degrees(math.atan2(self.vy, self.vx)))

if not self.isInGrid():
 self.removeSelf()
 crossbow.show(0) # Load crossbow

def collide(self, actor1, actor2):
 ac tor2.sliceFruit()

return 0

------ End of class definitions --------------------

def keyCallback(e):
 code = e.getKeyCode()

if code == KeyEvent.VK_UP:
 cr ossbow.setDirection(crossbow.getDirection() - 5)

elif code == KeyEvent.VK_DOWN:
 cr ossbow.setDirection(crossbow.getDirection() + 5)

elif code == KeyEvent.VK_SPACE:
if isGameOver:

return
if crossbow .getIdVisible() == 1: # Wait until crossbow is loaded

return
 crossbow.show(1) # crossbow is released
 dart = Dart(100)
 a ddActorNoRefresh(dart, crossbow.getLocation(), crossbow.getDirection())

for a new dart, the collision partners are all existing fru its
 dart.addCollisionActors(toArrayList(getActors(Fruit)))

FACTORY_CAPACITY = 20
FACTORY_SLOWDOWN = 35
screenWidth = 600
screenHeight = 400
g = 9.81
isGameOver = False

makeGameGrid(screenWidth, screenHeight, 1, False, keyPressed = keyCallback)
setTitle("Use Cursor up/down to target, Space to shoot.")
setBgColor (makeColor("skyblue"))
addStatusB ar(30)
factory = FruitFactory.create(FACTORY_CAPACITY, FACTORY_SLOWDOWN)
addActor(factory, Location(0, 0)) # needed to run act()
crossbow = Crossbow()
addActor(c rossbow, Location(80, 320))
setSimulationPeriod(30)
doRun()
show()

while not isDisposed() and not isGameOver:
Don't show message if same

 oldMsg = ""
 msg = "#hit: " +str(FruitFactory.nbHit)+ " #missed: " +str(FruitFactory.nbMissed)

if msg != oldMsg:

Page 250

 setStatusText(msg)
 oldMsg = msg

if FruitFactory.nbHit + FruitFactory.nbMissed == FACTORY_CAPACI TY:
 isGameOver = True
 removeActors(Dart)
 setStatusText("You smashed " + str(FruitFactory.nbHit) + " out of "
 + s tr(FACTORY_CAPACITY) + " fruits")
 add Actor(Actor("sprites/gameover.gif"), Location(300, 200))

 delay(100)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

Most user actions should not be allowed at Game Over. The easiest way to implement this is to

introduce a flag isGameOver = True with which you prohibit the actions using a premature

return in the corresponding functions and methods.

You should still be allowed to move the crossbow at Game Over, but not shoot.

EXERCISES

1. Count the number of arrows and restrict it to a reasonable maximum number. Once you

have used up the specified amount of arrows, the game will also be over. Add appropriate

status information too.

2. Add a point score system for the halving of the fruits:

Melon: 5 points

Orange: 10 points

Strawberry: 15 points

3. Make it so that when you press the Enter key after Game Over, the game starts over.

4. Expand or modify the game with some of your own ideas.

Page 251

Most Important Methods of the Library Class JGameGrid

Module import: from gamegrrid import *

Class GameGrid (global functions when makeGameGrid() is called)

Method Action

GameGrid(nbHorzCells, nbVertCells,

cellSize, color)

generates a game window with a given number of horizontal and

vertical cells, a given cell size, visible grid lines in a given color,

and a navigation bar

GameGrid(nbHorzCells, nbVertCells,

cellSize, color, bgImagePath)

generates a game window with a given number of horizontal and

vertical cells, a given cell size, grid lines, a background image,

and a navigation bar

GameGrid(nbHorzCells, nbVertCells,

cellSize, None, bgImagePath, False)

generates a game window with a given number of horizontal and

vertical cells, a given cell size, no grid lines, a background image,

and no navigation bar

act() calls periodically after the start of the simulation cycle

addActor(actor, location) adds the actor to the game window at the given position

addKeyListener(listener) registers the keyboard listener

addMouseListener(listener,

mouseEventMask)

registers the mouse listener

addStatusbar(height) adds a status window to GameGrid

delay(time) waits for a set amount of time (in milliseconds)

doPause() pauses the simulation cycle

doStep() performs the simulation step by step

doReset() sets all actors at the starting position and restarts the simulation

doRun() starts the simulation cycle

getActors(Actor class) returns all actors of a given class in a list

getBg() returns the reference to GGBackground

getBgColor() returns the background color

getKeyCode() returns the key code of the last pressed key

getOneActorAt(location) returns the first actor in the given cell (zero if none)

getOneActor(Actor class) returns the first actor of the given class (zero if none)

getRandomEmptyLocation() returns a random empty cell location

getRandomLocation() returns a random cell location

hide() hides the game window without closing it

isAtBorder(location) returns True if the cell is located at the edge of the game window

isEmpty(location) returns True if the cell is empty

isInGrid(location) returns True if the cell is inside of the game window

kbhit() returns True if a key has been pressed

toLocation(x, y) returns the cells with the pixel coordinates x and y

openSoundPlayer("wav/ping.wav") produces a sound file. The following sounds are available in

tigerjython.jar: bird.wav, boing.wav, cat.wav,

click.wav,explore.wav,frog.wav. notify.wav, boing.wav

play() plays the provided sound

refresh() refreshes the game window

Page 252

registerAct(onAct) registers the callback onAct that is called in every simulation cycle

registerNavigation(started=onStart,

stepped=onStep, paused=onPause,

resetted = onReset, periodChanged =

onPerionChange)

registers the callbacks onStart, onStep, onPause, onReset,

onPeriodChange that are called when the navigation bar is visible

(not all necessary)

removeActor (actor) removes an actor from the game window

removeActorsAt(location) removes all actors located in the specified cell

removeAllActors() removes all actors from the game window

reset() puts the defined simulation back to the starting position, with the

exception of actors which have already been removed

show() shows the game window

setBgColor(color) sets the background color

setSimulationPeriod (milisec) sets the period of the simulation loop

setStatusTest(text) sets the text in the status bar

setTitle(text) sets the title in the window title bar

Class Actor

Actor(spritepath) generates an actor with the given sprite

Actor(True, spritepath) generates a rotatable actor with the given sprite

Actor(spritepath, nbSprites) generates an actor with multiple sprites (index _0, _1,...

e.g..fish_0.gif , fish_1.gif,...)

Actor(True, spritepath, nbSprites) generates a rotatable actor with multiple sprites

act() calls periodically after the start of the simulation cycle

addActorCollisionListener(listener) registers the collision listener

addCollisionActor(actor) registers the collision partner

addMouseTouchListener (listener) registers the MouseTouchListener

collide(actor1, actor2) callback when a collision occurs, returns the number of simulation

cycles, while the other events are suppressed

getCollisionActors() returns a list of the collision candidates

getDirection() returns the direction of movement

getIdVisible() returns the Id of the visible sprites

getNeighbours(distance) returns a list of all actors that are the given distance away

getNextMoveLocation (location) returns the location after the next move()

getX() returns the current horizontal cell coordinate

getY() returns the current vertical cell coordinate

hide() hides the actor, but does not remove it. After reset() it becomes

visible again

isInGrid() returns True if the actor is located inside of the game window

isHorzMirror() returns True if the figure is mirrored horizontally

isVertMirror() returns True if the figure is mirrored vertically

isMoveValid() returns True if a move() of the actor stays inside of the window

isNearBorder() returns True if the actor is located near the edge of the window

isVisible() returns True if the actor is visible

move() moves the actor with the current direction into an adjacent cell

move(distance) moves the actor to the given distance

Page 253

reset() called if the actor is added to the GameGrid or if the reset button

is pressed

setCollisionCircle (spriteId,center,

radius)

sets the circle within the actors which is used for collisions

setCollisionLine(spriteId, startPoint,

endPoint)

sets the line within the actors which is used for collisions

setCollisionRectangle(spriteId, center,

width, height)

sets the rectangle within the actors which is used for collisions

setCollisionSpot(spriteId, spot) sets the point within the actors which is used for collisions

setCollisionImage(spriteId) wählt für die Kollision nicht transparente Pixel . Nur verfügbar,

wenn der Partner spot, line oder circle verwendet

setHorzMirror(True) flips the image horizontally

setVertMirror(True) flips the image vertically

setSlowDown(factor) slows the call of the method act() for actors with the given factor

setLocation(location) places the actor in the given cell

setLocationOffset(point) shifts the middle of the sprite image relative to the center of the

cell (location not changed)

setPixelLocation(location) sets the actor to the given pixel coordinate (location/offset can be

customized)

setX(x) sets the x-coordinate to the specified value

setY(y) sets the y-coordinate to the specified value

show() makes the sprite with the ID 0 visible

show(spriteId) makes the sprite with the specified ID visible

showNextSprite () shows the next sprite image (spriteId increases by 1 (modulo

nbSprites))

showPreviousSprite() shows the previous sprite image (spriteId -1 becomes nbSprites -

1)

removeSelf() removes the actor. After reset() it no longer appears

reset() is called by GameGrid.addActor() and when the reset button is

pressed

turn(angle) changes the direction of movement by the given angle (in degrees

clockwise)

Class Location

Location(x, y) generates a location object with the given horizontal and vertical

cell coordinates

Location(location) generates a location object with the given location (clone)

clone() returns the new location with the same coordinates

equals(location) returns True if the current location is identical to the one given

above

get4CompassDirectionTo(location) returns a list with 4 adjacent locations (WEST, EAST, NORTH,

SOUTH)

getCompassDirectionTo(location) returns a list of 8 neighboring locations (also diagonally)

getDirectionTo(location) returns the direction of the current to the given position in degrees

(0 degrees = east)

getNeighbourLocation(direction) returns one of the 8 neighboring cells. It returns the cell that is

closest to the given direction

Page 254

getNeighbourLocations(distance) returns a list of all the cells with centers inside of the given

distance

getX() returns the current horizontal cell coordinate

getY() returns the current vertical cell coordinate

Class GGBackground

clear() clears the background and fills it with the current background color

clear(color) clears the background and fills it with the given background color

drawCircle(center, radius) draws a circle with the given center and radius (pixel coordinates)

drawLine(x1,y1, x2, y2) draws a line with the given end points (pixel coordinates)

drawLine(pt1, pt2) draws a line with the given end points (pixel coordinates)

drawPoint(pt) draws a point (pixel coordinates)

drawRectangle(pt1, pt2) draws a rectangle with the given diagonal vertices (pixel

coordinates)

drawText(text, pt) writes text to the position with the given starting point (pixel

coordinates)

fillCell(location, color) fills the given cell with the given color (pixel coordinates)

fillCircle(center,radius) draws a filled circle with the given center and radius (pixel

coordinates)

getBgColor() returns the current background color

getColor(location) returns the background color in the center of a cell (actors are not

taken into account)

save() saves the current background

setBgColor(color) changes the background color

setFont(font) sets the font

setLineWidth(width) sets the line width

setPaintColor(color) sets the drawing color

setPaintMode() draws regardless of the existing background

setXORMode(color) the second drawing produces a background again??

restore() restores the previously saved background

Page 255

 Learning Objectives

You can solve simple stochastic problems with a computer simulation using random

numbers.

You understand that random experiments are subject to statistical fluctuations, you can

represent results as a frequency distribution and interpret them.

You can examine the significance of a sample using a computer simulation and you know the

concept of chi-square tests.

 You know how to use the computer to simulate populations.

 You know what the Mandelbrot set is and how to represent it graphically.

 You know what fundamentals and overtones are and you know the concept of a spectrum.

"I only believe in statistics that I doctored myself."

Attributed to Winston Churchill

Page 256

8.1 SIMULATIONS

 INTRODUCTION

Computer simulations do not only play an important role in research and in the industry, but
also also in the finance world. They are used to simulate the behavior of a real system using a
computer. Computer simulations have the advantage of being inexpensive and
environmentally friendly, as well as safe, compared to real experiments and studies.
However, they can usually never reflect reality with full accuracy. There are many reasons for
this:

reality can never be perfectly represented by numbers due to errors in measurement
(except for in enumerations)

often the interaction of the components is not precisely known, since either the
underlying laws are not exact [more...] or not all influences are taken into account
[more...]

Nevertheless, computer simulations are becoming more and more precise with increasing
computational power, just think of the weather forecasts for the next few days.

Chance plays an exceptionally big role in our lives, as we make many decisions based on an
intuitive assessment of probabilities and not just on the basis of purely logical arguments.

However, the use of chance can also greatly simplify problems with exact solutions. One
example is that it can be very time consuming to exactly determine the shortest possible path
from A to B on a road map with many different connection possibilities using an algorithm; it
is sufficient for practical use to find the most probably shortest possible path [more...]

PROGRAMMING CONCEPTS: Computer simulation. computer experiment, statistical

fluctuations

 THE COMPUTER AS A GAME PARTNER

Your companion Nora suggests the following game:
"You can throw three dice. If you roll a six, you win and
I'll give you a marble. If you don't roll a six, I win and
you have to give me a marble".

At first glance the game appears to be fair because you
think about it quickly and realize that for each die, the
probability of rolling a six is 1/6, and so the chance to
roll a six in the first, second, or third turn is 1/6 + 1/6
+ 1/6 = 1/2.

You can verify this thought process with the computer and your programming skills. You
thereby assume that it does not matter whether you roll the 3 dice consecutively or all at the
same time. So in other words, the probability of a die to obtain a certain number is
independent of the other dice and it is always 1/6.
There are two ways to tackle the problem, either statistically or combinatorially. The
statistical solution corresponds to the real game. You simulate the throwing of the dice by
repeatedly generating 3 random numbers between 1 and 6 and then counting the winning
cases.

Page 257

from random import randint

n = 1000 # number of games
won = 0
repeat n:
 a = randint(1, 6)
 b = randint(1, 6)
 c = randint(1, 6)
 if a == 6 or b == 6 or c == 6:
 won += 1

print "Won:", won, " of ", n, "games"
print "My winning percentage:", won / n

Highlight program code (Ctrl+C copy, Ctrl+V paste)

The result is a winning percentage of about 0.42, not 0.5 as you expected. The value easily
changes from simulation to simulation though, because it is subject to statistical

fluctuations. As you might intuitively expect, the result is more accurate the more tests

you do.

Statistical fluctuations are of great importance in computer simulations.

In order to examine them, you conduct
the experiment with purposely few games
(let's say 100) many times (let's say
10000 times) and draw a frequency

diagram of the games won. It results in

an interesting bell-shaped distribution,

typical for statistics.

You use a GPanel as a graphics window in
the program. You can also display a
coordinate grid using drawGrid().
Implement a single hundred-times test

with the function sim(), which returns the
number of games won whose fluctuations
you want to investigate.

from gpanel import *
from random import randint

z = 10000
n = 100

def sim():
 won = 0
 repeat n:
 a = randint(1, 6)
 b = randint(1, 6)
 c = randint(1, 6)
 if a == 6 or b == 6 or c == 6:
 won += 1
 return won

makeGPanel(-10, 110, -100, 1100)
drawGrid(0, 100, 0, 1000)
h = [0] * (n + 1)
title("Simulation started. Please wait...")

Page 258

repeat z:
 x = sim()
 h[x] += 1
title("Simulation ended")

lineWidth(2)
setColor("blue")
for x in range(n + 1):
 line(x, 0, x, h[x])

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The maximum of the distribution is approximately at 42, since the probability of winning is
around 0.42 and you play 100 games each time. If you play 100 times with Nora it is possible
that you win the game over 50 times, despite your only 0.42 chance of winning. However, the
probability for this is quite low (ca. 5 %) and therefore the game is not fair. Computer
experiments with random numbers are subject to statistical fluctuations that get smaller the
larger number of attempts.

For the combinatorial solution, you let the computer run all possible rolls with 3 dice one after
another. The first, second, and third roll can each result in a number from 1 to 6. In the
nested for loop you form all triples of numbers and count the total possibilities with the
variable possible, whereas you count your winning cases which contain at least one 6 with the

variable favorable.

possible = 0
favorable = 0
for i in range(1, 7):
 for j in range(1, 7):
 for k in range(1, 7):
 possible += 1
 if i == 6 or j == 6 or k == 6:
 favorable += 1
print "favorable:", favorable, "possible:", possible
print "My winning percentage:", guenstige / possible

Highlight program code (Ctrl+C copy, Ctrl+V paste)

This results in 91 favorable of 216 possible cases and thus a winning probability w = favorable

/ possible of 91/216 = 0.42, which you also get with the computer simulation.

ADDITIONAL MATERIAL

You could, of course, also solve this problem entirely without a computer. For this, think of
the following: There are three possible winning events E1, E2, E3:

E1: Getting a 6 on the first roll. Probability: 1/6

E2: No 6 in the first roll, but a 6 in the second round.
Probability: 5 /6 * 1/6

E3: No 6 in either the first or second roll, but a 6 in the third round.

Probability: 5/6 * 5 /6 * 1/6

Since E1, E2, and E3 are independent of each other, the probability is the sum, i.e. 1 /6 + 5
/36 + 25 /216 = 91/216 = 0.421296.

Page 259

You can display the process as a tree:

There is also an ideal way to get the solution: the probability of rolling no 6's at all is p = 5/6
* 5/6 * 5/6 = 125/216. Therefore, the desired probability is w = 1 - p = 91/216.

EXERCISES

1. The Duke Ferdinando de Medici of Florenz determined in the year 1600 that when
throwing 3 dice a total of 9 or 10 pips (the dots on the die) can be obtained with a same
number of possibilities:

Sum of pips 9 Sum of pips 10

1 + 2 + 6 1 + 3 + 6

1 + 3 + 5 1 + 4 + 5

2 + 2 + 5 2 + 2 + 6

2 + 3 + 4 2 + 3 + 5

3 + 3 + 3 2 + 4 + 4

The Duke found, however, that rolling the totals of 9 and 10 are not equally probable
and he asked mathematics professor Galileo Galilei for advice. Calculate these
probabilities with a computer simulation in two ways:

a. statistically
b. combinatorially

2. Using a statistical computer simulation, determine the probability that at least two
children have the same birthday (no leap year) in a class of (at least) 20 children.

3. In 1650 in Paris, the Chevalier de Méré asked the mathematician Blaise Pascal about the
odds of the following two events:
a. rolling at least one 6 after 4 rolls
b. rolling at least one double 6 after 24 rolls.
He believed that the odds of winning are equal, since even though with b) the probability
of winning is 6 times as low, there 6 times as many tries. Was he right?

4*. In the game with Nora, determine how high the probability is that you win more than 50
times in a game consisting of 100 rolls.

Page 260

8.2 POPULATIONS

INTRODUCTION

Computer simulations are often used to make predictions about the behavior of a system in the

future, based on time observation or a certain time span in the recent past. Such predictions can

be of great strategic significance and can prompt us, for example, to rethink early enough in a

scenario leading to a catastrophe. Hot topics today are the prediction of the global climate and

population growth.

We understand a population as a system of individuals whose number changes as a result of

internal mechanisms, interactions, and external influences over the course of time. If external

influences are disregarded, we speak of a closed system. For many populations the change in

population size is proportional to the current size of the population. The change of the current

value is calculated from the growth rate as follows:

new value - old value = old value * growth rate * time interval

Because the left shows the difference of the new value from the old value, this relationship is

called a difference equation. The growth rate can also be interpreted as an increase probability

per individual and time unit. If it is negative, it decreases the size of the population. The growth

rate may well change over the course of time.

PROGRAMMING CONCEPTS: Difference equation, growth rate, exponential/limited growth, life

table, population pyramid, predator-prey system

EXPONENTIAL GROWTH

Population projections are of great interest and can massively affect the political decision-making

process. The latest example is that of the debate going on about the regulation of the proportion

of foreigners in the population.

You can find the number of inhabitants in Switzerland each year for the years 2010 and 2011

from the Swiss Federal Statistical Office (source:: http://www.bfs.admin.ch, keyword:

STAT-TAB):

2010: Total z0 = 7 870 134, of which s0 = 6 103 857 are Swiss

2011: Total z1 = 7 954 662, of which s1 = 6 138 668 are Swiss

Can you create a forecast of the proportion of foreigners for the next 50 years from this

information? You should first calculate the number of foreigners using the numbers a0 = z0 - s0

and a1 = z1 - s0 and from this the annual growth rate between 2010 and 2011 for Swiss and

foreigners.

rs =
s1 - s0

s0
= 0.57% bzw. ra =

a1 - a0
a0

= 2.81%

Page 261

It should now be easy for you to

investigate the composition of the

population for the next 50 years, provided

that these growth rates remain the

same. You can do this with a calculator, a

spreadsheet program, or with Python. You

can visualize the calculated values in a

graph.

from gpanel import *

source: Swiss Federal Statistical Office, STAT-TAB

z2010 = 7870134 # Total 2010

z2011 = 7954662 # Total 2011

s2010 = 6103857 # Swiss 2010

s2011 = 6138668 # Swiss 2011

def drawGrid():

Horizontal

for i in range(11):

 y = 2000000 * i

 line(0, y, 50, y)

 text(-3, y, str(2 * i))

Vertical

for k in range(11):

 x = 5 * k

 line(x, 0, x, 20000000)

 text(x, -1000000, str(int(x + 2010)))

def drawLegend():

 setColor("lime green")

 y = 21000000

 move(0, y)

 draw(5, y)

 text("Swiss")

 setColor("red")

 move(15, y)

 draw(20, y)

 text("foreigner")

 setColor("blue")

 move(30, y)

 draw(35, y)

 text("Total")

makeGPanel(-5, 55, -2000000, 22000000)

title("Population growth extended")

drawGrid()

drawLegend()

a2010 = z2010 - s2010 # foreigners 2010

a2011 = z2011 - s2011 # foreigners 2011

lineWidth(3)

setColor("blue")

line(0, z2010, 1, z2011)

setColor("lime green")

Page 262

line(0, s2010, 1, s2011)

setColor("red")

line(0, a2010, 1, a2011)

rs = (s2011 - s2010) / s2010 # Swiss growth rate

ra = (a2011 - a2010) / a2010 # foreigners growth rate

iteration

s = s2011

a = a2011

z = s + a

sOld = s

aOld = a

zOld = z

for i in range(0, 49):

 s = s + rs * s # model assumptions

 a = a + ra * a # model assumptions

 z = s + a

 setColor("blue")

 line(i + 1, zOld, i + 2, z)

 setColor("lime green")

 line(i + 1, sOld, i + 2, s)

 setColor("red")

 line(i + 1, aOld, i + 2, a)

 zOld = z

 sOld = s

 aOld = a

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

As you can gather from the figures, the proportion of foreigners doubles from 2010 to 2035, so

just within 25 years, and in another 25 years it quadruples. The population size obviously

increases proportionally to the constant growth rate. If T is the doubling time, the population

size y after time t for an initial size A is apparently:

y = A * 21/T

Since time is in the exponent, this rapid growth is called an exponential growth.

LIMITED GROWTH

Many populations reside in an environment with limited resources. The rapid exponential

increase with a constant growth rate r is therefore bounded. Already about 100 years ago the

biologist Carlson determined the following quantities (mg) for a yeast bacteria culture after each

hour in an experiment:

Page 263

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

9.6 18.3 29.0 47.2 71.1 119.1 174.6 257.3 350.7 441.0 513.3 559.7 594.8 629.4 640.8 651.1 655.9 659.8 661.8

You can understand the experimental process with a model where the exponential growth

experiences saturation. For this you can let the growth rate decrease linearly with an increasing

population size y until it is zero at a certain saturation value m.

As you can easily verify by substituting y = 0 and y = m, we

get the following formula:

r = r0 * (1 - y
m

) = r0
m

* (m - y)

With this assumption, you can graphically

display the temporal process and also draw

the experimental values in a short

program. To do this, repeat the difference

equation with:

dy: new value - old value

y: old value

dt: time increment

λ: growth rate

so you can write:

dy = y * r * dt = y * r0 * (1 - r0
m

) * dt

Using the initial value y0 = 9.6 mg, the saturation quantity m = 662 mg and the initial growth

rate r0 = 0.62 /h we obtain a good correlation between theory and experiment.

from gpanel import *

z = [9.6, 18.3, 29.0, 47.2, 71.1, 119.1, 174.6, 257.3, 350.7, 441.0, 513.3,

559.7, 594.8, 629.4, 640.8, 651.1, 655.9, 659.6, 661.8]

def r(y):

return r0 * (1 - y / m)

r0 = 0.62

Page 264

y = 9.6

m = 662

makeGPanel(-2, 22, -100, 1100)

title("Bacterial growth")

drawGrid(0, 20, 0, 1000)

lineWidth(2)

for n in range(0, 19):

 move(n, z[n])

 setColor("black")

 fillCircle(0.2)

if n > 0:

 dy = y * r(y)

 yNew = y + dy

 setColor("lime green")

 line(n - 1, y, n, yNew)

 y = yNew

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

Assuming a linear decrease of the growth rate results in an “S” shaped saturation curve typical

of the population size (also called logistic growth or sigmoid curve).

LIFE TABLES

A possible way to measure the health of a population is to look at the probability of surviving a

certain age or of dying at an old age, respectively. If you wish to analyze the age distribution of

the Swiss population, you can use current data from the Federal Statistical Office again, namely

the so-called life tables (source: http://www.bfs.admin.ch, keyword: STAT-TAB). These tables

contain the observed probabilities (qx and qy) for men and women to die at a certain age,

separated by gender. Their determination is basically simple: one considers all deaths in the past

year separately for men and women and calculates the frequency of 0-year-olds (people who

died between birth and one year of age), 1-year-olds, etc. Afterwards, one divides each number

by the total number in the corresponding age group at the beginning of the year.

(You can create an Excel table for

STAT-TAB and copy the columns for qx

and qy into text files qx.dat or qy.dat, or

just download the files from here. Copy

them into the directory where your

program is located.) Input the data into

the program in a list qx or qy. Since the

numbers sometimes contain spaces or

apostrophes for better readability, you

must remove them. First, you simply

create a graphical representation of the

read data.

Page 265

import exceptions

from gpanel import *

def readData(filename):

 table = []

 fData = open(filename)

while True:

 line = fData.readline().replace(" ", "").replace("'", "")

if line == "":

break

 line = line[:-1] # remove trailing \n

try:

 q = float(line)

except exceptions.ValueError:

break

 table.append(q)

 fData.close()

return table

makeGPanel(-10, 110, -0.1, 1.1)

title("Mortality probability (blue -> male, red -> female)")

drawGrid(0, 100, 0, 1.0)

qx = readData("qx.dat")

qy = readData("qy.dat")

for t in range(101):

 setColor("blue")

 p = qx[t]

 line(t, 0, t, p)

 setColor("red")

 q = qy[t]

 line(t + 0.2, 0, t + 0.2, q)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

The curve clearly shows that on average,

women live longer than men. The course in

the first 30 years of life is also interesting.

Significantly more boys than girls die in the

first year of life, as well as during the ages

from 15- to 30-years old. Come up with some

of your own thoughts about this graph.

Page 266

TEMPORAL EVOLUTION OF A POPULATION

With the help of the life table and a

computer program, you can tackle many

interesting demographic questions in a

scientifically correct way. In this example

you examine how a population of 10,000

newborns will evolve over the next 100

years. In doing so, use the values qx and

qy as negative growth rates.

import exceptions

from gpanel import *

n = 10000 # size of the population

def readData(filename):

 table = []

 fData = open(filename)

while True:

 line = fData.readline().replace(" ", "").replace("'", "")

if line == "":

break

 line = line[:-1] # remove trailing \n

try:

 q = float(line)

except exceptions.ValueError:

break

 table.append(q)

 fData.close()

return table

makeGPanel(-10, 110, -1000, 11000)

title("Population behavior/predictions (blue -> male, red -> female)")

drawGrid(0, 100, 0, 10000)

qx = readData("qx.dat")

qy = readData("qy.dat")

x = n # males

y = n # females

for t in range(101):

 setColor("blue")

 rx = qx[t]

 x = x - x * rx

 line(t, 0, t, x)

 setColor("red")

 ry = qy[t]

 y = y - y * ry

 line(t + 0.2, 0, t + 0.2, y)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 267

LIFE EXPECTANCY OF WOMEN AND MEN

In the previous analysis it became clear once again that women live longer than men. You can

also express this difference with a single quantity called the life expectancy. This is the average

achieved age of either women or men.

Briefly recall how an average, for example the average grade of a school class, is defined: You

calculate the sum s of the grades of all students and divide it by the number of students n. If

you are looking for simplicity, you can assume that only the integer grades between 1-6 occur

and so you can calculate s as follows:

s = number of students with the grade 1 * 1 + number of students with the grade 2 * 2 + ...

number of students with the grade 6 * 6

or more generally:

average = sum of (frequency of the value * value) divided by the total number

If you read the frequencies from a frequency distribution h of the values x (in this case, the

grades 1 to 6), one also calls the average the expected value and you can write

E =
x1 * h1 + x2 * h2+ ... + xn * hn
 h1 + h2 + ... + hn

As you can see, the frequencie hi are weighted with their value xi in the sum.

Life expectancy is nothing else than the expected value for the age at which women and men

die. In order to calculate it with a computer simulation, you begin with a certain amount of men

and women (n = 10000) and determine the number of men (hx) or women (hy) that die between

the ages t and t + 1. Evidently these numbers can be expressed as follows, using the size of the

population x and y at the time t which you calculated in the previous program and the death

rates rx and ry:

hx = x * rx bzw. hy = y * ry

n = 10000 # size of the population

def readData(filename):

 table = []

 fData = open(filename)

while True:

 line = fData.readline().replace(" ", "")

if line == "":

break

 line = line[:-1] # remove trailing \n

try:

 q = float(line)

except exceptions.ValueError:

break

 table.append(q)

 fData.close()

return table

qx = readData("qx.dat")

qy = readData("qy.dat")

x = n

y = n

xSum = 0

ySum = 0

for t in range(101):

 rx = qx[t]

 x = x - x * rx

 mx = x * rx # male deaths

Page 268

 xSum = xSum + mx * t # male sum

 ry = qy[t]

 y = y - y * ry

 my = y * ry # female deaths

 ySum = ySum + my * t # female sum

print "Male life expectancy:", xSum / 10000

print "Female life expectancy:", ySum / 10000

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

The data of the Swiss population yields a life expectancy of men of about 76 years of women

about 81 years.

POPULATION PYRAMID

In demographic studies, the population is

often grouped by year and from this, a

frequency diagram is created. If you have

two groups that you would like to compare,

you can plot the frequencies of one group to

the left and the ones of the other group to

the right. Using this method for comparing

women and men results in a beautiful

pyramid-like graphic.

You can again take the current data (31.

December 2012) from a table that you can

find on the Swiss Federal Statistical Office

website (http://www.bfs.admin.ch,

keyword: STAT-TAB) and copy them from the

Excel table into the test files zx.dat and

zy.dat. You can also download them hier.

import exceptions

from gpanel import *

def readData(filename):

 table = []

 fData = open(filename)

while True:

 line = fData.readline().replace(" ", "").replace("'", "")

if line == "":

break

 line = line[:-1] # remove trailing \n

try:

 q = float(line)

except exceptions.ValueError:

break

 table.append(q)

 fData.close()

return table

def drawAxis():

 text(0, -3, "0")

 line(0, 0, 0, 100)

 text(0, 103, "100")

makeGPanel(-100000, 100000, -10, 110)

title("Population pyramid (green -> male, red -> female)")

lineWidth(4)

zx = readData("zx.dat")

Page 269

zy = readData("zy.dat")

for t in range(101):

 setColor("red")

 x = zx[t]

 line(0, t, -x, t)

 setColor("darkgreen")

 y = zy[t]

 line(0, t, y, t)

setColor("black")

drawAxis()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

It is easy to spot the baby boomers born in the years 1955 – 1965 (47 - 57 years old).

CHANGE OF THE AGE DISTRIBUTION

An analysis of how the age distribution

changes over decades can expose important

information, such as how a society changes.

You can simulate the current age

distribution for the next 100 years under the

following conditions:

There is no immigration or migration

from the outside (closed society)

Deaths are taken into account

according to the mortality tables

Each woman of childbearing age from

20 to 39 will have a certain number of

children k (girls and boys are equally

likely). At the moment we will assume

k = 2.

With a key press you can always insert a year?

import exceptions

from gpanel import *

k = 2.0

def readData(filename):

 table = []

 fData = open(filename)

while True:

 line = fData.readline().replace(" ", "").replace("'", "")

if line == "":

break

 line = line[:-1] # remove trailing \n

try:

 q = float(line)

except exceptions.ValueError:

break

 table.append(q)

 fData.close()

return table

def drawAxis():

Page 270

 text(0, -3, "0")

 line(0, 0, 0, 100)

 text(0, 103, "100")

 lineWidth(1)

for y in range(11):

 line(-80000, 10* y, 80000, 10 * y)

 text(str(10 * y))

def drawPyramid():

clear()

 title("Number of children: " + str(k) + ", year: " + str(year) +

", total population: " + str(getTotal()))

 lineWidth(4)

for t in range(101):

 setColor("red")

 x = zx[t]

 line(0, t, -x, t)

 setColor("darkgreen")

 y = zy[t]

 line(0, t, y, t)

 setColor("black")

 drawAxis()

repaint()

def getTotal():

 total = 0

for t in range(101):

 total += zx[t] + zy[t]

return int(total)

def updatePop():

global zx, zy

 zxnew = [0] * 110

 zynew = [0] * 110

getting older and dying

for t in range(101):

 zxnew[t + 1] = zx[t] - zx[t] * qx[t]

 zynew[t + 1] = zy[t] - zy[t] * qy[t]

making a baby

 r = k / 20

 nbMother = 0

for t in range(20, 40):

 nbMother += zy[t]

 zxnew[0] = r / 2 * nbMother

 zynew[0] = zxnew[0]

 zx = zxnew

 zy = zynew

makeGPanel(-100000, 100000, -10, 110)

zx = readData("zx.dat")

zy = readData("zy.dat")

qx = readData("qx.dat")

qy = readData("qy.dat")

year = 2012

enableRepaint(False)

while True:

 drawPyramid()

 getKeyWait()

 year += 1

 updatePop()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 271

MEMO

It turns out that the future of the population is very sensitively dependent on the number k.

Even with the value k = 2, the population decreases in the long term. To stop the screen from

flickering when you press a key, you should disable automatic rendering with

enableRepaint(False). In drawPyramid() the graphics are then merely deleted from the

backing storage (offscreen buffer), and are only newly rendered to the screen after the

recalculation of repaint().

EXERCISES

1. A population consists of 2 individuals at time 0. Each year it increases at a birth rate of 10%

(number of births per year per individual). Simulate this for the first 100 years (display it

graphically as a bar graph).

2a. In a non-aging population, the mortality probability always remains the same regardless of

age. There is no such population for living beings, but radioactive atoms (radionuclides)

behave exactly this way. Instead of calling this mortality probability, we call it decay

probability. Simulate a population of 10,000 radionuclides whose decay probability amounts

to 0.1 for the first 100 years (display it graphically as a bar graph).

2b. In the diagram, draw the times at which the population has shrunk to approximately 1/2,

1/4, 1/8, and 1/16 of the initial size, as vertical lines. What can you guess?

2c* Radioactive decay takes place according to the following law:

N = N0 * e -λt

No: number of radionuclides at the time t = 0

N: number of radionuclides at the time t

λ: decay probability per time unit (decay constant)

Enter the best possible adapted curve shape using the color red in the graphic from 2a.

3. Life expectancy can also be calculated by a statistical computer simulation. To do this, you

simulate the life of a single individual from year to year. Let the computer choose a random

number between 0 and 1 and allow the individual to die if the number is less than the

mortality probability q. You then add up the achieved life duration. Once you have performed

this simulation for 10,000 individuals, divide the total by 10,000. Determine the life

expectancy of a female using this method with the values from qy.dat.

ADDITIONAL MATERIAL

PREDATOR-PREY SYSTEMS

The behavior of two populations in a particular ecosystem which affect each other is very

interesting. Assume the following scenario:

Bunnies and foxes reside in a closed territory. The bunnies multiply at a constant growth rate rx.

If a fox meets a bunny, there is a certain probability that the fox will snatch it. In turn, the foxes

die with a mortality rate ry. Their growth rate is determined by the consumption of bunnies.

If you assume that the probability of the foxes and bunnies meeting is equal to the product of

the number of bunnies x and foxes y, there are two difference equations for x and y [more...].
Page 272

xNew - x = rx * x - gx * x * y

yNew - y = -ry * y + gy * x * y

Use the following values:

rx = 0.08

ry = 0.2

gx = 0.002

gy = 0.0004

and use the initial populations x = 500

bunnies and y = 20 foxes. For now, perform

the simulation for 200 generations.

from gpanel import *

rx = 0.08

ry = 0.2

gx = 0.002

gy = 0.0004

def dx():

return rx * x - gx * x * y

def dy():

return -ry * y + gy * x * y

x = 500

y = 20

makeGPanel(-20, 220, -200, 2200)

title("Predator-Prey system (red: bunnies, blue: foxes)")

drawGrid(0, 200, 0, 2000)

lineWidth(2)

for n in range(200):

 xNew = x + dx()

 yNew = y + dy()

 setColor("red")

 line(n, x, n + 1, xNew)

 setColor("blue")

 line(n, y, n + 1, yNew)

 x = xNew

 y = yNew

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

The number of the bunnies and foxes consistently fluctuates up and down. Qualitatively, this

cycle is understood as follows: since the foxes eat the bunnies, they multiply particularly

strongly, when there are many bunnies. Since this in turn depletes the population of the

bunnies, the breeding of foxes slows down. It is during this time that the number of bunnies

increases again (even beyond any limits).

Page 273

EXERCISES

1.Implement a boundary of the habitat for the bunnies according to the logistic growth with a

growth rate rx' = rx(1 – x/m) with otherwise identical values as you did above. Show that

when m = 2000 the oscillation decays over time, whereas when m = 3500 it oscillates

regularly.

m = 2000, oscillation decays/fades away m = 3500, oscillation is stable

2.A chart/graph where the sizes of the population are plotted against each other is called a

phase diagram. Write a program that draws the phase diagram for the two cases from

exercise 1. Do you understand the behavior?

Page 274

8.3 HYPOTHESES, STATISTICAL TESTS

INTRODUCTION

You make a hypothesis (called the null hypothesis), for example to check if the coin lying in

front of you is not a fake, which means that the probability for landing on heads and tails is the

same (p = ½). Or, you might have a die in front of you and make a hypothesis that it is not

loaded, which means that all 6 numbers have the same probability of occurring (p = 1/6). In this

chapter you will learn a method to test your hypothesis, however not with absolute certainty as

you assume a 5% probability (significance level) with which the null hypothesis is wrongly

rejected.

PROGRAMMING CONCEPTS: Null hypothesis, significance, dispersion, Chi-square test

A SIGNIFICANTLY FAKE COIN

You begin with the null hypothesis that the coin is not a fake and if you toss it n = 100 times,

you get heads a certain number of times k and tails n - k times.

You repeat the test several times, let's say z

= 10,000 times, and the result is a

distribution for k that you can determine

with a simulation. As you expect, it is in a

bell-shaped distribution around the average

value m = 50 [more...].

You now take on the interesting question of

in which area +- s around the average

value a predetermined percentage lays,

e.g. 68 % of all tests. You can also

determine s, called dispersion, in the

computer simulation by adding up the

frequencies to the left and right starting at

the average until you reach 6800.

If you mark the area corresponding to 95% of all cases, you obtain approximately double the

dispersion.

from gpanel import *

import random

n = 100 # size of the test group

p = 0.5

z = 10000

def showDistribution():

 setColor("blue")

 lineWidth(4)

for t in range(n + 1):

 line(t, 0, t, h[t])

def showMean():

global mean

Page 275

 sum = 0

for t in range(n + 1):

 sum += h[t] * t

 mean = int(sum / z + 0.5)

 setColor("red")

 lineWidth(2)

 line(mean, 0, mean, 1000)

 text(mean - 1, -30, str(mean))

def showSpreading(level):

 sum = h[mean]

for s in range(1, 20):

 sum += h[mean + s] + h[mean - s]

if sum > z * level:

break

 setColor("green")

 lineWidth(2)

 line(mean + s, 0, mean + s, 1000)

 text(mean + s - 1, -30, str(mean + s))

 line(mean - s, 0, mean - s, 1000)

 text(mean - s - 1, -30, str(mean - s))

def sim():

 sum = 0

 repeat n:

 w = random.random()

if w < p:

 sum +=1

return sum

makeGPanel(-0.1 * n, 1.1 * n, -100, 1100)

title("Coin toss, distribution of number")

drawGrid(0, n, 0, 1000)

h = [0] * (n + 1)

repeat z:

 k = sim()

 h[k] += 1

showDistribution()

showMean()

showSpreading(0.68)

showSpreading(0.95)

Programmcode markieren (Ctrl+C kopieren, Ctrl+V einfügen)

MEMO

If you frequently make a test with 100 coins that are not fake, in 68 % of all cases the number

of tossed heads lies in the area 50 +-5, and 95% of all cases in the area 50 +-10 [more...] .

If you make a test with the coin that is lying in front of you and you get a value for the

number of heads that is greater than 60 or smaller than 40 you reject the hypothesis that the

coin is not fake, in other words, you say that the coin is fake. In this case, you may be

mistaken with a probability of 5% (the significance level). Sometimes you can also concisely

say that the present coin is significantly fake.

A SIGNIFICANTLY LOADED DIE

You have a die in front of you and want to test whether it is a fair die, which means that all

numbers can occur with the same probability of 1/6. You make the hypothesis: The die is not

loaded.

Page 276

Here you will get to know a slightly different method from one that we used with the coin since

there are six, not only two, possibilities that can occur on a roll, namely the numbers from 1 to

6. To be on the safe side you will want to roll the die often, let's say around 600 times, and write

down the frequencies of the numbers that occur.

Pip number
Observed

frequency (u)

Theoretical frequency

(expected value e)

1 112 100

2 128 100

3 97 100

4 103 100

5 88 100

6 72 100

Total 600 600

Observed and theoretical frequencies

In order to introduce a measure for the deviation of the observed from the theoretical

occurrences, you need to calculate the relative square deviation for each number (u - e)2 / eand

add up these values. We call the result χ2 (pronounced "Chi-square").

This raises the interesting question of how

χ2is distributed, meaning how often the

different values of χ2 occur in many 600-roll

attempts. To find this out, perform another

computer simulation with 10,000 samples

and determine the distribution. For the sake

of simplicity, you can round the obtained

values to whole numbers [more...].

Coincidentally, you again enter a critical

value for χ2, below 95% of all cases. The

simulation results in s = 11 [more...].

from gpanel import *

import random

n = 600 # number of tosses

p = 1 / 6

z = 10000

def showDistribution():

 setColor("blue")

 lineWidth(4)

for i in range(21):

 line(i, 0, i, h[i])

def showLimit(level):

 sum = 0

for i in range(21):

 sum += h[i]

if sum > z * level:

break

 setColor("green")

 lineWidth(2)

 line(i, 0, i, 2000)

 text(i, -80, str(i))

Page 277

return i

def chisquare(u):

 chisquare = 0

 e = n * p

for i in range(1, 7):

 chisquare += ((u[i] - e) * (u[i] - e)) / e

return chisquare

def sim():

 u = [0] * 7

 repeat n:

 t = random.randint(1, 6)

 u[t] += 1

return chisquare(u)

makeGPanel(-2, 22, -200, 2200)

title("Chi-square simulation is being carried out. Please wait...")

drawGrid(0, 20, 0, 2000)

h = [0] * 21

repeat z:

 c = int(sim())

if c < 20:

 h[c] += 1

else:

 h[20] += 1

title("Chi-square test on the die")

showDistribution()

s = showLimit(0.95)

Observed series

u1 = [0, 112, 128, 97, 103, 88, 72]

u2 = [0, 112, 108, 97, 113, 88, 82]

c1 = chisquare(u1)

c2 = chisquare(u2)

print "Die with", u1, "Xi-square:", c1, "loaded?", c1 > s

print "Die with", u2, "Xi-square:", c2, "loaded?", c2 > s

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

The computer simulation exposes the following result: in 95% of all cases, χ2 is less than or

equal to the critical value 11. Hence, you have found a method to test if your die is rigged:

calculate χ2 from the observed frequency. If the value is greater than 11, you can say with a

5% probability of being wrong that your null hypothesis of it being a fair die is incorrect, and

therefore the die is loaded.

The frequencies of the table above result in χ2 = 18.7. In other words, the die has a very high

probability of being loaded. With another die rolled 600 times you get the frequencies u2 =

[112, 108, 97, 113, 88, 82]. Since you obtain χ2 = 8.5, there is a low probability that the die

is loaded.

DIFFERENCES IN HUMAN BEHAVIOR

You can also apply the χ2 test to a study of the behavior of two groups of people. An interesting

question often asked is whether in a particular context the behavior of females and males should

be appraised to be statistically different, or whether both sexes behave equally.

You assume that the use of Facebook is studied in a secondary school. A total of 106 girls

Page 278

(women) and 86 boys (men) were asked whether they have a Facebook account. The survey

results are as follows:

Facebook Yes Facebook No Total % Yes

Females 87 19 106 82.0%

Males 62 24 86 72.1%

Total 149 43 192 77.7%

The percentage of people who have a Facebook account is substantially greater among females

than it is with males. But it raises the question of whether this higher proportion is statistically

significant.

For the simulation, you first determine the

probability p of having an account from the

total number n of females and males:

p = (females_yes + males_yes) / n

With this value you simulate the number of

females who have an account using random

numbers and the total number of females.

This results in f0 females with an account

and f1 females without one. You do the

same for the males, and you will get m0

males with an account and m1 men without

one. These numbers form the values u in

the calculation of χ2.

χ 2 = sum of (u - e)2 / e

You must now still determine the expected value e for all four cases. You can assume that p =

(f0 + m0) / n is the total probability for a Yes and correspondingly 1 - p is the total probability

for a No, so you calculate:

Expected value for females- Yes: ef0 = total number of females * p

Expected value for males- Yes: em0 = total number of males * p

Expected value for females- No: ef1 = total number of females * (1 - p)

Expected value for men- No em1 = total number of males * p

The rest of the program remains largely unchanged from the die test.

from gpanel import *

import random

z = 10000

survey values/polls

females_yes = 87

females_no = 19

males_yes = 62

males_no = 24

def showDistribution():

 setColor("blue")

 lineWidth(4)

for i in range(101):

 line(i/10, 0, i/10, h[i])

def showLimit(level):

 sum = 0

for i in range(101):

Page 279

 sum += h[i]

if sum > level * z:

break

 setColor("green")

 lineWidth(2)

 limit = i / 10

 line(limit, 0, limit, 1000)

 text(limit, -80, str(limit))

return limit

def chisquare(f0, f1, m0, m1):

f: females, m: males, 0:yes, 1:no

 w = (f0 + m0) / n # probability of a yes

expected value

 ef0 = (f0 + f1) * w # females-yes

 em0 = (m0 + m1) * w # males-yes

 ef1 = (f0 + f1) * (1 - w) # females-no

 em1 = (m0 + m1) * (1 - w) # males-no

add up deviations (u - e)*(u - e) / e

 chisquare = (f0 - ef0) * (f0 - ef0) / ef0 \

 + (m0 - em0) * (m0 - em0) / em0 \

 + (f1 - ef1) * (f1 - ef1) / ef1 \

 + (m1 - em1) * (m1 - em1) / em1

return chisquare

def sim():

simulate females

 f0 = 0 # yes

 f1 = 0 # no

for i in range(females_all):

 t = random.random()

if t < p:

 f0 += 1

else:

 f1 += 1

simulate males

 m0 = 0 # yes

 m1 = 1 # no

for i in range(males_all):

 t = random.random()

if t < p:

 m0 += 1

else:

 m1 += 1

return chisquare(f0, f1, m0, m1)

females_all = females_yes + females_no

males_all = males_yes + males_no

n = females_all + males_all # all

p = (females_yes + males_yes) / n # probability of yes for all

print "Facebook yes (all):", round(100 * p, 1), "%"

pf = females_yes / females_all

print "Facebook yes (females):", round(100 * pf, 1), "%"

pm = males_yes / males_all

print "Facebook yes (males:)", round(100 * pm, 1), "%"

makeGPanel(-1, 11, -250, 2750)

title("Chi-square test, use of Facebook")

drawGrid(0, 10, 0, 2500)

h = [0] * 101

repeat z:

 c = int(10 * sim()) # magnification factor of 10

if c < 100:

 h[c] += 1

else:

 h[100] += 1

showDistribution()

Page 280

s = showLimit(0.95)

c = chisquare(females_yes, females_no, males_yes, males_no)

print "critical value:", s

print "observed:", c,

if c <= s:

print "- the same behavior"

else:

print "- not the same behavior"

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

The result is astonishing: the χ2significance limit is 3.8 [more...]. The survey values resulted

in the smaller value of 2.7. Even though the proportion of females with accounts is essentially

higher, it cannot be statistically proven that they differ substantially from the males with

respect to Facebook.

EXERCISES

1. You have another idea of how to figure out if a die is loaded. Similar to the 100 coin tosses,

you repeatedly simulate a roll of a die 600 times and determine the distribution of the

numbers.

Does the die from the above distribution u1 equally show as a fake with a 5% significance

level? What about the die with the distribution u2?

2. A classic roulette table has 37 numbers from 0 to 36 that should occur with equal probability.

A clever player wants to detect some irregularities in order to increase their chance of

winning. They make notes of the frequency of the numbers that occur in 1,000 games and

get:

u = [20, 26, 20, 22, 20, 27, 18, 28, 21, 36, 20, 28, 25, 19, 22, 25, 33, 25, 28, 25, 32, 29,

22, 32, 28, 31, 26, 25, 32, 32, 25, 20, 25, 44, 40, 24, 45]

Use a χ2 test to check the null hypothesis that the roulette is fair.

3. In order to scientifically test a medication, it is prescribed in a blind study to two groups of

sick people, where one of the groups receives a placebo. The following values were found

after the treatment:

After treatment-

cured

After treatment-

sick

%of people

cured

Treated with

medication
22 13 62.9 %

Treated with

placebo
11 17 39.3 %

The proportion of people cured with medical therapy is much greater than those without. Can

we assume that the medication is effective?

Page 281

8.4 AVERAGE WAITING TIMES

INTRODUCTION

There are many systems whose temporal behavior can be described as transitions from one state

to the next. The transition from a current system state Zito the following state Zkis determined

by probabilities pik. In the example below, you will roll one die and consider the already rolled

numbers as a state variables:

Z0 : no number rolled yet

Z1 : one number rolled

Z2 :two (different) numbers rolled

etc.

You can illustrate the transition of the states as in the scheme below (called Markov chain):

The probabilities are understood as follows: if you have already rolled n numbers, the chances of

getting one of these numbers again is n/6 and the chance of getting a number you have not yet

rolled is (6 - n)/6. You can attempt to solve the interesting question of how many times you have

to roll the die on average to get all six numbers.

PROGRAMMING CONCEPTS: Markov chain, waiting time, waiting time paradox

AVERAGE WAITING TIMES

If you roll the die in equal increments of time, you can also ask yourself how long, on average,

the process takes. You call this time the average waiting time. You can figure it out with the

following reflection: the total time to get from Z0 to Z6is the sum of the waiting times for all

transitions. But how long are the individual waiting times?

In your first program you can experimentally determine the most important feature of waiting

time problems:

If p is the probability of getting from Z1 to Z2the delay time amounts to (in a suitable unit) u =

1/p.

Page 282

In the simulation you investigate the delay

time it takes to roll a certain number, for

example a 6. In this case, a simulation

attempt does not consist of a single roll of

the die. Instead, you roll as many times as

it takes to get a 6 in the function sim() and

you return the number of how many rolls it

took. Repeat this experiment 10,000 times

and generate the average number of

necessary rolls.

At the same time, you display the numbers

of attempts in order to get a 6 in a

frequency diagram, with k = 1, 2, 3,...

(stop at k = 50).

from gpanel import *

import random

n = 10000

p = 1/6

def sim():

 k = 1

 r = random.randint(1, 6)

while r != 6:

 r = random.randint(1, 6)

 k += 1

return k

makeGPanel(-5, 55, -200, 2200)

drawGrid(0, 50, 0, 2000)

title("Waiting on a 6")

h = [0] * 51

lineWidth(5)

sum = 0

repeat n:

 k = sim()

 sum += k

if k <= 50:

 h[k] += 1

 line(k, 0, k, h[k])

mean_exp = sum / n

lineWidth(1)

setColor("red")

sum = 0

for k in range(1, 1000):

 pk = (1 - p)**(k - 1) * p

 nk = n * pk

 sum += nk * k

if k <=50:

 line(k, 0, k, nk)

mean_theory = sum / n

title("Experiment: " + str(mean_exp) + "Theory: " + str(mean_theory))

MEMO

The result is intuitively evident: since the probability of rolling a certain number on the die is

p= 1/6, you need an average of u = 1 / p = 6 rolls to get this number.

Page 283

It is also instructive to display the theoretical values of the frequencies as a red line. To do

this, you must consider that the following applies to the probability of rolling a 6:

a 6 in the first roll: p1 = p

no 6 in the first roll, but in the second roll: p2 = (1 - p) * p

no 6 in the first or second roll, but in the third roll: p3 = (1 - p) * (1 - p) * p

a 6 in the k-th roll: pk = (1 - p)k-1 * p

To get the theoretical frequencies, multiply these probabilities with the number of trials n

[more...].

PROGRAMMING INSTEAD OF A LOT OF CALCULATING

In order to solve the task defined above, to calculate the average delay until you have rolled all

numbers at least once, you may decide to take the theoretical path. You interpret the process as

a Markov chain and add the delay times of each individual transition:

u = 1 + 6/5 + 6/4 + 6/3 + 6/2 + 6 = 14.7

Alternatively, you can write a simple program to determine this number in a simulation. To do

this, you always proceed the same way: write a function sim() where the computer searches for

a single solution using random numbers and then returns the required number of steps as a

return value. You then repeat this task many times, let's say 1,000 times, and determine the

average value.

It is smart to use a list z in sim(), where you can insert the rolled numbers that are not already

there. Once the list has 6 elements, you have rolled all the numbers of the die.

import random

n = 10000

def sim():

 z = []

 i = 0

while True:

 r = random.randint(1, 6)

 i += 1

if not r in z:

 z.append(r)

if len(z) == 6:

return i

sum = 0

repeat n:

 sum += sim()

print "Mean waiting time:", sum / n

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

In the computer simulation you get the slightly fluctuating value 14.68, which corresponds to

the theoretical prediction. The computer can thus also be used to quickly check if a

theoretically calculated value can be correct.

Page 284

However, the theoretical determination of waiting times can already be very complex with simple

problems. If you are, for instance, trying to figure out the average waiting time until you have

rolled a certain sum of numbers, the problem is extremely easy to solve with a computer

simulation

import random

n = 10000

s = 7 # rolled sum of the die numbers

def sim():

 i = 0

 total = 0

while True:

 i += 1

 r = random.randint(1, 6)

 total += r

if total >= s:

break

return i

sum = 0

repeat n:

 sum += sim()

print "Mean waiting time:", sum / n

MEMO

You get an average delay time of about 2.52 for rolling the sum 7 with the die. This result is

somewhat surprising, given that the expected value for the die numbers is 3.5. Therefore, it

could be assumed that you have to roll the die 2x on average to achieve the sum 7. The

theoretical calculation, which might take you several hours, results in: 117 577 / 46 656 =

2.5008. Even mathematicians thus use the computer to quickly test theoretical results and to

verify speculations.

THE SPREADING OF AN DISEASE

Assume the following story. Even though it

is fictional, there are certain parallels to

current living communities.

"100 people live on a remote Caribbean

island that is cut off from the outside world.

An old man is infected by thoughtlessly

consuming a migrating bird that had a

contagious disease. When a sick individual

meets with a healthy individual, they also

get sick in a short amount of time. Every

hour two people meet by chance."

You want to investigate how the disease

spreads using a computer simulation. To do

this, you determine the number of people

infected in relation to time.

It is smart to model the population with a list with Boolean values, where healthy is coded as

False and ill as True. The advantage of this data structure is that in the function pair(), the

Page 285

interaction that occurs when two people meet can simply be expressed by a logical OR operation:

1. Person previously 2. Person previously 1.& 2. Person afterwards

healthy (False) healthy (False) healthy (False)

healthy(False) ill (True) ill (True)

ill (True) healthy (False) ill (True)

ill (True) ill (True) ill (True)

from gpanel import *

import random

def pair():

Select two distinct inhabitants

 a = random.randint(0, 99)

 b = a

while b == a:

 b = random.randint(0, 99)

 z[a] = z[a] or z[b]

 z[b] = z[a]

def nbInfected():

 sum = 0

for i in range(100):

if z[i]:

 sum += 1

return sum

makeGPanel(-50, 550, -10, 110)

title("The spread of an illness")

drawGrid(0, 500, 0, 100)

lineWidth(2)

setColor("blue")

z = [False] * 100

tmax = 500

t = 0

a = random.randint(0, 99)

z[a] = True # random infected inhabitant

move(t, 1)

while t <= tmax:

 pair()

 infects = nbInfected()

 t += 1

 draw(t, infects)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

You will find a temporal behavior where the increase is first slow, then rapid, and then slow

again. This behavior is certainly feasible qualitatively since the probability is at first low that

an ill person encounters a healthy person, since mostly healthy people meet each other. At the

end the probability is again low that a remaining healthy person encounters an ill person, since

mainly sick people are meeting each other

One interesting question is how long it takes on average for all of the residents to become ill.

You can directly solve this question with a computer simulation where you simulate the same

population multiple times and count the steps it takes until everyone is ill.
Page 286

import random

n = 1000 # number experiment

def pair():

Select two distinct inhabitants

 a = random.randint(0, 99)

 b = a

while b == a:

 b = random.randint(0, 99)

 z[a] = z[a] or z[b]

 z[b] = z[a]

def nbInfected():

 sum = 0

for i in range(100):

if z[i]:

 sum += 1

return sum

def sim():

global z

 z = [False] * 100

 t = 0

 a = random.randint(0, 99)

 z[a] = True # random infected inhabitant

while True:

 pair()

 t += 1

if nbInfected() == 100:

return t

sum = 0

for i in range(n):

 u = sim()

print "Experiment #", i + 1, "Waiting time:", u

 sum += u

print "Mean waiting time:", sum / n

You can also illustrate the spread of the disease as a Markov chain. A certain state is

characterized by the number of people infected. The time until everyone is ill is the sum of the

waiting time for the transitions from k ill people to k+1 ill people, for k from 1 to 99. In addition,

you need the probability pkfor this transition. It is:

pk = sum of the probabilities of first choosing

an ill person and second a healthy person, and

vice versa

pk =
k
n

* n - k
n - 1

+ n - k
 n

* k
n - 1

= 2* k*(n - k)
n*(n - 1)

You also illustrate pk graphically in the

program and determine the sum of the

reciprocal values.

Page 287

from gpanel import *

n = 100

def p(k):

return 2 * k * (n - k) / n / (n - 1)

makeGPanel(-10, 110, -0.1, 1.1)

drawGrid(0, 100, 0, 1.0)

sum = 0

for k in range(1, n - 1):

if k == 1:

 move(k, p(k))

else:

 draw(k, p(k))

 sum += 1 / p(k)

title("Time until everyone is ill: " + str(sum))

MEMO

Using the theory of Markov chains results in an average waiting time of 463 hours until

everyone has the illness, or around 20 days.

PARTNER SEARCHING WITH A PROGRAM

An interesting matter for practice is the optimal strategy in the selection of a life partner. In this

case you start based on the following model assumption: 100 potential partners possess

increasing qualification levels. They will be presented to you in a random order and in a "learning

phase" you can correctly order them by qualification levels, by relying on your previous life

experiences. However, you do not know what the maximum degree of qualification is. With each

introduction, you have to decide if you want to accept or reject the partner. What should you do

to make sure that you choose the partner with the best qualifications with a high probability?

For the simulation, create a list t with the 100 qualification levels from 0 to 99 in any order in

the function sim(x). It consists of a random permutation of the numbers 0 to 99, that you can

nicely create in Python with shuffle().

Subsequently you do the selection process,

where you assume a fixed length x of the

learning phase and determine the index of

the chosen partner and their qualification

level in the process.

Now you simulate the process with a

specific x 1,000 times and determine how

likely it is that you will get a partner with a

maximum qualification level. You eventually

depict this probability graphically with

respect to the length x of the learning

phase.

import random

Page 288

from gpanel import *

n = 1000 # Number of simulations

a = 100 # Number of partners

def sim(x):

Random permutation [0..99]

 t = [0] * 100

for i in range(0, 100):

 t[i] = i

 random.shuffle(t)

 best = max(t[0:x])

for i in range(x, 100):

if t[i] > best:

return [i, t[i]]

return [99, t[99]]

makeGPanel(-10, 110, -0.1, 1.1)

title("The probability of finding the best partner from 100")

drawGrid(0, 100, 0, 1.0)

for x in range(1, 100):

 sum = 0

 repeat n:

 z = sim(x)

if z[1] == 99: # best score

 sum += 1

 p = sum / n

if x == 1:

 move(x, p)

else:

 draw(x, p)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

Apparently you are the likeliest to find the partner with the best qualifications after a learning

phase of around 37 [more...].

However, you can also optimize the

sampling method following a different

criterion where you are not looking for the

best partner, but rather one with a

qualification level as high as possible. To do

this, you examine with a similar simulation

the average qualification of the selected

partner for a given length x of the learning

phase.

Page 289

import random

from gpanel import *

n = 1000 # Number of simulations

def sim(x):

Random permutation [0..99]

 t = [0] * 100

for i in range(0, 100):

 t[i] = i

 random.shuffle(t)

 best = max(t[0:x])

for i in range(x, 100):

if t[i] > best:

return [i, t[i]]

return [99, t[99]]

makeGPanel(-10, 110, -10, 110)

title("Mean qualification after waiting for a partner")

drawGrid(0, 100, 0, 100)

for x in range(1, 99):

 sum = 0

 repeat n:

 u = sim(x)

 sum += u[1]

 y = sum / n

if x == 1:

 move(x, y)

else:

 draw(x, y)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

This looks entirely different: following the criterion of the best possible average qualification,

you should already make your decision for the next better rated partner after a learning phase

of about 10 .

You can also perform the simulation for a more realistic number of partners and notice that the

optimal learning phase is quite short [more...]

WAITING TIME PARADOX

Waiting at a stop for any form of public transportation

(bus, tram, train, etc.) is part of everyday life. Here we

will consider how long the average wait time is if you go to

the stop at a completely random time (in other words, you

do not know the schedule). We first assume that the buses

make a stop at this station precisely every 6 minutes.

It is clear that sometimes you might have to wait just a

short time, and other times almost the maximum of 6

minutes. This makes the waiting period 3 minutes on

average. However, how is it when the buses do not run at

exact intervals, but rather run, for example, with a

uniformly distributed probability in a range from 2 to 10

minutes?

Page 290

Since they still come by every 6 minutes on average in this case, it is possible that you assume

that the waiting time of 3 minutes stays the same. The surprising and therefore paradoxical

answer is that the average waiting time is greater than 3 minutes in this situation.

In an animated simulation you should find out how long the waiting time is under the assumption

that the buses are uniformly distributed to arrive one after another between every 2 to 10

minutes (in the simulation these are seconds). You can use the game library JGameGrid for this

since you can easily model objects such as buses and passengers as sprite objects.

The program code requires some explanation:

Since we are obviously dealing with bus and passenger objects, they are modeled by the classes

Bus and Passenger. The buses are created in an infinite loop at the end of the main part of the

program according to the statistical requirements. When the graphics window is closed the

infinite loop breaks due to isDisposed() = False and the program ends.

The passengers must be periodically generated and displayed in the queue. The best way to do

this, is to write a class PassengerFactory that is derived from Actor. Even though this does not

have a sprite image, its act() can be used to generate passengers and to insert them into the

GameGrid. You can select the period at which the objects are generated using the cycle counter

nbCycles (the simulation cycle is set to 50 ms).

You move the bus forward in the act() of the class Bus and check if it has arrived at the stop with

the x-coordinate. When it arrives, you call the method board() of the class PassengerFactory

whereby the waiting passengers are removed from the queue. Simultaneously change the sprite

image of the buses with show(1) and show the new waiting time for the next bus on the

scoreboard. Use the Boolean variable isBoarded so that these actions are only called once.

The scoreboard as an instance of the class InformationPanel is an additional gadget to show the

time it will take until the next bus arrives. The display will again be changed in the method act()

by selecting one of the 10 sprite images (digit_0.png to digit_9.png) using show().

from gamegrid import *

import random

import time

min = 2

max = 10

def random_t():

return min + (max - min) * random.random()

---------------- class PassengerFactory ----------

class PassengerFactory(Actor):

Page 291

def __init__(self):

 self.nbPassenger = 0

def board(self):

for passenger in getActors(Passenger):

 passenger.removeSelf()

 passenger.board()

 self.nbPassenger = 0

def act(self):

if self.nbCycles % 10 == 0:

 passenger = Passenger(random.randint(0, 1))

 addActor(passenger, Location(400, 120 + 27 * self.nbPassenger))

 self.nbPassenger += 1

---------------- class Passenger -----------------

class Passenger(Actor):

 totalTime = 0

 totalNumber = 0

def __init__(self, i):

 Actor.__init__(self, "sprites/pupil_" + str(i) + ".png")

 self.createTime = time.clock()

def board(self):

 self.waitTime = time.clock() - self.createTime

 Passenger.totalTime += self.waitTime

 Passenger.totalNumber += 1

 mean = Passenger.totalTime / Passenger.totalNumber

 setStatusText("Mean waiting time: " + str(round(mean, 2)) + " s")

---------------- class Car -----------------------

class Bus(Actor):

def __init__(self, lag):

 Actor.__init__(self, "sprites/car1.gif")

 self.lag = lag

 self.isBoarded = False

def act(self):

 self.move()

if self.getX() > 320 and not self.isBoarded:

 passengerFactory.board()

 self.isBoarded = True

 infoPanel.setWaitingTime(self.lag)

if self.getX() > 1650:

 self.removeSelf()

---------------- class InformationPanel ----------

class InformationPanel(Actor):

def __init__(self, waitingTime):

 Actor.__init__(self, "sprites/digit.png", 10)

 self.waitingTime = waitingTime

def setWaitingTime(self, waitingTime):

 self.waitingTime = waitingTime

def act(self):

 self.show(int(self.waitingTime + 0.5))

if self.waitingTime > 0:

 self.waitingTime -= 0.1

periodic = askYesNo("Departures every 6 s?")

makeGameGrid(800, 600, 1, None, None, False)

addStatusBar(20)

setStatusText("Acquiring data...")

setBgColor(Color.white)

setSimulationPeriod(50)

show()

doRun()

Page 292

if periodic:

 setTitle("Warting Time Paradoxon - Departure every 6 s")

else:

 setTitle("Waiting Time Paradoxon - Departure between 2 s and 10 s")

passengerFactory = PassengerFactory()

addActor(passengerFactory, Location(0, 0))

addActor(Actor("sprites/panel.png"), Location(500, 120))

addActor(TextActor("Next Bus"), Location(460, 110))

addActor(TextActor("s"), Location(540, 110))

infoPanel = InformationPanel(4)

infoPanel.setSlowDown(2)

addActor(infoPanel, Location(525, 110))

while not isDisposed():

if periodic:

 lag = 6

else:

 lag = random_t()

 bus = Bus(lag)

 addActor(bus, Location(-100, 40))

 a = time.clock()

while time.clock() - a < lag and not isDisposed():

 delay(10)

MEMO

The simulation shows that the average waiting time is around 3.5 minutes, so in other words

clearly longer than the previously assumed 3 minutes. You can explain this change as follows:

If the buses arrive equally distributed, once with a gap of 2 minutes and once with a gap of 10

minutes, it is much more likely that you will get to the bus stop during the waiting interval

from 2 to 10 minutes, rather than 0 to 2 minutes. Therefore, you will certainly end up waiting

longer than 3 minutes.

EXERCISES

1. You get either a ten, twenty, or fifty cent coin every day, each with the probability of 1/3.

How many days go by, on average, until you can buy a book that costs ten dollars?

2. A person who is lost starts in the middle of the window and moves 10 pixels with each step

in a random direction (random walk). What is the average delay time u until they have for

the first time moved farther than the distance r from the start? Simulate the movement with

a (hidden) turtle with the values r = 100, 200, 300. What do you think is the relationship

between r and u?

3. Modify the program for the waiting time paradox so that the buses arrive either 2 or 10

seconds apart with the same probability of ½ and determine the average waiting time.

Page 293

8.5 SEQUENCES, CONVERGENCE

INTRODUCTION

Sequences of numbers have fascinated people for a long time. Already in ancient times around

200 B.C. Archimedes had approximated the number of Pi through a sequence of numbers that he

found by calculating the perimeters of regular polygons with increasingly many vertices that fit

into a circle. It was already clear to him then that the circle could be regarded as a border-line

case of a regular polygon with infinitely many vertices. Therefore, he found that the perimeters

of the polygons had to strive towards the circumference of the circle.

A sequence of numbers consists of the numbers a0, a1, a2, etc., thus of the terms an with index

n = 0, 1, 2, etc. (sometimes it begins with n = 1). A formation rule clearly determines how big

each number is. If ak is defined for any natural number, however large it may be, we speak of an

infinite sequence of numbers. The principle can be specified as an explicit expression of n.

However, a term may also be calculated from previous terms of the series (recursive rule). In

this case, the start values must also be known.

A convergent sequence has a very descriptive property: there is a unique number g called a

limit that the terms gradually approach, which means that you can choose any arbitrarily small

neighborhood interval of g so that none of the following terms fall outside of the chosen interval

starting at a definite n. You can imagine the neighborhood as a house around the limit: before

that, the sequence may leap around wildly, however after a certain n all terms of the sequence

end up in the house no matter how small it may be.

Number sequences can be studied experimentally using the computer. In order to illustrate them,

you use various graphical representations: You can, for instance, similar to the above illustration,

draw all terms as points or lines and analyze whether there is a limit point. However, you can

also investigate how the sequence behaves for large values of n by representing it as a two

dimensional graph where the n are on the x-axis and the an on the y-axis.

PROGRAMMING CONCEPTS: Limit point, convergence, tree diagram, chaos

THE HUNTER AND HIS DOG

A hunter walks with his dog with the velocity u = 1 m/s to their hunting lodge d = 1000 m away.

However, since the hunter walks too slowly for the dog, the dog proceeds as follows: It runs

alone at its own velocity u = 20 m/s to the hunting lodge, turns around, and then runs back to

its owner. As soon as it reaches its owner, it turns around again and runs back to the hunting

lodge, and then continues this behavior.

Page 294

You would like to simulate this procedure

with a program. With every press of the

button in your program, you draw the next

meeting point of the hunter and the dog

and write out the position next to it. The

successive values form a sequence of

numbers whose behavior you want to

study. Since the same amount of time

passes for the hunter and the dog between

each of their meetings, the increase in

position of the hunter can be described as

follows:

da
u

= 2 * (d - a) - da
 v

From this, you can deduce the following relationship with little knowledge of Algebra:

da = c * (d - x) mit c = 2 * u
u + v

As you might have expected, the numbers an pile up against the limit number 1000.

from gpanel import *

u = 1 # m/s

v = 20 # m/s

d = 1000 # m

a = 0 # hunter

h = 0 # dog

c = 2 * u / (u + v)

it = 0

makeGPanel(-50, 50, -100, 1100)

title("Hunter-Dog problem")

line(0, 0, 0, 1000)

line(-5, 1000, 5, 1000)

line(-5, 1050, 5, 1050)

line(-5, 1000, -5, 1050)

line(5, 1000, 5, 1050)

while not isDisposed():

 move(0, a)

 fillCircle(1)

 text(5, a, str(int(a)))

 getKeyWait()

 da = c * (d - a)

 dh = 2 * (d - a) - da

 h += dh

 a += da

 it += 1

 title("it = " + str(it) + "; hunter = " + str(a) +

" m; dog = " + str(h) + " m")

MEMO

One says that the number sequence an converges and that its limit value is 1000.

Think about why this problem is of a theoretical nature. It corresponds to the ancient anecdote

where Achilles was invited to race with a turtle. Since he was ten times faster than the turtle,

the turtle would have gotten a head start of 10 meters. Achilles refused to compete because in

Page 295

his opinion, he had no chance to catch up with the turtle. So, he argued: In the time that he

needed for the first 10 meters, the turtle would have already advanced 1 meter. In the time

that he needed for this one meter, the turtle would already be 10 cm further. In the time that

he then needed for these 10 cm, the turtle would already be another 1 cm further, and so

forth. What do you think about this?

BIFURCATION DIAGRAM (FEIGENBAUM DIAGRAM)

You got to know the logistic growth in the context of population dynamics. The population size

xnew in the next generation is calculated from its current size x from a quadratic relationship.

The relationship is simplified in the following (parameter r can be arbitrarily chosen) :

xnew = r * x * (1 - x)

an+1 = r * an * (1 - an)

You wonder whether the resulting

recursively defined sequence with a0 = 0.5

converges and what the limit value is in

this case.

You examine the behavior with an

extremely simple program where you plot

the first 1,000 terms of the sequence as

points for 1,000 equidistant values of r in

an area from 0 to 4.

With a fixed r, you should always begin

with the same starting value a0 = 0.5 and

draw the terms only from n = 500, since

you are only interested in finding out if the

sequence is convergent or divergent.

from gpanel import *

def f(x, r):

return r * x * (1 - x)

makeGPanel(-0.6, 4.4, -0.1, 1.1)

title("Tree Diagram")

drawGrid(0, 4.0, 0, 1.0, "gray")

for z in range(1001):

 r = 4 * z / 1000

 a = 0.5

for i in range(1001):

 a = f(a, r)

if i > 500:

 point(r, a)

MEMO

In the experiment, you detect the limit points of the sequence for a certain r. Based on a

computer simulation, you can establish the following assumptions: For r < 1 there is a limit

point at 0 and so the sequence converges to 0. The sequence likewise converges in the area

between 1 and r. There are initially two and later more limit points for an even larger r, but the

sequence no longer converges. For even larger values of r the sequence chaotically jumps back

and forth.

Page 296

THE EULER NUMBER

One of the most famous sequences are the

numbers defined by the formation rule:

an = (1 + 1
n

)n mit n = 1, 2, 3, ...

It is not clear what this sequence does with

an increasing n, since on the one hand 1 +

1/n increasingly approaches the number 1,

and on the other hand, this number is

exponentiated with an increasing exponent.

You can try to solve this mystery with a

simple computer experiment.

from gpanel import *

def a(n):

return (1 + 1/n)**n

makeGPanel(-10, 110, 1.9, 3.1)

title("Euler Number")

drawGrid(0, 100, 2.0, 3.0, "gray")

for n in range(1, 101):

 move(n, a(n))

 fillCircle(0.5)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

an = (1 + 1
n

)n The sequence converges to a number in the order of 2.7.

This is a case of the Euler number e, arguably one of the most famous numbers ever.

QUICK CONVERGING SEQUENCES FOR THE CALCULATION OF PI

The calculation of πfor as many digits as possible poses a challenge since ancient times. A sum

formula was discovered only in 1995 by the mathematicians Bailey, Borwein and Plouffe called

the BBP formula. They proved that you can get exactly π as the limit value of a sequence whose

n-th term is the sum from k = 0 to k = n of:

 1

16k
(4

8k + 1
- 2

8k + 4
- 1

8k + 5
- 1

8k + 6
)

Your program uses the Python class decimal which provides the decimal numbers with a high

level of accuracy. The constructor creates such a number from an integer or a float where

common mathematical operation signs can be used directly.

You can set the accuray with getcontext().prec. This roughly corresponds to the number of

decimal places used.

Each time a button is pressed, your program calculates the next term of the sequence and

represents the value in a EntryDialog.

Page 297

from entrydialog import *

from decimal import *

getcontext().prec = 50

def a(k):

return 1/16**Decimal(k) * (4 / (8 * Decimal(k) + 1) - 2

 / (8 * Decimal(k) + 4) - 1

 / (8 * Decimal(k) + 5) - 1 / (8 * Decimal(k) + 6))

inp = IntEntry("n", 0)

out = StringEntry("Pi")

pane0 = EntryPane(inp, out)

btn = ButtonEntry("Next")

pane1 = EntryPane(btn)

dlg = EntryDialog(pane0, pane1)

dlg.setTitle("BBP Series - Click Next")

n = 0

s = a(0)

out.setValue(str(s))

while not dlg.isDisposed():

if btn.isTouched():

 n = inp.getValue()

if n == None:

 out.setValue("Illegal entry")

else:

 n += 1

 s += a(n)

 inp.setValue(n)

 out.setValue(str(s))

MEMO

At just 40 iterations the displayed number for π no longer changes.

The program ends when you close the display window, since isDisposed() is True.

EXERCISES

1. The Fibonacci sequence is defined such that a term is equal to the sum of its two

predecessors, with the first and second terms being 1. Calculate the first 30 terms of the

sequence and display them on a x-y graph.

2. The Fibonacci sequence diverges, whereas the sequence of quotients of two consecutive

terms converges. Similar to exercise 1, display this sequence of quotients graphically and

determine the approximate value of the limit.

3. Consider the following sequence with the start value a0 = 1:

an+1 = 1
2

* (an +
2
an

)n

Page 298

Draw the terms as points on a number line and write their value in an output window. As you

can see, the sequence converges. You can calculate the limit value x somewhat generously

as follows: For large n subsequent terms may not be easily distinguishable, so in the border

line case we get:

x = 1
2

* (x + 2
x

) und aufgelöst x = √ 2

Formulate this result as a guide on how you can approximately determine the square root of

2 using the 4 basic arithmetic operations. How does the algorithm need to be changed for

the determination of the square root of any given number z?

ADDITIONAL MATERIAL

ITERATIVE SOLUTION OF AN EQUATION

Wie du in Aufgabe 3 gesehen hast, ist x = √ 2 die Lösung der Gleichung

x = f(x) mit f(x) = 1
2

* (x + 2
x

)

It is illustrative to display the procedure of

solving this equation graphically. To do

this, draw both the function graph y =

f(x) and the angle bisector y = x in the

same coordinate system. The solution is at

the intersection of the two curves.

The iterative solution corresponds to the

successive pass of a point on the function

graph horizontally towards the bisecting

angle and vertically down towards the

nearest point of the function graph.

.

from gpanel import *

def f(x):

return 1 / 2 * (x + 2 / x)

makeGPanel(-1, 11, -1, 11)

title("Iterative square root begins at x = 10. Press a key...")

drawGrid(0, 10, 0, 10, "gray")

for i in range(10, 1001):

 x = 10 / 1000 * i

if i == 10:

 move(x, f(x))

else:

 draw(x, f(x))

line(0, 0, 10, 10)

x = 10

move(x, f(x))

fillCircle(0.1)

it = 0

Page 299

while not isDisposed():

 getKeyWait()

 it += 1

 xnew = f(x)

 line(x, f(x), xnew, f(x))

 line(xnew, f(x), xnew, f(xnew))

 x = xnew

 move(x, f(x))

 fillCircle(0.1)

 title("Iteration " + str(it) + ": x = " + str(x))

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

You can clearly see that with each press of the key the points move quickly towards the point

of intersection. Just a few iterations results in a solution with 10 digits of accuracy.

Page 300

8.6 CORRELATION, REGRESSION

INTRODUCTION

In both the natural sciences and in daily life, the collection of data in the form of measurements

plays an important role. However, you do not always need to use a measuring instrument. The

data can also consist in poll values, for example, in connection with a statistical investigation.

After any data acquisition, it is most important to interpret the measured data. You may look

for qualitative statements where the measured values rise or fall over time, or you might want

experimentally verify a law of nature.

A major problem is that measurements are almost always subject to fluctuations and are not

exactly reproducible. Despite these "measurement errors" people would still like to make

scientifically correct statements. Measurement errors do not always emerge from flawed

measuring instruments, but they may also lie in the nature of the experiment. For instance, the

"measurement" of the numbers on a rolled die basically results in dispersed values between 1

and 6. Therefore, with any type of measurement, statistical considerations play a central role.

Often two variables x and y are measured together in a measurement series and questions arise

as to whether these are related and if they are subject to regularity. Plotting the (x, y) values as

measuring points in a coordinate system is called data visualization. You can almost always

recognize whether the data are dependent of each other by simply looking at the distribution of

the measured values.

PROGRAMMING CONCEPTS: Data visualization, measured value distribution, cloud diagram,

noise, covariance, correlation coefficient, regression, best fit

VISUALIZING INDEPENDENT AND DEPENDENT DATA

You can easily simulate independent data in a

x-y diagram by using uniformly distributed

random numbers for x and y. Although it is not

necessary in this case, you copy the measured

values into the data lists xval and yval and only

then display them as data points.

import random

from gpanel import *

z = 10000

makeGPanel(-1, 11, -1, 11)

title("Uuniformly distributed value pairs")

drawGrid(10, 10, "gray")

xval = [0] * z
Page 301

yval = [0] * z

for i in range(z):

 xval[i] = 10 * random.random()

 yval[i] = 10 * random.random()

 move(xval[i], yval[i])

 fillCircle(0.03)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

You get galaxy-like graphics if the x and y values

are still independent of each other, but normally

distributed around an average value. In this

example, 5 is used as the average and 1 is used

as the dispersion. This is also called a scatter

plot or a cloud diagram.

You can easily generate normally distributed

random numbers by using random.gauss(average

value, dispersion).

import random

from gpanel import *

z = 10000

makeGPanel(-1, 11, -1, 11)

title("Normally distributed value pairs")

drawGrid(10, 10, "gray")

xval = [0] * z

yval = [0] * z

for i in range(z):

 xval[i] = random.gauss(5, 1)

 yval[i] = random.gauss(5, 1)

 move(xval[i], yval[i])

 fillCircle(0.03)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

You can also simulate dependencies between x

and y values by assuming that x increases in

equidistant steps in a certain range, and y is a

function of x that is, however, subject to

statistical fluctuations. In physics, such

fluctuations are often called noise.

You draw the cloud diagram for a parabola y = -x

* (0.2 * x - 2) and normally distributed noise in

the area x = 0..10 with an increment size of

0.01.

Page 302

import random

from gpanel import *

import math

z = 1000

a = 0.2

b = 2

def f(x):

 y = -x * (a * x - b)

return y

makeGPanel(-1, 11, -1, 11)

title("y = -x * (0.2 * x - 2) with normally distributed noise")

drawGrid(0, 10, 0, 10, "gray")

xval = [0] * z

yval = [0] * z

for i in range(z):

 x = i / 100

 xval[i] = x

 yval[i] = f(x) + random.gauss(0, 0.5)

 move(xval[i], yval[i])

 fillCircle(0.03)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

You can recognize interdependencies of measured variables immediately through the use of

data visualization [more...].

With uniformly distributed random numbers in an interval [a, b], the numbers appear with the

same frequency in each subinterval of equal length. Normally distributed numbers have a

bell-shape distribution, where 68% of the numbers lie inside the interval (average -

dispersion) and (average + dispersion).

COVARIANCE AS A MEASURE FOR DEPENDENCY

Here the goal is to not only make

interdependencies visible in a diagram, but

also to express them by a number. As often,

you start from a concrete example and

consider the double rolling of a die, where x

is the number you get from the first roll and

y is the number from the second roll. You

conduct the rolling experiment many times

and draw the value pairs as a cloud diagram.

Since both measurement values of x and y

are independent, you obtain a regular point

cloud. If you calculate the expected value of

x and y, it results in the generally known 3.5.

Since x and y are independent, the probability pxy, to get the pair x, y from a double roll is pxy =

Page 303

px * py.

It is an obvious assumption that in the general case the following product rule applies.

If x and y are independent, the expected value of x * y equals the product of the expected

values of x and y [more...] .

This assumption is confirmed in the simulation.

from random import randint

from gpanel import *

z = 10000 # number of double rolls

def dec2(x):

return str(round(x, 2))

def mean(xval):

 n = len(xval)

 sum = 0

for i in range(n):

 sum += xval[i]

return sum / n

makeGPanel(-1, 8, -1, 8)

title("Double rolls. Independent random variables")

addStatusBar(30)

drawGrid(0, 7, 0, 7, 7, 7, "gray")

xval = [0] * z

yval = [0] * z

xyval = [0] * z

for i in range(z):

 a = randint(1, 6)

 b = randint(1, 6)

 xval[i] = a

 yval[i] = b

 xyval[i] = xval[i] * yval[i]

 move(xval[i], yval[i])

 fillCircle(0.2)

xm = mean(xval)

ym = mean(yval)

xym = mean(xyval)

setStatusText("E(x) = " + dec2(xm) + \

", E(y) = " + dec2(ym) + \

", E(x, y) = " + dec2(xym))

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

It is advisable to use a status bar where the results can be written out. The function dec2()

rounds the value to 2 digits and returns it as a string.

The values are of course subject to a statistical fluctuation.

In the next simulation you will no longer analyze the rolled pair of numbers, but rather the

numbers x of the first die and the sum y of the two rolled numbers. It is now evident that y is

dependent on x, for example if x = 1, the probability of y = 4 is not the same as when x = 2.

Page 304

Your simulation confirms that the product

rule indeed no longer applies if x and y are

interdependent. It is therefore reasonable to

introduce the deviation from the product

rule, the difference

c = E(x*y) - E(x)*E(y)

called covariance, as a measure of the

dependency between x and y.

Simultaneously, you see in your program that

the covariance can also be calculated as the

sum of all square deviations from the

average.

from random import randint

from gpanel import *

z = 10000 # number of double rolls

def dec2(x):

return str(round(x, 2))

def mean(xval):

 n = len(xval)

 sum = 0

for i in range(n):

 sum += xval[i]

return sum / n

def covariance(xval, yval):

 n = len(xval)

 xm = mean(xval)

 ym = mean(yval)

 cxy = 0

for i in range(n):

 cxy += (xval[i] - xm) * (yval[i] - ym)

return cxy / n

makeGPanel(-1, 11, -2, 14)

title("Double rolls. Independent random variables")

addStatusBar(30)

drawGrid(0, 10, 0, 13, 10, 13, "gray")

xval = [0] * z

yval = [0] * z

xyval = [0] * z

for i in range(z):

 a = randint(1, 6)

 b = randint(1, 6)

 xval[i] = a

 yval[i] = a + b

 xyval[i] = xval[i] * yval[i]

 move(xval[i], yval[i])

 fillCircle(0.2)

xm = mean(xval)

ym = mean(yval)

xym = mean(xyval)

c = xym - xm * ym

setStatusText("E(x) = " + dec2(xm) + \

", E(y) = " + dec2(ym) + \

", E(x, y) = " + dec2(xym) + \
Page 305

", c = " + dec2(c) + \

", covariance = " + dec2(covariance(xval, yval)))

MEMO

You get a value of about 2.9 for the covariance in the simulation. The covariance is therefore

well qualified as a measure for the dependence of random variables.

THE CORRELATION COEFFICIENT

The just introduced covariance also has a disadvantage. Depending on how the measured values

x and y are scaled, different values occur, even if the values are apparently equally dependent on

each other. This is easy to see. If you take, for example, two dice that have sides with numbers

going from 10 to 60 instead of from 1 to 6, the covariance changes greatly even though the

dependence is the same. This is why you introduce a normalized covariance, called a

correlation coefficient, by dividing the covariance by the dispersion of the x and y values

correlation coefficient(x, y) = covariance(x, y)
dispersion(x) * dispersion(y)

The correlation coefficient is always in the range from -1 to 1. A value close to 0 corresponds to

a small dependence and a value close to 1 represents a large dependence, whereas increasing

values of x correspond to increasing values of y, and a value close to -1 corresponds to

increasing values of x and decreasing values of y.

You again use the double roll in the program and analyze the dependence of the sum of the

numbers from the number of the first die.

from random import randint

from gpanel import *

import math

z = 10000 # number of double rolls

k = 10 # scalefactor

def dec2(x):

return str(round(x, 2))

def mean(xval):

 n = len(xval)

 sum = 0

for i in range(n):

 sum += xval[i]

return sum / n

def covariance(xval, yval):

 n = len(xval)

 xm = mean(xval)

 ym = mean(yval)

 cxy = 0

for i in range(n):

 cxy += (xval[i] - xm) * (yval[i] - ym)

return cxy / n

def deviation(xval):

 n = len(xval)

 xm = mean(xval)

 sx = 0

for i in range(n):

 sx += (xval[i] - xm) * (xval[i] - xm)

 sx = math.sqrt(sx / n)

return sx

Page 306

def correlation(xval, yval):

return covariance(xval, yval) / (deviation(xval) * deviation(yval))

makeGPanel(-1 * k, 11 * k, -2 * k, 14 * k)

title("Double rolls. Independent random variables.")

addStatusBar(30)

drawGrid(0, 10 * k, 0, 13 * k, 10, 13, "gray")

xval = [0] * z

yval = [0] * z

xyval = [0] * z

for i in range(z):

 a = k * randint(1, 6)

 b = k * randint(1, 6)

 xval[i] = a

 yval[i] = a + b

 xyval[i] = xval[i] * yval[i]

 move(xval[i], yval[i])

 fillCircle(0.2 * k)

xm = mean(xval)

ym = mean(yval)

xym = mean(xyval)

c = xym - xm * ym

setStatusText("E(x) = " + dec2(xm) + \

", E(y) = " + dec2(ym) + \

", E(x, y) = " + dec2(xym) + \

", covariance = " + dec2(covariance(xval, yval)) + \

", correlation = " + dec2(correlation(xval, yval)))

MEMO

You can change the scaling factor k and the correlation will stay around 0.71, as opposed to

the covariance which greatly changes. Instead of always calling it the correlation coefficient,

you can simply call it correlation.

MEDICAL RESEARCH PUBLICATION

With the knowledge you have gained, you are

already capable of understanding and

evaluating a scientific publication, published in

the year 2012 in the prestigious journal "New

England Journal of Medicine" [more...]. The

connection between consumers of chocolate

and the number of Nobel Prize winners is

investigated in different industrialized

countries, or in other words, the question is

considered whether there is a correlation

between eating chocolate and intelligence. In

the article the author uses the following data

sources which you can also find on the

Internet

Nobel Prizes:

http://en.wikipedia.org/wiki/List_of_countries_by_Nobel_laureates_per_capita

Page 307

Chocolate consumption:

http://www.chocosuisse.ch/web/chocosuisse/en/documentation/facts_figures.html

http://www.theobroma-cacao.de/wissen/wirtschaft/international/konsum

You want to reconstruct the investigation yourself. In your program, you use a list data with

sub-lists of three elements: the name of the country, the amount of chocolate consumption in kg

per year and per inhabitant, and the number of Nobel Prize winners per 10 million inhabitants.

You display the data graphically and determine the correlation coefficient.

import random

from gpanel import *

import math

data = [["Australia", 4.8, 5.141],

 ["Austria", 8.7, 24.720],

 ["Belgium", 5.7, 9.005],

 ["Canada", 3.9, 6.253],

 ["Denmark", 8.2, 24.915],

 ["Finland", 6.8, 7.371],

 ["France", 6.6, 9.177],

 ["Germany", 11.6, 12.572],

 ["Greece", 2.5, 1.797],

 ["Italy", 4.1, 3.279],

 ["Ireland", 8.8, 12.967],

 ["Netherlands", 4.5, 11.337],

 ["Norway", 9.2, 21.614],

 ["Poland", 2.7, 3.140],

 ["Portugal", 2.7, 1.885],

 ["Spain", 3.2, 1.705],

 ["Sweden", 6.2, 30.300],

 ["Switzerland", 11.9, 30.949],

 ["United Kingdom", 9.8, 19.165],

 ["United States", 5.3, 10.811]]

def dec2(x):

return str(round(x, 2))

def mean(xval):

 n = len(xval)

 sum = 0

for i in range(n):

 sum += xval[i]

return sum / n

def covariance(xval, yval):

 n = len(xval)

 xm = mean(xval)

 ym = mean(yval)

 cxy = 0

for i in range(n):

 cxy += (xval[i] - xm) * (yval[i] - ym)

return cxy / n

def deviation(xval):

 n = len(xval)

 xm = mean(xval)

 sx = 0

for i in range(n):

 sx += (xval[i] - xm) * (xval[i] - xm)

 sx = math.sqrt(sx / n)

return sx

def correlation(xval, yval):

return covariance(xval, yval) / (deviation(xval) * deviation(yval))

makeGPanel(-2, 17, -5, 55)

drawGrid(0, 15, 0, 50, "lightgray")

Page 308

xval = []

yval = []

for country in data:

 d = country[1]

 v = country[2]

 xval.append(d)

 yval.append(v)

 move(d, v)

 fillCircle(0.2)

 text(country[0])

title("Chocolate-Brainpower-Correlation: " + dec2(correlation(xval, yval)))

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

This results in a high correlation of approximately 0.71, which can be interpreted in different

ways. It is right to say that there is a correlation between the two sets of data, but we can

only speculate about the reasons why. In particular a causal relationship between the

consumption of chocolate and intelligence can by no means be proven this way. As a general

rule: When there is a high correlation between x and y, x can be the cause for the behavior of

y. Likewise, y can be the cause for the behavior of x, or x and y can be associated with other

perhaps unknown causes.

Discuss the meaning and purpose of this investigation with other people in your community

and ask them for their opinion.

MEASUREMENT ERRORS AND NOISE

Even with an exact relationship between x and

y, measurement errors or other influences can

result in fluctuating measured values. In this

simulation you assume a linear relationship

between x and y, whereby the function values

y are subjected to normally distributed

fluctuations.

Determine the correlation coefficient and draw

the point with the coordinates (xm, ym) where

xm and ym are the expected values of x and y,

respectively.

import random

from gpanel import *

import math

z = 1000

a = 0.6

b = 2

sigma = 1

def f(x):

 y = a * x + b

Page 309

return y

def dec2(x):

return str(round(x, 2))

def mean(xval):

 n = len(xval)

 sum = 0

for i in range(n):

 sum += xval[i]

return sum / n

def covariance(xval, yval):

 n = len(xval)

 xm = mean(xval)

 ym = mean(yval)

 cxy = 0

for i in range(n):

 cxy += (xval[i] - xm) * (yval[i] - ym)

return cxy / n

def deviation(xval):

 n = len(xval)

 xm = mean(xval)

 sx = 0

for i in range(n):

 sx += (xval[i] - xm) * (xval[i] - xm)

 sx = math.sqrt(sx / n)

return sx

def correlation(xval, yval):

return covariance(xval, yval) / (deviation(xval) * deviation(yval))

makeGPanel(-1, 11, -1, 11)

title("y = 0.6 * x + 2 normally distributed measurement errors")

addStatusBar(30)

drawGrid(0, 10, 0, 10, "gray")

setColor("blue")

lineWidth(3)

line(0, f(0), 10, f(10))

xval = [0] * z

yval = [0] * z

setColor("black")

for i in range(z):

 x = i / 100

 xval[i] = x

 yval[i] = f(x) + random.gauss(0, sigma)

 move(xval[i], yval[i])

 fillCircle(0.03)

xm = mean(xval)

ym = mean(yval)

move(xm, ym)

circle(0.5)

setStatusText("E(x) = " + dec2(xm) + \

", E(y) = " + dec2(ym) + \

", correlation = " + dec2(correlation(xval, yval)))

MEMO

This results in a high correlation as expected, which becomes even greater the smaller the

selected dispersion sigma is. The correlation is exactly 1 for sigma = 0.

Also, the point with the expected values P(0.5, 0.5) lies on the straight line.

Page 310

REGRESSION LINE, BEST FIT

Previously you started with a straight line, that you made "noisy" yourself. Here, you ask the

opposite question: How do you detect the straight line again if you only have the two series of

measurements? The desired line is called the regression line.

At least you already know that the regression line passes through the point P with the expected

values. To find them, you can do the following:

You place any line through P and

determine the squares of the deviations

from the measured values for all x from

the straight line (vertical distance). The

deviations must be as small as possible

for the regression line. For this, you

determine an error amount by adding all

individual deviations together.

You can find the best line in the

simulation by gradually turning your

placed line around the point P and always

calculating the error sum, which will

decline. You will have found the best fit

just before the error sum begins to rise

again.

import random

from gpanel import *

import math

z = 1000

a = 0.6

b = 2

def f(x):

 y = a * x + b

return y

def dec2(x):

return str(round(x, 2))

def mean(xval):

 n = len(xval)

 sum = 0

for i in range(n):

 sum += xval[i]

return sum / n

def covariance(xval, yval):

 n = len(xval)

 xm = mean(xval)

 ym = mean(yval)

 cxy = 0

for i in range(n):

 cxy += (xval[i] - xm) * (yval[i] - ym)

return cxy / n

def deviation(xval):

 n = len(xval)

 xm = mean(xval)

 sx = 0

for i in range(n):

Page 311

 sx += (xval[i] - xm) * (xval[i] - xm)

 sx = math.sqrt(sx / n)

return sx

sigma = 1

makeGPanel(-1, 11, -1, 11)

title("Simulate data points. Press a key...")

addStatusBar(30)

drawGrid(0, 10, 0, 10, "gray")

setStatusText("Press any key")

xval = [0] * z

yval = [0] * z

for i in range(z):

 x = i / 100

 xval[i] = x

 yval[i] = f(x) + random.gauss(0, sigma)

 move(xval[i], yval[i])

 fillCircle(0.03)

getKeyWait()

xm = mean(xval)

ym = mean(yval)

move(xm, ym)

lineWidth(3)

circle(0.5)

def g(x):

 y = m * (x - xm) + ym

return y

def errorSum():

 sum = 0

for i in range(z):

 x = i / 100

 sum += (yval[i] - g(x)) * (yval[i] - g(x))

return sum

m = 0

setColor("red")

lineWidth(1)

error_min = 0

while m < 5:

 line(0, g(0), 10, g(10))

if m == 0:

 error_min = errorSum()

else:

if errorSum() < error_min:

 error_min = errorSum()

else:

break

 m += 0.01

title("Regression line found")

setColor("blue")

lineWidth(3)

line(0, g(0), 10, g(10))

setStatusText("Found slope: " + dec2(m) + \

", Theory: " + dec2(covariance(xval, yval)

 /(deviation(xval) * deviation(xval))))

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 312

MEMO

Instead of using a computer simulation to find the best fit, you can also directly calculate the

slope of the regression line.

m =
covariance(x, y)

dispersion(x)2

Since the line passes through the point P with the expected values E(x) and E(y), it thus has

the linear equation:

y - E(y) = m * (x - E(x))

EXERCISES

1. The well-known Engel's law of economics states that the actual amount of money spent on

food rises in households with a rising income, yet the proportion of income spent on food

decreases. Show the accuracy of this using the data material.

a. Visualize the relationship between income and total food expenditure (amount of money

spent)

b. Visualize the relationship between income and relative food expenditure

c. Determine the correlation between income and absolute food expenditure

d. Determine the regression line between income and absolute food expenditure

Data:

Monthly income 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900

Expenditure% 64 63.25 62.55 61.90 61.30 60.75 60.25 59.79 59.37 58.99

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

58.65 58.35 58.08 57.84 57.63 57.45 57.30 57.17 57.06 56.97 56.90

2. The currently generally accepted evolutionary history of the universe assumes that there was

a Big Bang a long time ago and since then, the universe expands. The main question is when

the Big Bang dates back to, or what is called the age of the universe. The astronomer

Hubble published his world famous studies in 1929, where he found that there is a linear

relationship between the distance d of the galaxies and their escape velocity v. The Hubble

law is:

v = H * d

(where H is the Hubble constant)

You can comprehend the astrophysical thought process by starting with the following

experimental data obtained from the Hubble Space Telescope:

Galaxy Distance

 [Mpc)

Velocity

[km/s]

NGC0300 2 133

NGC095 9.16 664

NGC1326A 16.14 1794

NGC1365 17.95 1594

NGC1425 21.88 1473

NGC2403 3.22 278

Page 313

NGC2541 11.22 714

NGC2090 11.75 882

NGC3031 3.63 80

NGC3198 13.8 772

NGC3351 10 642

NGC3368 10.52 768

NGC3621 6.64 609

NGC4321 15.21 1433

NGC4414 17.7 619

NGC4496A 14.86 1424

NGC4548 16.22 1384

NGC4535 15.78 1444

NGC4536 14.93 1423

NGC4639 21.98 1403

NGC4725 12.36 1103

IC4182 4.49 318

NGC5253 3.15 232

NGC7331 14.72 999

1 Megaparsec (Mpc) = 3.09 * 1019km

a) Plot the data in a scatter plot. Copy it to the data list into your program.

data = [

["NGC0300", 2.00, 133],

["NGC095", 9.16, 664],

["NGC1326A", 16.14, 1794],

["NGC1365", 17.95, 1594],

["NGC1425", 21.88, 1473],

["NGC2403", 3.22, 278],

["NGC2541", 11.22, 714],

["NGC2090", 11.75, 882],

["NGC3031", 3.63, 80],

["NGC3198", 13.80, 772],

["NGC3351", 10.0, 642],

["NGC3368", 10.52, 768],

["NGC3621", 6.64, 609],

["NGC4321", 15.21, 1433],

["NGC4414", 17.70, 619],

["NGC4496A", 14.86, 1424],

["NGC4548", 16.22, 1384],

["NGC4535", 15.78, 1444],

["NGC4536", 14.93, 1423],

["NGC4639", 21.98, 1403],

["NGC4725", 12.36, 1103],

["IC4182", 4.49, 318],

["NGC5253", 3.15, 232],

["NGC7331", 14.72, 999]]

from Freedman et al, The Astrophysical Journal, 553 (2001)

b) Show that the values correlate well and determine the slope H of the regression line.

c) If you assume that the velocity v of a certain galaxy remains constant, its distance is d

= v * T, where T is the age of the universe. Following the Hubble law (v = H * d) we can

deduce T = 1 / H . Determine T.

Page 314

ADDITIONAL MATERIAL

FINDING CACHED INFORMATION WITH AUTOCORRELATION

Intelligent beings on a distant planet want to contact other living beings. To do this, they send

out radio signals that present a certain regularity (you can imagine a kind of Morse code). The

signal becomes weaker and weaker on the long transmission path and gets masked by

statistically fluctuating noise. We receive this signal on Earth with a radio telescope, and so for

the time being we only hear the noise.

The statistics and a computer program can help us retrieve the original radio signal again. If you

calculate the correlation coefficient of the signal with its own time-shifted signal, you decrease

the statistical noise components. (A correlation with itself is called an autocorrelation).

You can simulate this property important for

signal analysis with a Python program. The

original useful signal is a sine wave and you

superimpose it on the noise by adding a

random number to each sample value (with

a normal distribution). Show the noisy signal

in the upper part of the graph and wait for a

key press. The useful signal is no longer

recognizable.

Subsequently, you build the autocorrelation

of the signal and draw the course of the

correlation coefficient in the lower part of

the graph. The useful signal will be clearly

recognizable again.

import random

from gpanel import *

import math

def mean(xval):

 n = len(xval)

 sum = 0

for i in range(n):

 sum += xval[i]

return sum / n

def covariance(xval, yval):

 n = len(xval)

 xm = mean(xval)

 ym = mean(yval)

 cxy = 0

for i in range(n):

 cxy += (xval[i] - xm) * (yval[i] - ym)

return cxy / n

def deviation(xval):

 n = len(xval)

 xm = mean(xval)

 sx = 0

for i in range(n):

 sx += (xval[i] - xm) * (xval[i] - xm)

 sx = math.sqrt(sx / n)

return sx

def correlation(xval, yval):

Page 315

return covariance(xval, yval)/(deviation(xval)*deviation(yval))

def shift(offset):

 signal1 = [0] * 1000

for i in range(1000):

 signal1[i] = signal[(i + offset) % 1000]

return signal1

makeGPanel(-10, 110, -2.4, 2.4)

title("Noisy signal. Press a key...")

drawGrid(0, 100, -2, 2.0, "lightgray")

t = 0

dt = 0.1

signal = [0] * 1000

while t < 100:

 y = 0.1 * math.sin(t) # Pure signal

noise = 0

 noise = random.gauss(0, 0.2)

 z = y + noise

if t == 0:

 move(t, z + 1)

else:

 draw(t, z + 1)

 signal[int(10 * t)] = z

 t += dt

getKeyWait()

title("Signal after autocorrelation")

for di in range(1, 1000):

 y = correlation(signal, shift(di))

if di == 1:

 move(di / 10, y - 1)

else:

 draw(di / 10, y - 1)

To make it a bit more exciting, listen to the noisy signal first and then the extracted useful

signal. To do this, tap into your knowledge from the chapter on Sound.

from soundsystem import *

import math

import random

from gpanel import *

n = 5000

def mean(xval):

 sum = 0

for i in range(n):

 sum += xval[i]

return sum / n

def covariance(xval, k):

 cxy = 0

for i in range(n):

 cxy += (xval[i] - xm) * (xval[(i + k) % n] - xm)

return cxy / n

def deviation(xval):

 xm = mean(xval)

 sx = 0

for i in range(n):

 sx += (xval[i] - xm) * (xval[i] - xm)

 sx = math.sqrt(sx / n)

return sx

makeGPanel(-100, 1100, -11000, 11000)

drawGrid(0, 1000, -10000, 10000)

title("Press <SPACE> to repeat. Any other key to continue.")

Page 316

signal = []

for i in range(5000):

 value = int(200 * (math.sin(6.28 / 20 * i) + random.gauss(0, 4)))

 signal.append(value)

if i == 0:

 move(i, value + 5000)

elif i <= 1000:

 draw(i, value + 5000)

ch = 32

while ch == 32:

 openMonoPlayer(signal, 5000)

 play()

 ch = getKeyCodeWait()

title("Autocorrelation running. Please wait...")

signal1 = []

xm = mean(signal)

sigma = deviation(signal)

q = 20000 / (sigma * sigma)

for di in range(1, 5000):

 value = int(q * covariance(signal, di))

 signal1.append(value)

title("Autocorrelation Done. Press any key to repeat.")

for i in range(1, 1000):

if i == 1:

 move(i, signal1[i] - 5000)

else:

 draw(i, signal1[i] - 5000)

while True:

 openMonoPlayer(signal1, 5000)

 play()

 getKeyCodeWait()

MEMO

Instead of executing the program, you can listen to the two signals as WAV files here

Noisy signal (click here)

Desired signal (click here)

Page 317

8.7 COMPLEX NUMBERS & FRACTALS

INTRODUCTION

Complex numbers are very important in mathematics since they extend the set of real numbers

allowing many propositions to be formulated easier and more general. They also play an

important role in science and technology, especially in physics and electrical engineering [more...

engineering, the alternating current theory is complex resistances (impedances) greatly

simplified]. Fortunately, complex numbers are a built-in data type in Python and there are also

arithmetic operators for addition, subtraction, multiplication, and division available for use. In

addition, there are many known functions with complex arguments in the module cmath.

Complex numbers can be represented in the complex plane as arrows or as points. In order to

allow that turtle windows, GPanels, and JGameGrid pixel grids can also be regarded as a complex

planes, all functions with coordinate parameters (x,y) in the respective libraries are also directly

available for complex numbers.

PROGRAMMING CONCEPTS: Complex data type, conformal mapping, Mandelbrot fractal

BASIC OPERATIONS WITH COMPLEX NUMBERS

In Python, for the imaginary unit you use the symbol j commonly seen in electrical engineering

instead of i. You can define the complex number with the real part 2 and the imaginary part 3 in

several ways:

z = 2 + 3j or z = 2 + 3 * 1j or z = complex(2, 3)

Use the convenient TigerJython console for the following examples:

You get the real and imaginary parts by using z.real

and z.imag, respectively. You should keep in mind

that these are not function calls but rather variable

values (which you can only read). Real and imaginary

parts are always floats.

The square of the imaginary unit 1j is -1. In other

words, the imaginary unit 1j is equal to the square

root of -1. In order to get the square root of complex

numbers, you have to import the module cmath

instead of math

The standard function abs() returns not only the

value for integers and floats, but also for complex

numbers. You can also use the usual operator

symbols +, -, *, / and the power operator ** for

complex numbers. They have the same order of

precedence as for floats.

Page 318

In your program, you make powers of a

complex number z = 0.9 + 0.3j, which has

the absolute value of slightly less than 1.

Since during the multiplication of two

complex numbers the absolute values are

multiplied and the phases added together ,

the powers seem to move on a spiral that

you can easily draw in a GPanel.

Remember that you have to do the filling

before drawing the grid, because fill()

always fills closed areas.

from gpanel import *
makeGPanel(-1.2, 1.2, -1.2, 1.2)
title("Complex plane")

z = 0.9 + 0.3j
for n in range(1, 60):
 y = z**n
 dr aw(y)
fill(0.2, 0, "white" , "red")
fill(0.0, 0.2, "wh ite" , "green")
drawGrid(-1.0, 1. 0, -1.0, 1.0)

MEMO

draw(z) causes the same as draw(z.real, z.imag), but it is simpler. You should use GPanel

coordinates that are 10% larger on all sides than the used coordinate range. You must specify

the coordinates as floats in drawGrid() so that the grid is labeled with floats.

CONFORMAL MAPPING

In a two-dimensional mapping every point P(x, y) is assigned a pixel P'(x', y').

You can also regard the points as

complex numbers and say that the

mapping of each number z is assigned a

function value z'. Therefore, you write

z' = f(z).

In the following, you choose the function

z' = f(z) = 1/z (inversion) and map a

perpendicular coordinate grid.

You select the area from -5 to 5 in the

complex plane and conceive 201 grid

lines with a spacing of 1/20. Draw the

horizontal lines green and the vertical

lines red. The result is a pretty picture

from gpanel import *

functi on f(z) = 1/z
def f(z):

Page 319

 if z == 0:
 return 0
 r eturn 1 / z

min = -5.0
max = 5. 0
step = 1 / 20
reStep = complex(step, 0)
imStep = complex(0, step)

makeGPanel(min, max, min, max)
title("Conformal mapping for f(z) = 1 / z")
line(min, 0, max, 0) # Real axis
line(0, min, 0, max) # Imaginary axis

Transform horiz ontal line per line
setColor("green")
z = complex(min, min)
while z.imag < max:
 z = complex(m in, z.imag) # left
 move(f(z))
 while z.real < max: # move along horz. line
 draw(f(z))
 z = z + r eStep
 z = z + imStep

Transform vertical line per line
setColor("red")
z = complex(min, min)
while z.real < max:
 z = complex(z .real, min) # bottom
 move(f(z))
 while z.imag < max: # move along vert. line
 draw(f(z))
 z = z + i mStep
 z = z + reStep

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

What you can gather from the picture is that the images of the grid lines still intersect

perpendicularly. A mapping where the angles between intersecting lines is maintained is called

conformal and so we speak of a conformal mapping [more...] .

MANDELBROT FRACTALS

Many people are familiar with fractal images. It is

likely that you have already encountered the

Mandelbrot set, which you will program here

yourself. The algorithm for many fractals is based on

complex numbers, and because of this, it is very

rewarding to work with them. The mathematician

Benoit Mandelbrot is the father of fractal geometry

(1924-2010).

Mandelbrot at the introductory lecture of the Légion
d'honneur (2006) (© Wiki)

To generate a Mandelbrot fractal you look at a (recursively defined) sequence of complex

numbers for the given complex number c according to the formation rule

Page 320

z' = z2 + c with the initial value z0 = 0

If the amount of the sequence terms remains in a confined area, meaning that they do not grow

beyond all limits, c belongs to the Mandelbrot set.

To familiarize yourself with the algorithm, you draw the following terms for two complex numbers

c1 = 0.35 + 0.35j and c2 = 0.36 + 0.36j. You will immediately see that c1 belongs to the

Mandelbrot set, but c2 does not.

from gpanel import *

def f(z):
 return z * z + c

makeGPanel(-1.2, 1.2, -1.2, 1.2)
title("Mandelbrot iteration")

drawGrid(-1, 1.0 , -1, 1.0, 4, 4, "gray")

isMandelbrot = askYesNo("c in Mandelbrot set?")
if isMandelbrot:
 c = 0.35 + 0. 35j
 setColor("black")
else :
 c = 0.36+ 0.3 6j
 setColor("red")

title("Mandelbrot iteration with c = " + str(c))
move(c)
fillCircle(0.03)

z = 0j
while True:
 if z == 0:
 move(z)
 else :
 draw(z)
 z = f(z)
 delay(100)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 321

To find out which numbers in a certain area of

the complex plane belong to the Mandelbrot

set, you execute the iteration for complex

numbers c in a given range of the grid. Here

you very simplistically assume that c does not

belong to the Mandelbrot set if the absolute

value of a sequence term in the first 50

iterations is greater than R = 2. If the absolute

value of z remains less than 2 until the end of

the 50 iterations, you assume that c belongs to

the Mandelbrot set and you draw a black point

there.

from gpanel import *

def isInS et(c):
 z = 0
 for n in range(maxIterations):
 z = z*z + c
 if abs(z) > R: # diverging
 return False
 return True

maxIt erations = 5 0
R = 2
xmin = -2
xmax = 1
xstep = 0.03
ymin = -1.5
ymax = 1.5
ystep = 0.03

makeGPanel(xmin, xmax, ymin, ymax)
line(xmin, 0, xmax, 0) # real axis
line(0, ymin, 0, ymax) # imaginary axis
title("Mandelbrot set")
y = ymin
while y <= ymax:
 x = xmin
 whi le x <= xmax:
 c = x + y *1j
 inSet = isInSet(c)
 if inSet:
 move(c)
 fillCircle(0.01)
 x += xstep
 y += ystep

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

The Mandelbrot set is already visible in the graphic. You can draw figures that are even more

beautiful if you draw a colored point for numbers c that do not belong to the Mandelbrot set,

where the color says how quickly the sequence diverges. In this case, our measure of divergence

is the number itCount, which represents the number of iterations after which the amount of z is

greater than R = 2 for the first time.

Page 322

To map itCount to a color, you can decide

on any combination in getIterationColor()

that in your opinion creates a particularly

beautiful fractal.

from gpanel import *

def getIt erationColor(it):
 color = makeC olor((30 * it) % 256,
 (4 * it) % 256,
 (255 - (30 * it)) % 256)
 return color

def mandelbrot(c):
 z = 0
 for it i n range(maxIterations):
 z = z*z + c
 if abs(z) > R: # diverging
 return it
 return maxItera tions

maxIterations = 50
R = 2
xmin = -2
xmax = 1
xstep = 0.003
ymin = -1.5
ymax = 1.5
ystep = 0.003

makeGPanel(xmin, xmax, ymin, ymax)
title("Mandelbrot set")
enableRepaint(Fal se)
y = ymin
while y <= ymax:
 x = xmin
 whi le x <= xmax:
 c = x + y *1j
 itCount = mandelbrot(c)
 if itCount == maxIterations: # inside Mandelbrot set
 setColor("black")
 else : # outs ide Mandelbrot set
 setColor(getIterationColor(itCount))
 point(c)
 x += xstep
 y += ystep
 repaint()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 323

MEMO

To speed up the drawing, you set enableRepaint(False) and only re-render at the end of each

line using repaint().

The Mandelbrot fractal possesses the remarkable feature that when a section is magnified, a

similar structure appears [more...] .

EXERCISES

1. You can create a beautiful fractal if in a grid of the complex plane in the area between -20

and 20 you draw only the grid points z, for which the rounded absolute value is even, so

int(abs(z) * abs(z)) % 2 == 0 applies. Choose an increment size of 0.1.

2. Analyze the mappings of the complex plane:

a) z' = f(z) = z2

b) z' = f(z) = a * z mit komplexem a = 2 + 1j

c) z' = f(z) = ez

d) z' = f(z) = 1 - z
1 + z

(Möbius-Transformation)

Map a rectangular coordinate grid in the range between -5 and 5 with an increment value of

1/10. Describe the image with words and speculate on whether it is conformal.

3. Draw some Mandelbrot fractals with different color mappings, for example:

 Number of iterations Color

 < 3 dark gray

 < 5 green

 < 8 red

 < 10 blue

 < 100 yellow

 sonst black

ADDITIONAL MATERIAL

ALTERNATING CURRENT AND IMPEDANCE

Electrical circuits for sinusoidal alternating voltages and alternating currents, which are built from

passive devices (resistors, capacitors, inductors), can be treated like direct current circuits if you

are using complex variables for voltages, currents, and resistors. A general complex resistor is

also called an impedance and is often denoted with Z (and for purely imaginary resistors, X).

The impedance of an ohmic resistor is R, of an inductor is XL = jωL (L: inductance) and of a

capacitor is XC = 1 / jωC (C: capacitance), where ω = 2πf (f: frequency). A complex alternating

voltage u = u(t) runs uniformly on a circle in the complex plane. If it is applied to an impedance

Z, the current i(t) flows according to Ohm's law u = Z * i. Since in complex multiplication the

phases are added and the absolute values multiplied, u runs before i, phase-shifted by the phase

Page 324

of Z

phase(u) = phase(Z) + phase(i)

So, i also runs on a circle. The following absolute

values (amplitudes) we have:

| u | = | Z | * | i |

In your program, you display these relationships

in the complex plane with the values

| u | = 5V and Z = 2 +3j

and a frequency of f = 10 Hz. Since the graphic is

completely erased, rebuilt, and rendered with

repaint() in each step of the animation, use a

GPanel with enableRepaint(False).

from gpanel import *
import ma t h

def drawAxis():
 line(min, 0, m ax, 0) # real axis
 line(0, min, 0, max) # imaginary axis

def cdraw(z, color, label):
 oldColor = se tColor(color)
 line(0j, z)
 fillCircle(0.2)
 z1 = z + 0.5 * z / abs(z) - (0.1 + 0.2j)
 text(z1, label)
 setColor(oldColor)

min = -10
max = 10
dt = 0.001

makeGPanel(min, max, min, max)
enableRepaint(False)
bgColor("gray")
title("Complex vo l tages and currents")

f = 10 # Frequency
omega = 2 * math.pi * f

t = 0
uA = 5
Z = 2 + 3j

while True:
 u = uA * (mat h.cos(omega * t) + 1j * math.sin(omega * t))
 i = u / Z
 clear()
 drawAxis()
 cdraw(u, "green" , "U")
 cdraw(i, "red" , "I")
 cdraw(Z, "blue " , "Z")
 repaint()
 t += dt
 delay(100)

Page 325

MEMO

Electrical circuits with passive devices can be treated as direct current circuits if you regard

voltage, current, and resistance as complex numbers.

You can apply this knowledge to a

simple circuit consisting of only a

resistor and a capacitor. You are

interested in finding the output voltage

u1 dependent on the frequency f,

regarding the input voltage uo, R and

C as given.

The calculation is simple: The series circuit of R and C results in the impedance Z = R + XC and

thus the current i = uo / Z, so again using Ohm's law the output voltage

 u1 = Xc * i = Xc
R + Xc

* u0 = or u1 = v * u0 with v = Xc
R + Xc

v is called the complex amplification

factor. You can visualize it in the complex

plane for different values of f and you see

that the amount of the value 1 decreases

with increasing frequency at the frequency

0. Low frequencies are thus transferred

well, whereas high frequencies are

transferred poorly. This circuit would

therefore be a low pass filter.

from gpanel import *
from math i mport pi

def drawAxis():
 line(-1, 0, 1, 0) # Real axis
 line(0, -1, 0, 1) # Imaginary axis

makeGPanel(-1.2, 1.2, -1.2, 1.2)
drawGrid(-1.0, 1. 0, -1.0, 1.0, "gray")
setColor("black")
drawAxis()
title("Co mplex gain factor – low pass")

R = 10
C = 0.001
def v (f):
 if f == 0:
 return 1 + 0j

Page 326

 omega = 2 * pi * f
 XC = 1 / (1 j * omega * C)
 return XC / (R + XC)

f = 0 # Frequency
while f <= 100:
 if f == 0:
 move(v(f))
 else :
 draw(v(f))
 if f % 10 == 0:
 text(str(f))
 f += 1
 delay(10)

The gain factor in the Bode plot is divided by magnitude and phase, and plotted in function of the

frequency (logarithmic scales are commonly used).

from gpanel import *
import ma t h
import cmath

R = 10
C = 0.001

def v (f):
 if f == 0:
 return 1 + 0j
 omega = 2 * m ath.pi * f
 XC = 1 / (1j * omega * C)
 return XC / (R + XC)

p1 = GPanel(-10, 110, -0.1, 1.1)
drawPanelGrid(p1, 0, 100, 0, 1.0, "gray")
p1.title("Bode Plo t - Low Pass, Gain")
p1.setColor("blue")
f = 0
while f <= 100 :
 if f == 0:
 p1.move(f , abs(v(f)))
 else :
 p1.draw(f , abs(v(f)))
 f += 1

p2 = GPanel(-10, 110, 9, -99)
drawPanelGrid(p2, 0, 100, 0, -90, 10, 9, "gray")

Page 327

p2.title("Bode Plot - Lo w Pass, Phase")
p2.setColor("red")
f = 0
while f <= 100 :
 if f == 0:
 p2.move(f , math.degrees(cmath.phase(v(f))))
 else :
 p2.draw(f , math.degrees(cmath.phase(v(f))))
 f += 1

MEMO

The Bode-Plot once again particularly clarifies that the present circuit transmits low frequencies

well and high frequencies poorly. Additionally, a phase shift exists between the input and the

output signal in the range of 0 to -90 degrees. One could also say that the output voltage "lags"

behind the input voltage or that the input voltage "leads" the output voltage.

EXERCISES

1. The frequency

 fc = 1
2 π R C

is called the cutoff frequency. Show that the amount of the gain factor for the RC low pass

filter when R = 10 Ohm and C = 0.001 F at this frequency is:

1 / √2

2. The amount of the gain factor is often specified in decibels (dB). It is defined dB = 20 log |v|

(decimal logarithm). Draw the Bode diagram for the RC low pass filter with R = 10 Ohm and

C = 0.001 F with a dB scale up to -100 dB and a logarithmic frequency scale in the range

1Hz..100 kHz.

Confirm that the reduction for higher frequencies amounts to 20 dB/(frequency decade) using

the graphic illustration.

3. The following circuit is a high pass filter (R = 10 Ohm, C = 0.001 F).

As you did in exercise 2, draw the Bode plot for the gain factor and discuss the frequency

behavior.

Page 328

8.8 SPECTRAL ANALYSIS

INTRODUCTION

When a beam of light falls on your eyes or you hear a tone, a signal accrues that can be regarded

as a function of time y(t). With a single spectral color or a pure tone, it consists of a sinusoidal

oscillation with the amplitude A and frequency f, expressed mathematically [more...]:

y(t) = Asin(ω * t) where ω = 2 * π * f

A more complex signal, for example by a constant sustained note

of a musical instrument, is still periodic but no longer sinusoidal.

The famous mathematician Joseph Fourier (1768-1830) proved

that one can also interpret each periodic function as a sum of

sine oscillations, as a so-called Fourier series. He thus laid an

invaluable foundation for the progress of modern mathematics,

physics, and engineering. Breaking a signal down into its

sinusoidal frequency components is called spectral analysis..

PROGRAMMING CONCEPTS: Sine oscillation, Fourier series, Fast Fourier Transform (FFT),

spectrum, sonogram

SPECTRUM OF A SOUND, OVERTONES

The sinusoidal frequency components that are present are important for the typical tone color of

a voice or a musical instrument. A strictly periodic sound consists of the fundamental and the

overtones, whose frequencies are integer multiples of the frequency of the fundamental. If you

plot the amplitude of the frequency components in a graph, you get the spectrum of the sound.

You can determine the spectrum with a device called a spectral analyzer. TigerJython can

determine the spectrum using a famous algorithm called the Fast Fourier Transform (FFT).

In order to perform the FFT, you give the function fft(samples, n) a list samples that contains the

temporally equidistant sample values and the number n of samples that should be used for the

FFT from the beginning of the list.

As return values, you get back a list with the amplitudes of the n/2 (normalized) frequency

components. These are separated by the distance r = fs / n, where fs is the sampling frequency. r

is (called) the resolution of the spectrum.

These n/2 return values at the distance r "populate" the frequency range from 0 to n/2*r = fs/2,

or in a nutshell: The FFT provides the spectrum from 0 to fs/2 at a sampling frequency of

fs. A CD with a typical sampling frequency where fs = 44100 Hz corresponds to a spectrum up to

22050 Hz, which covers the entire audible range of humans.

Page 329

In order to test the spectrum analyzer, you

first use a sound from the distribution of

TigerJython named "wav/doublesine.wav"

that superimposes two sine tones. The sound

was recorded at a sampling frequency of fs =

40,000 Hz. If you take n = 10,000 sampling

values, the function fft(samples, n) returns

5'000 frequency components with the

resolution r = 40,000 / 10,000 = 4 Hz in the

range from 0..20,000 Hz, which you can then

display graphically as a spectrum with

vertical lines in a GPanel.

from soundsystem import *
from gpanel import *

def showSpectrum(text):
 makeGPanel(-2000, 22000, -0.2, 1.2)
 drawGrid(0, 20000, 0, 1.0, 10, 5, "blue")
 title(text)
 lineW idth(2)
 r = fs / n # Resolution
 f = 0
 for i in range(n // 2):
 line(f, 0, f, a [i])
 f += r

fs = 40000 # Sampling frequency
n = 10000 # Number of samples
samples = getWavMono("wav/doublesine.wav")
openMonoPlayer(samples, fs)
play()
a = fft(samples, n)
showSpectrum("Audio Spectrum")

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

As you imagine (and hear) you find the frequencies 500 Hz and 1.5 kHz with an amplitude

ratio of 1 : 1/2. There are some additional disturbance components. The frequency 0

corresponds to a constant signal component (offset).

You now have a feudal spectrum analyzer in front of you, with which you can examine the

fundamentals and overtones of musical instruments, human sounds, or animal sounds with.

You will already find the sound of a flue ("wav/flute.wav") and an oboe ("wav/oboe.wav") in

the distribution, whose sound characteristics are very different.

Page 330

SPECTRA FOR SELF-DEFINED FUNCTIONS

According to the theorem of Fourier, every periodic function with the frequency f can be

represented as superpositions of sine functions with the frequencies f, 2*f, 3*f, etc. (Fourier

series).

You can experimentally determine the

amplitudes of these frequency components

with your Fourier analyzer. Here you

consider a square wave with the frequency f

= 1 kHz. The built-in function square(A, f, t)

provides you with the value A during the first

half of the period and -A in the second.

You choose a sampling frequency of fs = 40

kHz and determine the sound samples for a

duration of 3s (120'000 values). Then you

play the sound clip. For the spectrum,

however, you only use 10,000 values and

display it.

from soundsystem import *
from gpanel impo r t *

def showSpectrum(text):
 makeGPanel(-2000, 2 2000, -0.2, 1.2)
 drawGrid(0, 20000, 0, 1.0, 10, 5, "blue")
 title(text)
 lineW idth(2)
 r = fs / n # Resolution
 f = 0
 for i in range(n // 2):
 line(f, 0, f, a [i])
 f += r

n = 10000
fs = 40000 # Sampling frequency
f = 1000 # Signal frequency

samples = [0] * 120000 # sampled data for 3 s
t = 0
dt = 1 / fs # sampling period
for i in range(120000):
 samples[i] = square(1000, f, t)

Page 331

 t += dt

openMonoPlayer(sample s , 40000)
play()
a = fft(samples, n)
showSpectrum("Spectrum Square Wave")

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

The experiment shows that the spectrum of a rectangular function consists of the odd

multiples of the fundamental frequency and where the amplitudes of the spectral components

behave as 1, 1/3, 1/5, 1/7, etc. However, you will never be able to find out experimentally

that the spectral parts theoretically stretch until ad infinitum.

SONOGRAM

FFT is a perfect tool to record the spectral behavior of a sound varying in time, such as a spoken

word. Of course in this case, the signal is no longer periodical, but you can assume that it is

somewhat periodic piecewise. That is why FFT is often used for short signal blocks, for example

for a block length of 100 ms, and repeated every 2.5 ms. Hence, we get a new spectrum for

every 2.5 ms that can be represented as a colored vertical line in a sonogram.

In your program, you start at the beginning

of the sampling values and analyze a block

length of 2000 values. You begin the next

block 50 samples later, etc. In Python, you

can do this with a slice operation

samples[k * 50:] where k = 0, 1, 2,...

This results in a sonogram, for example for

the spoken word "harris", located in the

distribution of TigerJython as

"wav/harris.wav".

from soundsystem import *
from gpanel impo r t *

def toColor(z):
 w = int(450 + 300 * z)
 c = X11Color.wavelengthToColor(w)
 return c

def drawSonogram():
 makeGPanel(0, 190, 0, 1000)
 title("Sonogramm of 'Harris'")
 lineWidth(4)
 # Ana lyse blocks every 50 samples
 for k in range(191):
 a = fft(sample s [k * 50:], n)
 for i in range(n // 2):
 setColor(to Color(a[i]))
 point(k, i)

Page 332

fs = 20000 # Sampling freq->spec t rum 0..10 kHz
n = 2000 # Size of block for analyser

samples = getWavMono("wav/harris.wav")
openMonoPlayer(samples, fs)
play()
drawSonogram()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

The sonogram shows frequencies in the range from 0..10 kHz vertically, and the course of time

from 0 to 190 * 50 / 20000 = 0.475 s horizontally.

To convert numbers to colors, you should use the function X11Color.wavelengthToColor()

which converts the wavelengths of the color spectrum to colors in the range 380...780 nm.

The high spectral components for the sibilant "s" are clearly visible, whereas the fundamentals

are entirely missing.

LIGHT SPECTRA

Light can also be decomposed spectrally in order to determine its contained wavelength

components. The wavelengths of the visible spectrum ranges from about 380 nm to 780 nm.

It is quite likely that you already know the spectrum analyzer for light, called a prism, which

refracts (breaks up) light of various wavelengths at different angles according to the law of

refraction.

In your program, you simulate the transition of a white beam of light in glass and show in a

magnification the paths of the different colors.

from gpanel import *

K5 glass
B = 1.5220
C = 4590 # nanometer^2
Cauchy equation for r efracting index
def n(wavelength):
 return B + C / (wave l ength * wavelength)

makeGPanel(-1, 1, -1, 1)
title("Refracting at the K5 glass")
bgColor("black")

Page 333

setColor("white")
line(-1, 0, 1, 0)

lineWid th(4)
line(-1, 1, 0, 0)
lineWidth(1)

sineAlpha = 0.707

for i in range(51):
 wavelength = 380 + 8 * i
 setColor(X11Color.wavelengthToColor(wavelength))
 sineBeta = sineAlpha / n(wavelength)
 x = (sineBeta - 0.45) * 100 - 0.5 # magnification
 line(0, 0, x, -1)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

If you want to create a beautiful graphic, you should refract the colors more than they would

be in real life.

EXERCISES

1. Examine other instruments or voices regarding their overtones and try to understand your

findings based on the typical character of the sound.

2. Besides the global function square(A, f, t), the functions sine(a, f, t), triangle(A, f, t),

sawtooth(A, f, t) are available. Try to guess how the spectrum of a triangular and a sawtooth

wave is. You can also analyze the superpositions of sine waves using sine().

3. In sonograms, analyze the difference between various female and male speakers who say

the same word.

Page 334

8.9 GROUP DYNAMICS

INTRODUCTION

Systems with many partners that interact with each other are widely used. Computer programs

can often simulate such systems with surprisingly little effort, since the computer can store

anywhere from thousands to millions of single individual states and temporally track them.

However, if we deal with atomic many-body systems with a numbers of particles in the order of

1023, computers reach their limits. To simulate such systems, we need to use simplifying

procedures, such as dividing the system into several larger cells. Examples for this include the

simulation of Earth's atmosphere for weather forecast and the prediction of long-term climate

change.

PROGRAMMING CONCEPTS: Computer simulation, population dynamics, swarming behavior

CONWAY'S GAME OF LIFE

Conway's Game of Life examines a

two-dimensional grid-like

arrangement of individuals (green

squares), where each individual

interacts with its 8 nearest

neighbors. It was proposed by the

British mathematician John Conway

in 1970, and it made him famous

outside of the mathematics world

as well. Almost all scholars have at

least an idea of what the Game of

Life is. Here you will program it

yourself with Python.

The population is arranged in cells

and evolves in discrete time steps

(generations). Each cell can be

either living or dead.

When transitioning to the next generation, the current state is saved and the following state of

each cell is determined based on its 8 nearest neighbors by the following four transition rules:

1. If the cell is living, it dies if it has fewer than two living neighbors (isolation)

2. If the cell is living, it continues to live if it has two or three living neighbors (group

cohesion)

3. If the cell lives, it dies if it has more than three living neighbors (overpopulation)

4. If a cell is dead, it will come back to life when it has exactly three living neighbors

(reproduction). Otherwise, it stays dead.

The cell structure of GameGrid is ideal for implementing the game. You use a two-dimensional

list a[x][y] for the population, where the value 0 is a dead cell and 1 is a living cell. The

Page 335

simulation cycle is regarded as a generation cycle, and the current population from the list a is

copied into the new population b in the callback onAct() and will finally be regarded as the

current list. You choose 1,000 random living cells in the callback onReset(), which is called by

clicking on the reset button.

In order to activate the callbacks, you have to register them with registerAct() and

registerNavigation()..

from gamegrid import *

def onReset():
 for x in range(s):
 for y in range(s):
 a[x][y] = 0 # All cells dead
 for n in range(z):
 loc = getRandom EmptyLocation()
 a[loc.x][loc.y] = 1
 showPopulation()

def showPopulation():
 for x in range(s):
 for y in range(s):
 loc = Locat ion(x, y)
 if a[x][y] == 1:
 getBg() .fillCell(loc, Color.green, False)
 else :
 getBg() .fillCell(loc, Color.black, False)
 refresh()

def getNumberOfNeighbours(x, y):
 nb = 0
 for i in range (max(0, x - 1), min(s, x + 2)):
 for k in range(max(0, y - 1), min(s, y + 2)):
 if not (i == x and k == y):
 if a[i][k] == 1:
 nb = nb + 1
 return nb

def onAct():
 global a
 # Don't us e the curr ent, but a new population
 b = [[0 for x in range(s)] for y in range(s)]
 for x in range(s):
 for y in range(s):
 nb = getNum berOfNeighbours(x, y)
 if a[x][y] == 1: # living cell
 if nb < 2:
 b[x][y] = 0
 elif nb > 3:
 b[x][y] = 0
 else :
 b[x][y] = 1
 else : # dead cell
 if nb == 3:
 b[x][y] = 1
 else :
 b[x][y] = 0
 a = b # Use new population as current
 showPopulation()

================== = global section ==================
s = 50 # Number of cells in each direction
z = 1000 # Size of population at start
a = [[0 for x in range(s)] for y in range(s)]
makeGameGrid(s, s, 800 // s, Color.red)
registerAct(onAct)
registerNavigation(resetted = onReset)
setTitle("Conway's Game Of Life")

Page 336

onReset()
show()

MEMO

The Game of Life is an example of a cellular automaton, consisting of grid cells that interact

with each other. They are perfectly suited to study the behavior of complex natural systems.

Some examples are:

biological growth, emergence of life

social, geological, ecological behavior

traffic volume and control

formation and evolution of the cosmos, of galaxies and stars

In 2002, Stefan Wolfram, the scientist and chief developer of Mathematica pointed out in his

well known book "A New Kind of Science" that such systems can be investigated with simple

programs. With computer simulations, we are at the beginning of a new era of gaining

scientific knowledge.

During the initialization of the two-dimensional list, a special Python syntax called list

comprehension is used (see addional material).

SWARMING BEHAVIOR

As you know from your daily life, large groups of living beings often have the tendency to team up

together in groups. This can be observed particularly well in birds, fish, and insects. A group of

demonstrating people also shows this "swarming behavior". On the one hand, outside (global)

influences play a role in the formation of a swarm, but the interaction between partners in their

close surroundings (local influences) also play a role.

In 1986 Craig Reynolds showed that the following three rules lead to a swarm formation between

individuals (he called them Boids):

1. Cohesion rule: Move towards the center (median point) of the individuals in your

neighborhood

2. Separation rule: Move away if you get too close to an individual

3. Alignment rule: Move in approximately the same direction as your neighbors

Page 337

To implement this, you use JGameGrid again in order to keep the effort of the animation low. It

helps to use a grid with pixel sizes and to specify the position, velocity, and acceleration of the

actors with float vectors from the class GGVector. In each simulation period you first determine the

new acceleration vector according to the three rules using setAcceleration(). This results in the new

velocity and position vectors

and

Since the absolute time scale is insignificant, you can set the time increment to dt = 1.

Applying the separation rule not only leads to a rejection between the closely flying birds, but also

between them and obstacles (in this case, trees).

You have to particularly deal with the edge of the flying area (the wall). For this, there are various

possibilities to choose from. You could, for example, use a toroidal topology, where the birds leaving

the area on one side enter it again on the other. In this case, the birds are simply forced to turn

around at the edge.

from gamegrid import *
import math
import random

=================== class Tree =======================
class Tree (Actor):
 def __init__(self):
 Actor.__init__(self, "sprites/tree1.png")

=================== class Bird =======================
class Bird (Actor):
 def __init__(self):
 Actor.__init__(self, True, "sprites/arrow1.png")
 self.r = GGVect or(0, 0) # Position
 self.v = GGVector(0, 0) # Velocity
 self.a = GGVector(0, 0) # Acceleration

 # Called when actor is added to gamegrid
 def reset(self):
 self.r.x = sel f .getX()
 self.r.y = self.getY()
 self.v.x = startVelocity * math.cos(math.radians(self.getDirection()))
 self.v.y = startVelocity * math.sin(math.radians(self.getDirection()))

 # ----------- cohesion ---------------
 def cohesion(self, distance):
 return self.getCe nterOfMass(distance).sub(self.r)

 # ----------- alignm ent --------------
 def alignment(self, distance):
 align = self.ge tAverageVelocity(distance)
 align = align.sub(self.v)
 return align

 # ----------- separa tion -------------
 def separation(self, distance):
 repulse = GGVec tor()
 # ------ from birds ------
 for p in birdPositions:
 dist = p.su b(self.r)
 d = dist.magnitude()
 if d < distance and d != 0:
 repuls e = repulse.add(dist.mult((d - distance) / d))

 # ------ from trees ------
 trees = self.gameGrid.getActors(Tree)
 for actor in trees :
 p = GGVecto r(actor.getX(), actor.getY())

Page 338

 dist = p.sub(self.r)
 d = dist. magnitude()
 if d < distance and d != 0:
 repulse = repulse.add(dist.mult((d - distance) / d))
 return repulse

 # ----------- wall interaction -------
 def wallInteraction(self):
 width = self.ga meGrid.getWidth()
 height = self.gameGrid.getHeight()
 acc = GGVector()
 if self.r.x < wallDist:
 distFactor = (wallDist - self.r.x) / wallDist
 acc = GGVector(wallWeight * distFactor, 0)
 if width - self.r.x < wallDist:
 distFactor = ((width - self.r.x) - wallDist) / wallDist
 acc = GGVector(wallWeight * distFactor, 0)
 if self.r.y < wallDist:
 distFactor = (wallDist - self.r.y) / wallDist
 acc = GGVector(0, wallWeight * distFactor)
 if height - self.r.y < wallDist:
 distFactor = ((height - self.r.y) - wallDist) / wallDist
 acc = GGVector(0, wallWeight * distFactor)
 return acc

 def getPosition(self):
 return self.r

 def getVelocity(self):
 return self.v

 def getCenterOfMass(s elf, distance):
 center = GGVect or()
 sum = 0
 for p in birdPositions:
 dist = p.su b(self.r)
 d = dist.magnitude()
 if d < distance:
 center = center.add(p)
 sum += 1
 if sum != 0:
 return cente r .mult(1.0/sum)
 else :
 re turn center

 def getAverageVelocit y(self, distance):
 avg = GGVector()
 sum = 0
 for i in range(len(birdPositions)):
 p = birdPos itions[i]
 if (self.r.x - p.x) * (self.r.x - p.x) + \
 (self.r. y - p.y) * (self.r.y - p.y) < distance * distance:
 avg = avg.add(birdVelocities[i]);
 sum += 1
 return avg.mult(1.0/sum)

 def limitSpeed(self):
 m = self.v.magn itude()
 if m < minSpeed:
 self.v = se lf.v.mult(minSpeed / m)
 if m > maxSpeed:
 self.v = se lf.v.mult(minSpeed / m)

 def setAcceleration(self):
 self.a = self. cohesion(cohesionDist).mult(cohesionWeight)
 self.a = self.a.add(self.separation(separationDist).mult(separationWeight))
 self.a = self.a.add(self.alignment(alignmentDist).mult(alignmentWeight))
 self.a = self.a.add(self.wallInteraction())

Page 339

 def act(self):
 se l f.setAcceler ation()
 self.v = self.v.add(self.a) # new velocity
 self.limitSpeed()
 self.r = self.r .add(self.v) # new position
 self.setDirection(int(math.degrees(self.v.getDirection())))
 self.setLocation(Location(int(self.r.x), int(self.r.y)))

=================== global section ==================
def populateTrees(num ber):
 blockSize = 70
 tr eesPerBlock = 10
 for block in range(number // treesPerBlock):
 x = getRandomNu mber(800 // blockSize) * blockSize
 y = getRandomNumber(600 // blockSize) * blockSize
 for t in range(treesPerBlock):
 dx = getRa ndomNumber(blockSize)
 dy = getRandomNumber(blockSize)
 addActor(Tree(), Location(x + dx, y + dy))

def generateBirds(number):
 for i in range(number):
 addActorNoRefre sh(Bird(), getRandomLocation(),
 getRandomDirection())
 onAct() # Initialize birdPositions, birdVelocities

def onAct():
 global birdPositions, birdVelocities
 # Update bird positi ons and velocities
 birdPositions = []
 birdVelocities = []
 for b in getActors(Bird):
 birdPositions.a ppend(b.getPosition())
 birdVelocities.append(b.getVelocity())

def getRandomNumber(limit):
 return random.randint (0, limit-1)

coupling constants
cohesionDist = 100
cohesionWeight = 0.01
al i gnmentDist = 30
alignmentWeight = 1
separationDist = 30
separationWeight = 0.2
wallDist = 20
wallWeight = 2
maxSpeed = 20
minSpeed = 10
startVelocity = 10
numberTrees = 100
numberBirds = 50

birdPositions = []
birdVelocities = []

makeGameGrid(800, 600, 1, False)
registerAct(onAct)
setSimulationPeriod(10)
setBgColor(makeColor(25, 121, 212))
setTitle("Swarm Simulation")
show()
populateTrees(numb erTrees)
generateBirds(numberBirds)
doRun()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 340

MEMO

The simulation is dependent on several coupling constants that determine the "strength" of

the interaction. Their values are very sensitive and you may eventually need to adjust them to

the performance of your computer. Again, the callback onAct() is activated using registerAct()

so that it is automatically called in every simulation cycle. The birds are moved with the

method act() of the class bird.

EXERCISES

1. Study the behavior of the following patterns in Game of Life:

a. b. c. d. e.

2. Describe three typical swarm behaviors that occur in the animal world. For each example,

think about why the animals join together in a swarm.

3*. In the swarm simulation, introduce three raptors who follow a flock of birds that they are

avoided by. Instructions: For the raptors, use the sprite image arrow2.png.

4*. Make it so that the raptors from exercise 3 eat the flock birds at a collision.

ADDITIONAL MATERIAL: LIST COMPREHENSION

Lists can be created neatly in Python with a special notation. It is based on mathematical

notation from set theory

Mathematics Python

S = {x : x in {1...10}} s = [x for x in range(1, 11)]

T = {x2 : x in {0...10}} t = [x**2 for x in range(11)]

V = {x | x in S und x gerade} v = [x for x in s if x % 2 == 0]

m = [[0 for x in range(3)] for y in range(3)]

s = [x for x in range(1, 11)]

s

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

t = [x**2 for x in range(11)]

[0, 1, 4, 9, 16, 25, 35, ..., 100]

v = [x for x in s iff x% 2 == 0]

[2, 4, 6, 8, 10]

m = [[0 for x in range(3)] for y in range(3)]

m

[[0, 0, 0],

 [0, 0, 0],

 [0, 0, 0]]

Page 341

8.10 RANDOM WALK

INTRODUCTION

Many phenomena are determined by chance in daily life and you often have to make decisions

based on probabilities. For example, you may decide whether you should select one mode of

transport over the other based on their probability of being involved in an accident. In such

situations, the computer can be an important tool with which you can examine potential dangers

using simulations, without actually risking anything.

In the following, you assume that you got lost and can no longer find your way home. Thereby

you observe a movement, called Random Walk, that happens at single time intervals where steps

of equal length are chosen in a random direction. Even though such a movement does not

necessarily correspond to reality, you get to know important characteristics that can be later

applied to real systems, for instance the modeling of the stock market in financial mathematics,

or the displacement of molecules.

PROGRAMMING CONCEPTS: Random walk, Brownian motion

ONE-DIMENSIONAL RANDOM WALK

Once again, turtle graphics is helpful in representing the simulation graphically. At time 0, the

turtle is located at the position x = 0 and move along the x-axis at steps of equal length. At each

step of time, the turtle "decides" whether to make a step to the left or to the right. In your

program, it decides on one of the two options with the same probability p = ½ (symmetric

random walk).

from gturtle import *
from gpanel import *
import random

makeTurtle()
makeGPanel(-50, 550, -480, 480)
windowPosition(880, 10)
drawGrid(0, 500, -400, 400)

Page 342

title("Mean distance versus time")
lineWidth(2)
setTitle("Random Walk")

t = 0
while t < 500:
 if random.randint(0, 1) == 1:
 setHeading(90)
 else:
 setHeading(-90)
 forward(10)
 x = getX()
 draw(t, x)
 t += 1
print "All done"

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

You are probably surprised that, in most cases, the turtle gradually moves away from the

starting point even though it makes every step, either a left or a right one, with the same

likelihood. In order to investigate this important result more closely, your next program will

determine the average distance d from the starting point after t steps in 1,000 walks.

THE SQUARE ROOT OF TIME RULE

Repeat the simulation 1,000 times with a certain number of steps t at the fixed y position and

draw the end position as a point. In order to speed up the results, you can hide the turtle and

avoid drawing any traces. With every simulation experiment, you determine a distance r of the

ending point from the starting point. For each set of experiments with a certain t, you will get an

average distance d of the distances r, which you mark in a GPanel graphic.

from gturtle import *
from gpanel import *
import math
import random

makeTurtle()
makeGPanel(-100, 1100, -10, 110)
windowPosition(850, 10)
drawGrid(0, 1000, 0, 100)
title("Mean distance versus time")
ht()
pu()

for t in range(100, 1100, 100):
 setY(250 - t / 2)
 label(str(t))
 sum = 0
 repeat 1000:
 repeat t:
 if random.randint(0, 1) == 1:
 setHeading(90)
 else:
 setHeading(-90)
 forward(2.5)
 dot(3)
 r = abs(getX())
 sum += r
 setX(0)
 d = sum / 1000

Page 343

 print "t =", t, "d =", d, "q = d / sqrt(t) =", d / math.sqrt(t)
 draw(t, d)
 fillCircle(5)
print "all done"

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

As you can see in the graphic visualization, the average value of the distance from the starting

point grows with an increasing step size and time t. In the console, you also calculate the

quotient q = d / sqrt(t). Because it is almost constant, the assumption suggests that d = q *

sqrt(t) holds exactly, or:

The average distance to the starting point increases by the square root of time.

DRUNKEN MAN'S WALK

It gets even more exciting once the turtle can move in two directions. This is called a

two-dimensional random walk. The turtle always still makes the same length of steps, but each

step is taken towards a random direction.

Mathematicians and physicists often wrap the

problem into the following story, which is not to

be taken too seriously.

"A drunk person tries to return home after

making a pub tour. Since they have lost their

orientation, they always makes one step in a

random direction. How far away have they

moved from the pub (on average)?"

You only need to slightly change your previous

program. You again examine how the average

of the distance depends on time.

from gturtle import *
from gpanel import *

Page 344

import math

makeTurtle()
makeGPanel(-100, 1100, -10, 110)
windowPosition(850, 10)
drawGrid(0, 1000, 0, 100)
title("Mean distance versus time")
ht()
pu()

for t in range(100, 1100, 100):
 sum = 0
 clean()
 repeat 1000:
 repeat t:
 fd(2.5)
 setRandomHeading()
 dot(3)
 r = math.sqrt(getX() * getX() + getY() * getY())
 sum += r
 home()
 d = sum / 1000
 print "t =", t, "d =", d, "q = d / sqrt(t) =", d / math.sqrt(t)
 draw(t, d)
 fillCircle(5)
 delay(2000)
print "all done"

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

The square root of time rule also applies for two-dimensional situations. In 1905, no less a

person than Albert Einstein proved this rule for gas particles in his famous essay "On the

Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic

Theory of Heat" and thus,provided us with a theoretical explanation of the Brownian motion.

One year later, M. Smoluchowski had a different idea but came to the same results.

BROWNIAN MOVEMENT

As early as 1827, the biologist Robert Brown had observed through a microscope that pollen

grains in a drop of water make irregular twitching movements. He suspected an inherent vigor in

the pollen. It was not until the discovery of the molecular structure of matter, that it became

clear the thermal motion of water molecules colliding with the pollen are responsible for the

phenomenon.

Brownian motion can be nicely demonstrated in a computer simulation where the molecules are

modeled as small spheres that swap velocities in collisions. The simulation can be easily

implemented using JGameGrid because you can regard a particle collision as an event. To do this,

you derive the class CollisionListener from GGActorCollisionListener and implement the callback

collide(). You add each particle to the listener using addActorCollisionListener(). You may set the

type and size of the collision area with setCollisionCircle(). For simplicity the 40 particles are

arranged into 4 groups of velocities.

Page 345

from gamegrid import *

=================== class Particle ====================

class Particle(Actor):

def __init__(self):

 Actor.__init__(self, "sprites/ball.gif", 2)

Called when actor is added to gamegrid

def reset(self):

 self.oldPt = self.gameGrid.toPoint(self.getLocationStart())

def advance(self, distance):

 pt = self.gameGrid.toPoint(self.getNextMoveLocation())

 dir = self.getDirection()

Left/right wall

if pt.x < 5 or pt.x > w - 5:

 self.setDirection(180 - dir)

Top/bottom wall

if pt.y < 5 or pt.y > h - 5:

 self.setDirection(360 - dir)

 self.move(distance)

def act(self):

 self.advance(3)

if self.getIdVisible() == 1:

 pt = self.gameGrid.toPoint(self.getLocation())

 self.getBackground().drawLine(self.oldPt.x, self.oldPt.y, pt.x, pt.y)

 self.oldPt.x = pt.x

 self.oldPt.y = pt.y

=================== class CollisionListener =========

class CollisionListener(GGActorCollisionListener):

Collision callback: just exchange direction and speed

def collide(self, a, b):

 dir1 = a.getDirection()

 dir2 = b.getDirection()

 sd1 = a.getSlowDown()

 sd2 = b.getSlowDown()

 a.setDirection(dir2)

 a.setSlowDown(sd2)

Page 346

 b.setDirection(dir1)

 b.setSlowDown(sd1)

return 10 # Wait a moment until collision is rearmed

=================== Global section ====================

def init():

 collisionListener = CollisionListener()

for i in range(nbParticles):

 particles[i] = Particle()

Put them at random locations, but apart of each other

 ok = False

while not ok:

 ok = True

 loc = getRandomLocation()

for k in range(i):

 dx = particles[k].getLocation().x - loc.x

 dy = particles[k].getLocation().y - loc.y

if dx * dx + dy * dy < 300:

 ok = False

 addActor(particles[i], loc, getRandomDirection())

Select collision area

 particles[i].setCollisionCircle(Point(0, 0), 8)

Select collision listener

 particles[i].addActorCollisionListener(collisionListener)

Set speed in groups of 10

if i < 10:

 particles[i].setSlowDown(2)

elif i < 20:

 particles[i].setSlowDown(3)

elif i < 30:

 particles[i].setSlowDown(4)

Define collision partners

for i in range(nbParticles):

for k in range(i + 1, nbParticles):

 particles[i].addCollisionActor(particles[k])

 particles[0].show(1)

w = 400

h = 400

nbParticles = 40

particles = [0] * nbParticles

makeGameGrid(w, h, 1, False)

setSimulationPeriod(10)

setTitle("Brownian Movement")

show()

init()

doRun()

H i g h l i g h t p r o g r a m co d e (Ctrl+C to copy, Ctrl+V to paste)

MEM O

The molecules are modeled in the class Par t icle which is derived from Act or . They have two

sprite images, one red and one green for a specially distinguished molecule whose path you

are tracking. The green image corresponds to the spr it eI D = 1 which you test in act () to draw

the trail with drawLine() .

Page 347

EXERCISES

1. A person moves from x = 0 with the same probability p = ½ to the right and q = ½ to the

left in a one-dimensional Random walk with 100 steps. Execute the simulation 10,000 times

and determine the frequency distribution of the end position. Display it in a GPanel.

2. As you can see in exercise 1, the probability of finding yourself at the starting point again

after 100 steps is the highest. How can this be in agreement with the square root of time

rule?

3. Conduct the same simulation, but with the probability p = 0.8 of a right step and q = 0.2 for a

left step. ist.

4*. With a one-dimensional random walk, the theory provides a binomial distribution. The

probability that you find yourself at the coordinate x after n steps amounts to the following,

for an even n and x:

 P(x, n) = n!
((n + x)/2)!((n - x)/2)!

p(n+x)/2q(n-x)/2

Plot the theoretical course as a curve in the histogram of exercise 1.

Page 348

 Learning Objectives

 You can explain why files are important in computer science.

 You know how to read, convert, and save data from a text file.

You know some important features of online databases and can install your own database

server.

You are aware that nowadays a huge amount of information is stored electronically in online

databases and social networks.

You can generate tables using SQL on a database server and create, read, and modify data

sets.

 You are on track to being able to set up and manage a simple online reservation system.

 You know how catching exceptions works and why it is an important principle.

Anyone who processes personal data must make certain that it is correct. He must take all reasonable
measures to ensure that data that is incorrect or incomplete in view of the purpose of its collection is
either corrected or destroyed. Any data subject may request that incorrect data be corrected.

Switzerland. Federal Law on Data Protection, Article 5

Page 349

9.1 PERSISTENCE, FILES

INTRODUCTION

Computer-stored information, called data, plays a central role in today's high-tech society.

Although they are comparable to written text, there are several important differences:

Data can only be read, saved, and processed with a computer system.

Data are always coded as 0.1 values. They only receive information content and make

sense when they are correctly interpreted (decoded).

Data possess a certain life span. Temporary data exist as local variables for a short time in

a certain program block or as global variables for the entire duration of the program.

Persistent data, however, survive the duration of the program and can later be retrieved.

Data have a visibility (availability). While certain data, such as personal data, can be read

by anyone in a social network, there are also private data or other data that can be found

on storage devices that are not generally accessible to the public.

Data can be protected. Protection can be achieved by encryption or restrictions on access

(access and password protection).

Data can easily be transported on digital communication channels.

Persistent data can be written or read in the form of files with computer programs on physical

storage devices (common are: Hard Drive (HD), Solid State Disk (SSD), memory card or USB

stick).

Files consist of storage areas with a certain structure and a specific file format. Since the

transfer of data, even over large distances, has become fast and cheap, files are stored on

distant media (clouds) more and more frequently

Files are managed on the computer in a hierarchical directory structure, i.e. a specific directory

can hold not only files, but also sub-directories. Files are accessible through their file path

(short 'path') which contains the names of the directories and the file. However, the file system

is dependent on the operating system, and therefore there are certain differences between

Windows, Mac, and Linux systems.

PROGRAMMING CONCEPTS: Encoding, life span, visibility of data, file

READING AND WRITING TEXT FILES

You have already learned how to read text files in the chapter Internet. In text files, characters

are stored sequentially, but one can get a line structure similar to that of a piece of paper by

inserting end of line symbols. It is exactly here that the operating systems differ: While Mac and

Linux use the ASCII characters <line feed> as an end of line (EOL), Windows uses the

combination of <carriage return><line feed>. In Python these characters are coded with \r and

\n [more...].

You will use an English dictionary in your program, which is available as a text file. You can

download it (tfwordlist.zip) from here and unzip it in any directory. Copy the file words-1$.txt in

the directory where your program is located.

You will now take a look at the interesting question of which words are palindromes. A

palindrome is a word that reads the same forward or backward, without considering the case of

the letters.

With open() you receive a file object f that provides you with access to the file. Later you can run

Page 350

through all the data with a simple for loop. Thereby you should pay attention to the fact that

each line contains an end of line symbol that must first be cut off with a slice operation before

you read the word backwards. In addition, you should convert all characters to lowercase using

lower().

Reversing a string is somewhat tricky in Python, since the slice operation also allows for negative

indices, and in this case the indices counting begins at the end of the string. If you select a step

parameter -1, the string is run through backwards.

def isPalindrom(a):
 return a == a[::-1]

f = open("worte-1$.txt")

print "Searching for palindroms..."
for word in f:
 word = word[:-1] # remove trailing \n
 word = word.lower() # make lowercase
 if isPalindrom(word):
 print word
f.close()
print "All done"

With the method readline() you can also read line by line. You can imagine a line pointer to be

advanced at each call. Once you have made it to the end of the file, the method returns an

empty string. Save the result in a file named palindrom.txt. In order to write to the file, you

must first create it with open() passing it the parameter "w" (for write). Then, you can write to

it using the method write(). Do not forget to use the method close() at the end, so that all the

characters are for sure written to the file and the operating system resources are released again.

def isPalindrom(a):
 return a == a[::-1]

fInp = open("worte-1$.txt")
fOut = open("palindrom.txt", "w")

print "Searching for palindroms..."
while True:
 word = fInp.readline()
 if word == "":
 break
 word = word[:-1] # remove trailing \n
 word = word.lower() # make lowercase
 if isPalindrom(word):
 print word
 fOut.write(word + "\n")
fInp.close()
fOut.close()
print "All done"

MEMO

When you open text files using open(path, mode) the user mode is specified with the

parameter mode.

Mode Description Comment

"r"

(read)
Read only

File must already exist. Parameter can be

omitted

"w"

(write)
Create and write file An existing file is deleted first

Page 351

"a"

(append)
Attach at the end of the file Create the file if it does not already exist

"r+" Read and attach File must already exist

Once you have read all the lines of a file and want to read it again, you have to either close

the file and reopen it or simply call the method seek(0) of the file object. You can also read

the entire contents of the text file in a string using

text = f.read()

and then close the file. You can create a list with the line strings (without end of line) using

textList = text.splitlines()

Other important file operations:

import os

os.path.isfile(path)
Returns True, if the file exists

import os

os.remove(path)
Deletes a file

SAVING AND RETRIEVING OPTIONS OR GAME FILES

Files are often used to save information so that it can be retrieved again during the next

execution of the program, for example program settings (options) which are made by the user to

customize their program. Maybe you would also like to save the current (game) state of a game

so that you are able to continue playing in exactly the same situation.

Options and states usually save nicely as key-value pairs, where the key is an identifier for the

value. For example, there are certain configuration values (setup parameters) for the

TigerJython IDE:

Key Value

"autosave" True

"language" "de"

As you learned in chapter 6.3, you can save such key-value pairs in a Python dictionary that you

can very easily save and retrieve as (binary) files with the module pickle. In the following

example, you save the current position and direction of the lobsters and also the position of the

simulation cycle regulator before closing the game window. The saved values will then be

restored at the next start.

import pickle
import os
from gamegrid import *

class Lobster(Actor):
 def __init__(self):
 Actor.__init__(self, True, "sprites/lobster.gif");

 def act(self):
 self.move()

Page 352

 if not self.isMoveValid():
 self.turn(90)
 self.move()
 self.turn(90)

makeGameGrid(10, 2, 60, Color.red)
addStatusBar(30)
show()

path = "lobstergame.dat"
simulationPeriod = 500
startLocation = Location(0, 0)
if os.path.isfile(path):
 inp = open(path, "rb")
 dataDict = pickle.load(inp)
 inp.close()
 # Reading old game state
 simulationPeriod = dataDict["SimulationPeriod"]
 loc = dataDict["EndLocation"]
 location = Location(loc[0], loc[1])
 direction = dataDict["EndDirection"]
 setStatusText("Game state restored.")
else:
 location = startLocation
 direction = 0

clark = Lobster()
addActor(clark, startLocation)
clark.setLocation(location)
clark.setDirection(direction)
setSimulationPeriod(simulationPeriod)

while not isDisposed():
 delay(100)
gameData = {"SimulationPeriod": getSimulationPeriod(),
 "EndLocation": [clark.getX(), clark.getY()],
 "EndDirection": clark.getDirection()}
out = open(path, "wb")
pickle.dump(gameData, out)
out.close()
print "Game state saved"

MEMO

A dictionary can be saved in a file with the method pickle.dump(). It will be a binary file that

you are not able to edit directly.

EXERCISES

1. Search for anagrams in the file words-1$.txt (Anagrams are two words with the same letters,

but in different order. You can ignore the case of the letters). Write the anagrams that you

found to a file anagram.txt.

2. The text below was encrypted by anagramming, i.e. the original words were substituted by

those with permuted letters.

IINFHS SOLOHC AEMK SIWREKOFR

Try to decrypt the text with help from the word lists (words-1$.txt) [more...].

3. Create your own ciphertext that can be unambiguously decrypted with the word lists.

Page 353

9.2 ONLINE DATABASES

INTRODUCTION

Databases are exceptionally important in today's world. Their main purpose is to store

information in a structured manner that one can easily retrieve it with search and link criteria.

Due to the interconnectedness of the Internet and the widespread use of social networks, there is

a gigantic amount of information stored at millions of database hosts. Therefore, it is important

that you learn how data is handled in a database. This will also help you to better assess the risks

associated with the use of database-based systems.

In most computerized databases, information is saved in the form of tables which are

interrelated. They are thus called relational databases. In order to deal with the tables

efficiently, a program bundle called the relational database management system (RDBMS) must

be available. Databases should therefore be understood as the collection of data that they

contain, together with the corresponding management tools.

Simple databases can be located locally on a PC and operated by a single person, for example for

the management of CDs or books. But most databases are hosted on the Internet and are

therefore accessible to many users simultanously (online databases). These client-server systems

include a computer that acts as database server (also called a host) and multiple distributed

clients. The data communication works similarly to a web server using the TCP protocol over a

TCP port (e.g. 3306 for MySQL or 1527 for Derby). A specific application program that is written

in any high-level programming language such as Python runs on the client and connects to the

host.

Direct connection Indirect connection

Often the client is not directly connected to the database server, but rather indirectly through a

web server. The client then only runs one of the known web browsers. In this case, the specific

program for the exchange of data with the database servers is located on the web server and

must also be written in a suitable programming language (often PHP). The procedures are similar

in both cases and demand good programming knowledge in terms of databases, which you will

acquire here [more...].

PROGRAMMING CONCEPTS: Database, table, database server, exceptions with try-except

Page 354

YOUR OWN DATABASE SERVER

Access to existing database servers on the Internet is subject to strong security restrictions since

you want to avoid unauthorized data from being saved or changed. For these reasons, you install

your own database server on your PC that you can either use directly from there, or from other

clients within a LAN/WLAN connection. You usually have to authenticate a database with a

username and password in order to access it [more...].

In the following example you will instal and use Derby, a free product of the Apache organization

developed by the world famous Apache web server. (You could also use any other database

software, e.g. MySQL.) To install Derby, follow the instructions listed below

1. Download the file tjderby.zip from here.

2. Unpack it and copy the files into the subdirectory Lib of the directory where tigerjython2.jar is

located.

3. Go into the directory Lib with a command shell and start the server with

java -jar derbynet.jar start

Heads up! You have to have administrator privileges [more...].

As an alternative you can start the server by using the files startderby.bat (for Windows) or

startderby (for Linux/Mac) located in the directory Lib. Create a link for these files so that they

are just a click away. The server is only visible on the local PC (localhost). To open it to the

outside, you need to start it by setting the IP address of your PC. If your IP addres is 10.1.1.123,

start it with

java -jar derbynet.jar start -h 10.1.1.123

or with

startderby 10.1.1.123.

The database server can manage several databases simultaneously. You can gain access to a

database with the database name and a username and password. You need to connect to the

server using getDerbyConnection() in order to create and use a database. If the database does

not already exist, it will then be created.

Since you learn how to create a reservation system for the concert hall at the fictitious concert

venue Casino, select casino as a database name and admin/solar as the username and password

combination.

After the successful establishment of a connection, you receive a connection object con from

getDerbyConnection() with which you can request an access key (cursor) to the database by

calling the method cursor(). Finally, all doors to the database casino are open to you.

You can consider the database as an object to which you can send commands and which executes

them accordingly. The commands are written in a somewhat standardized database language SQL

(Structured Query Language) that leans heavily on English slang, so that pretty much anyone can

figure it out. You pack a SQL command into a string and execute it with the method

execute(SQL). To make it a bit more clear, you write the SQL language elements in capital

letters. However, it also works with lower case letters or a mix between the two.

As a first step, create a database table with the SQL command CREATE TABLE. As usual, the table

consists of rows and columns. The columns, also called fields, specify what information you want

to store in the table. You need to give the field a name and a data type for this. The most

important types are listed in the following table:

SQL data type (for Derby) Description

VARCHAR String, appropriate length (<=255)

CHAR(M) String, M characters, fixed length M <= 255

INTEGER Whole number (4 bytes integer)

Page 355

FLOAT Decimal number (64 bit double precision)

DATE Date (java.sql.date)

To administer the seat reservations in the casino hall for a certain concert, you add a date in the

format yyyymmdd (y: year, m: month, d: day) to the table name res. As other fields you choose

seat number seat, booked with the letters N or Y, and a customer number cust that identifies the

person who reserved a seat.

#Db2a.py

from dbapi import *

username = "admin"

password = "solar"

dbname = "casino"

serverURL = "localhost"

#serverURL = "10.1.1.123"

con = getDerbyConnection(serverURL, dbname, username, password)

cursor = con.cursor()

SQL = "CREATE TABLE res_20140115 (seat INTEGER,booked CHAR(1),cust INTEGER)"

cursor.execute(SQL)

con.commit()

cursor.close()

con.close()

print "Table created"

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

If the program finishes without problems, you will know that you set up the database server

successfully. If you get an error message carefully read through the chapter once more and try

to repeat each step.

With databases, it is typical that SQL commands only affect the database after commit() is

called. It is thus ensured that multi-state database transactions can be considered as entities

that are always executed as a whole or upon an error message not at all. Finally, all resources

have to be freed again with close(). You should carefully memorize “tidying up” with

con.commit()

cursor.close()

con.close()

because it must never be missing in the following.

If you run the program when the table already exists, it aborts with an error message. The bad

thing about this is that all futher database connections fail until TigerJython is restarted.

CATCHING ERRORS WITH TRY-EXCEPT

If the table that you want to create already exists, calling execute() crashes the program. It can

also be said that the program throws an exception. Later parts of the program will not be

executed, especially not the important “cleaning up” part. As a result, specific resources are not

freed which can block other programs or even the entire PC. Therefore, it is very important to

catch such errors.

Catching a thrown exception in Python is very simple. You put the instructions that may cause an

exception into a try-except block. If the exception occurs the program branches immediately into

Page 356

the except part. After the execution of the except part, the program will continue with the

statement immediately after the try-except block. Optionally, an else part can be specified that is

executed if no exception occurs.

When executing SQL commands in the future, you thus write your program so that it intercepts

any possible exceptions.

from dbapi import *

username = "admin"

password = "solar"

dbname = "casino"

serverURL = "localhost"

#serverURL = "10.1.1.123"

con = getDerbyConnection(serverURL, dbname, username, password)

cursor = con.cursor()

try:

 SQL = "CREATE TABLE res_20140115 (seat INTEGER,booked CHAR(1),cust INTEGER)"

 cursor.execute(SQL)

except Exception, e:

 print "SQL executing failed.", e

else:

 print "Table created"

con.commit()

cursor.close()

con.close()

MEMO

Critical parts of the program should be put in a try-except block so that the clean up still runs if

the program is aborted. The except command can extract from the parameter e important

information about the type of error..

INSERTING DATA INTO THE TABLE

In the next phase you will want to fill the table with initialization data, so label all seats as

available and enter the customer number 0. To do this you use the SQL INSERT command, for

example for the set with the number 1:

INSERT INTO res_20140115 VALUES (1, 'N', 0)

With this command you add a single row to the table. A single row of the table is also called a

dataset or a record.

#Db2c.py

from dbapi import *

table = "res_20140115"

username = "admin"

password = "solar"

dbname = "casino"

serverURL = "localhost"

#serverURL = "10.1.1.123"

con = getDerbyConnection(serverURL, dbname, username, password)

cursor = con.cursor()

try:

 for seatNb in range(1, 31):

 SQL = "INSERT INTO " + table + " VALUES (" + str(seatNb) + ",'N',0)"

 cursor.execute(SQL)

Page 357

except Exception, e:

 print "SQL executing failed. ", e

else:

 print "Table initialized"

con.commit()

cursor.close()

con.close()

MEMO

 If you execute the program twice the record is inserted twice.

READING DATA FROM A TABLE

By now you are probably curious to see if the data are actually located in the table. In any case,

today's software systems are so stable that you can assume that if there is no error message, the

database transaction was indeed successful. In order to read a table, you should use the most

famous SQL command:

SELECT * FROM res_20140115

By using an asterisk (wildcard) you are asking for all records to be read. After executing with

execute(), you can retrieve the obtained records with the cursor method fetchall(). A list is

returned in which the individual records are contained as tuples (an unalterable list). You can

read the individual fields in it using indices.

The total number of records provided by the SELECT command is important. You get the number

of records from the variable rowcount.

#Db2d.py

from dbapi import *

table = "res_20140115"

username = "admin"

password = "solar"

dbname = "casino"

serverURL = "localhost"

#serverURL = "10.1.1.123"

con = getDerbyConnection(serverURL, dbname, username, password)

cursor = con.cursor()

try:

 SQL = "SELECT * FROM " + table

 cursor.execute(SQL)

except Exception, e:

 print "SQL execution failed.", e

else:

 nbRecord = cursor.rowcount

 print "Number of records:", nbRecord

 result = cursor.fetchall() # list of tuples

 for record in result:

 print "seatNb:", record[0], " booked:", record[1]," cust:", record[2]

con.commit()

cursor.close()

con.close()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 358

MEMO

In addition to fetchall() you can also use fetchmany(n) and fetchone() to read the data. Each

time you call one of the fetch methods, the cursor is, so to say, pushed forward as a pointer to

the number of returned records (hence the name cursor) and the next call of fetchall(),

fetchmany() or fetchone() delivers the records from the new position on. If the cursor reaches

the end of the table this method returns the value None.

DELETING TABLES

You can finish the exercise by deleting the table that you just created. In the database language

this is called a drop operation. The corresponding SQL command is:

DROP TABLE res_20140115

After this, your database casino no longer has any user-specified tables.

from dbapi import *

table = "res_20140115"

username = "admin"

password = "solar"

dbname = "casino"

serverURL = "localhost"

#serverURL = "10.1.1.123"

con = getDerbyConnection(serverURL, dbname, username, password)

cursor = con.cursor()

try:

 SQL = "DROP TABLE " + table

except Exception, e:

 print "SQL executing failed. ", e

else:

 print "Table removed"

con.commit()

cursor.close()

con.close()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

After deleting the table, your programs that read the data lead to an error message. You still

have to adapt them for this special case.

The database named pythondb exists even after you delete the table. There are multiple files in

the subdirectory pythondb of the directory where you copied the Derby software (in this case to

Lib/pythondb). If you want to remove all traces of the exercise, you can simply delete the

directory pythondb.

Page 359

EXERCISES

1. Create a new reservation system where you can both make and cancel seat reservations.

Start the database server Derby and run the programs Db2a.py and Db2c.py. This creates a

new table and adds 30 records with empty seats.

You can display all the records of your table with the following simplified program of Db2d.py

from dbapi import *

username = "admin"

password = "solar"

dbname = "casino"

serverURL = "localhost"

table = "res_20140915"

def showAll():

 SQL = "SELECT * FROM " + table

 cursor.execute(SQL)

 con.commit()

 result = cursor.fetchall()

 for record in result:

 print "seatNb:", record[0]," booked:",record[1],"customer:",record[2]

con = getDerbyConnection(serverURL, dbname, username, password)

cursor = con.cursor()

showAll()

cursor.close()

con.close()

2. You would like to reserve seat 6 for customer number 33. You can do this by adding an

update query to the above program before calling showAll().

SQL = "UPDATE " + table + " SET booked='Y', cust=33 WHERE seat=6"

cursor.execute(SQL)

Reserve seat number 5 for the same customer as well. Also reserve seats 10, 11, and 12 for

customer number 34 and seats 17 and 18 for customer number 35.

3. You can display all reserved seats using the SQL query

SQL = "SELECT * FROM " + table + " WHERE booked='Y'"

cursor.execute(SQL)

a. Change the function showAll() so that only the empty seats are shown

b. Change it to display only the seat reservations of customer number 34.

4. Customer number 34 cancelled all of their reservations. Implement a corresponding update

query.

5. After a renovation of the hall, seats 24 - 30 are no longer available. Delete these records

from the table.

To do this, you can use a delete query according to the following model

SQL = "DELETE * FROM " + table + " WHERE ..."

cursor.execute(SQL)

Page 360

ADDITIONAL MATERIAL

PROGRAMS FOR DATABASE MANAGEMENT

As a database administrator, you would like to manage your databases without actually having to

program yourself. For this, there are various administrative tools available that you can find on

the Internet. However, they are not always free. A distinction is made between command line

tools and those with a graphical user interface. While professionals usually feel comfortable in a

command shell, casual users prefer GUI programs.

A well-known administrator tool with a graphical user interface is DBVisualizer, and you can

download a free version from here [more...]. You can use it to directly execute SQL commands

and observe their effects. To install it, do the following:

1. Get the setup installer for the distribution customized for your platform from

http://www.dbvis.com/download

2. Execute the downloaded file. Choose the default options.

3. Make sure that you have started the Derby database server, created a database casino with

the table res_20140115, and initialized the records.

4. Start DBVisalizer and select Tools | Connection Wizard. In the dialog, select any one

connection alias, e.g. casino. In the dialog Select Database Driver select JavaDB/Derby

Server.

5. In the next dialog provide the user ID admin, password sonar, and database casino and then

click on casino.

You will now see the following image in the navigation window and can open a window by

double clicking on the table RES_2014015. You can display the contents of the table by

clicking on the tab Data.

Page 361

9.3 RESERVATION SYSTEM

INTRODUCTION

Nowadays, reserving seats on planes and at concert halls is done almost exclusively through

online booking systems. The information is managed by online databases. Database specialists

with great programming skills are responsible for the development of these systems. After

studying the contents of this chapter, you can already rank among these specialists.

PROGRAMMING CONCEPTS: Multi-user system, access conflict, sporadic error

RESERVATION SYSTEM PART 1: USER INTERFACE

An attractive user interface is used to present the reservation system to the user. A user

interface can be generated with a standalone program or as a web site. It is typical that the

outline of the room or the aircraft is shown where the seat layout is displayed. Seats that are

already reserved will be marked with a special color, for example the free seats could be green

and the already reserved seats could be red.

The user can select a seating option by clicking on an empty seat. The seat then changes color,

let's say to yellow. This selection is not yet transferred to the database server because often the

user wants to reserve multiple seats at one time. The booking process is carried out only once

they click the confirm button.

The game library JGameGrid is ideal for implementing the graphical user interface because the

seats are usually arranged in a grid-like structure. The sprite identifier (0, 1, 2) can be used to

save the current states (available, option, reserved).

In your example, you model a small concert or

theater room with only 30 seats, numbered from

1 to 30. You embed them into the grid shown

adjacently.

Use the class GGButton for the two buttons. In

order to receive a notification of the button clicks,

you need to define a separate button class

MyButton that is derived from GGButton as from

GGButtonListener. The method buttonPressed() is

called when a button is pressed. You can find out

which button was used using the parameter

button.

You have already implemented a fully functional user interface with this short program. It is of

course still missing a connecting to the database [more...] .

from gamegrid import *

def toLoc(seat):
 i = ((seat - 1) % 6) + 1
 k = ((seat - 1) // 6) + 2
 return Location(i, k)

Page 362

def toSeatNb(loc):
 if loc.x < 1 or loc.x > 6 or loc.y < 2 or loc.y > 6:
 return None
 i = loc. x - 1
 k = loc .y - 2
 seatNb = k * 6 + i + 1
 return seatNb

class MyButton (GGButton, GGButtonListener):
 def __init__(self, imageP ath):
 GGButton.__init__(s elf, imagePath)
 self.addButtonListener(self)

 def buttonClicked(self, button):
 if button == confirmB tn:
 confirm()
 if button == renewBtn:
 renew()

def renew ():
 setStatusText("View refr eshed")

def confirm():
 for seatNb in range(1, 31):
 if seats[seatNb - 1].g etIdVisible() == 1:
 seats[seatNb - 1].show(2)
 refresh()
 setStatusText("Reservation successful")

def pressCallback(e):
 loc = toLocation(e.getX (), e.getY())
 seatNb = toSeatNb(loc)
 if seatNb == None:
 return
 seatActor = seats[seatNb - 1]
 if seatActor.getIdVisible () == 0: # free
 seatActor.show(1) # option
 refresh()
 elif seatActor.getIdVisib le() == 1: # option
 seatActor.show(0) # free
 refresh()

makeGameGrid(8, 8, 40, Non e, "sprites/stage.gif" , False,
 mousePressed = pressCallback)
addStatusBar(30)
setTitle("Seat Reservation")
setStatusText("Please select free seats and press 'Confirm'")
confirmBtn = MyButton("sprit es/btn_confirm.gif")
renewBtn = MyButton("sprites /btn_renew.gif")
addActor(confirmBtn, Locati on(1, 7))
addActor(renewBtn, Location(6, 7))
seats = []
for seatNb in range(1, 31):
 seatLoc = toLoc(seatNb)
 seatActor = Actor("sprites/seat.gif" , 3)
 seats.append(seatActor)
 addActor(seatActor, seatLoc)
 addActor(TextActor(str(seatNb)), seatLoc)
show()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 363

MEMO

The conversion of seat numbers to locations and vice versa is done in two transformation

functions. The names of such mapping functions are often prefixed with to.

RESERVATION SYSTEM PART 2: CONNECTING TO THE DATABASE

Online databases are multi-user systems. Because many clients manipulate the data at the same

time, serious access conflicts can occur depending on the situation. It is in the nature of such

problems to occur only sporadically, and they are therefore difficult to master. The following

scenario describes a typical conflict case:

Customer A and Customer B make a reservation at the same time on a reservation system. At

the beginning, A and B inquire about the current availability of the database just shortly one

after the other. Both end up receiving the same information about the availability of seats (green

= available, red = already reserved seats).

A and B can select the chosen seats as an option with a mouse click. The opted seats are then

colored yellow. However, these options are not sent to the database since the customer might

still want to change something or add more options. Only after some time, the faster determined

customer A clicks on the confirm button to make their choice final. The database puts the seats

in the state reserved (booked = 'Y'). However, customer B does not realize these changes, since

the database cannot directly give feedback to customer B, and customer A is of course not in

direct contact with B [more...]. After a certain amount of time, customer B also decides and

presses the confirm button.

Just like Murphy said, "If anything can go wrong,

it goes wrong" customers A and B have now

chosen the same seats. What happens now? Are

the seats assigned to customer B or will B's

program even crash?

There is a simple solution to this access conflict:

When a customer provides their options to the

database, the database needs to be asked once

again (just shortly before) if the seats are still

actually free. If they are not, the database has no

other choice than to politely notify the customer

that the seats have already been assigned in the

meantime [more...]

Note: The execution of this program requires you to restart the database server, create the table

res_20140115, and the table must be filled with initialization data (see previous chapter).

from dbapi import *
from gamegrid import *

table = "res_20140115"
usernam e = "admin"
password = "solar"
dbname = "casino"
serverURL = "localhost"
#serverURL = "10.1.1.123"

def toLoc(seat):

Page 364

 i = ((seat - 1) % 6) + 1
 k = ((seat - 1) // 6) + 2
 return Location(i, k)

def toSeatNb(loc):
 if loc.x < 1 or loc.x > 6 or loc.y < 2 or loc.y > 6:
 return None
 i = loc. x - 1
 k = loc .y - 2
 seatNb = k * 6 + i + 1
 return seatNb

def pressCallback(e):
 if not isReady:
 return
 loc = toLoc ation(e.getX(), e.getY())
 seatNb = toSeatNb(loc)
 if seatNb == None:
 return
 seatActor = seats[seatNb - 1]
 if seatActor.getIdVisible () == 0: # free
 seatActor.show(1) # option
 refresh()
 elif seatActor.getIdVisib le() == 1: # option
 seatActor.show(0) # free
 refresh()

class MyButton (GGButton, GGButtonListener):
 def __init__(self, imageP ath):
 GGButton.__init__(s elf, imagePath)
 self.addButtonListener(self)

 def buttonClicked(self, button):
 if not isReady:
 return
 if bu tton == confirmBtn:
 confirm()
 if button == renewBtn:
 renew()

def renew():
 global isReady
 try :
 SQL = "SELECT * FROM " + table
 cursor.execute(SQL)
 con.commit()
 except :
 setStatusText("Fatal error. Restart and try again.")
 isReady = False
 return

 result = cursor.fetchal l()
 for record in result:
 seatNb = record[0]
 isBooked = (record[1] != 'N')
 if isBooked:
 seats[seatNb - 1].show(2)
 else :
 seats[seatNb - 1].show(0)
 refresh()
 setStatusText("View refreshed")

def confirm():
 global isReady
 try :
 # check if seat s is still available
 for seatNb in range(1, 31):
 if seats[seatNb - 1].getIdVisible() == 1:
 SQL = "SELECT * FROM " + table + " WHERE seat=" + str(seatNb)

Page 365

 cursor.execute(SQL)
 result = c ursor.fetchall()
 for record in result:
 if record[1] == 'Y' :
 set StatusText("One of the seats are already taken.")
 retu rn
 isReserved = False
 for seatNb in range(1, 31):
 if seats[seatNb - 1].getIdVisible() == 1:
 SQL = "UPDATE " + table + " SET booked='Y' WHERE seat=" + \
 str(se atNb)
 cursor.execute(SQL)
 isReserved = True
 con.commit()
 renew()
 if isReserved:
 setStatusText("R eservation successful")
 else :
 setS t atusText("N othing to do")
 except Exception, e:
 setStatusText("Fatal error. Restart and try again.")
 isReady = False

isReady = False
makeGameGrid(8, 8, 40, None, "sprites/stage.gif" , False,
 mousePressed = pressCallback)
addStatusBar(30)
setTitle("Seat Reservation - Loading...")
confirmBtn = MyButton("sprit es/btn_confirm.gif")
renewBtn = MyButton("sprites /btn_renew.gif")
addActor(confirmBtn, Locati on(1, 7))
addActor(renewBtn, Location(6, 7))
seats = []
for seatNb in range(1, 31):
 seatLoc = toLoc(seatNb)
 seatActor = Actor("sprites/seat.gif" , 3)
 seats.append(seatActor)
 addActor(seatActor, seatLoc)
 addActor(TextActor(str(seatNb)), seatLoc)
show()

con = getDerbyConnection(serverURL, dbname, username, password)
if con == None:
 setStatusText("Fatal er r or. Connection to database failed")
else :
 cursor = con.cursor()
 renew()

 setTitle("Seat Reservation - Ready")
 setStatusText("Select fr ee seats and press 'Confirm'")
 isReady = True
 while not isDisposed():
 delay(100)
 cursor .close()
 con.close()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

In this exercise you also learn that it is not enough to simply write a program so that it returns

the correct values only under ideal conditions and when operated correctly. Instead, it should

be able to behave appropriately even under unfavorable conditions and manipulation errors. If

an application has a proper user interface, the customer should be informed about the current

state. They should also know if their actions were successful. Manipulations that are not

allowed in a particular state have to be disabled.

Page 366

A known way to disable actions is to use the flag isReady which determines whether key or

mouse inputs are allowed. isReady = False is set at the beginning until the connection to the

database is established (this may take some time for remote databases). Malfunctions are

intercepted using a try-except block and set in the except part isReady = False.

You can test the reservation system with multiple user windows by repeatedly starting the

TigerJython IDE on your computer and executing the same program.

EXERCISES

1. Expand the reservation system so that when you click on Confirm, the customer number is

prompted (as an integer) and saved in the database. You can use the function

inputInt(prompt, False) to read in, which does not end the program when you press the

Cancel button, but rather returns None.

2. Write an administrator tool that displays the current assignment and a list of the reserved

seats, as well as the customer number. In addition, it should be possible to undo a

reservation by clicking on the red seats again. To make the list visible, open it in a console

window with console = console.init(). You can write into this list line by line using

console.println(text). (from ch.aplu.util import Console required)

3. Write a tool with which you can create a table with customer numbers and the first and last

names of the customer. Supplement the tool from exercise 2 so that the customer name also

appears in the displayed list of the reserved seats.

Page 367

SQL queries

SELECT * [column] FROM table [WHERE condition] [ORDER BY column [asc|desc]]

The options in square brackets are optional. Some examples:

SELECT * FROM tab all records from the table tab

SELECT name, vorname FROM tab only columns last name and first name

SELECT * FROM tab ORDER BY name all records from the table tab sorted by name

SELECT * FROM tab WHERE anrede = 'Herr' ORDER BY

name
all records with salutation “Mr.” sorted by name

SELECT * FROM tab WHERE name = 'Meier' and vorname

= 'Luka'
searches for “Luka Meier” (both conditions (should be) met)

SELECT * FROM tab WHERE name = 'Meier' or name =

'Mayer'
one of the two conditions should be met?

SELECT * FROM tab WHERE name in ('Meier', 'Meyer',

'Müller')
name must be listed under the specified name(s)

SELECT * FROM tab WHERE name LIKE '%haus% ' all records that occur in the field name "house"

SELECT * FROM buch WHERE jahr between 1999 and

2014
numbers can be specified without quotes

SELECT count (*) FROM tab determines the number of records in a table

SELECT concat (vorname, ' ', name) as vname FROM tab connects last name and first name in a new field vname

SELECT sum(preis) FROM buch determines the sum of all values in a table column

UPDATE table SET column1 = value1, [column2 = value2], [...] [WHEREcondition]

UPDATE tab SET institut = 'PHBern' replaces institute with PHBern in all record fields

UPDATE tab SET booked='Y', cust=33 WHERE seat=6 updates multiple columns

UPDATE tab SET anrede = 'Frau' WHERE anrede = 'f' replaces f with Ms. in the field salutation

UPDATE buch SET preis = preis * 1.52 calculations can be performed in the update statement

DELETE FROM table [WHERE condition]

DELETE FROM tab deletes all records in the table tab

DELETE FROM tab WHERE name = "Meier" deletes the record with name = Meier

Page 368

 Learning Objectives

You can illustrate with some examples that there are problems that can be formulated

algorithmically but which cannot be solved with the computer.

You know what is meant by the polynomial and non-polynomial time complexity of a

program.

 You can explain the halting problem based on the example of the 3n+1 algorithm.

 You know what is meant by combinatorial explosion.

 You can search a graph using backtracking.

 You know some classic encryption methods and can implement them in a program.

You know the concept of the finite state machine and know how to implement a simple

finite-state machine..

Page 369

10.1 COMPLEXITY WITH SORTING

INTRODUCTION

Computers are far more than pure calculating machines for simply crunching numbers. Rather, it

is known that a considerable portion of the processing time of all computers active worldwide is

used for sorting and searching data. It is therefore important that a program not only provides

the correct data, but is also optimized. This applies to:

its length

its structure and clarity

its execution time

its memory usage

Basically, one should already think of optimizing in the beginning of the development process,

since it is usually difficult to optimize a sloppily written program afterwards.

In this chapter you will examine the optimization of the execution time when sorting data. You

will also get to know the limits of computer science and computer use because a problem, for

which there is probably an algorithmic solution process but even the fastest computer would need

hundreds of years to solve, is considered to be an unsolvable problem.

PROGRAMMING CONCEPTS: Complexity, execution time, order of algorithms, sorting methods,

overloading operators

SORTING LIKE CHILDREN: CHILDREN SORT

The sorting and ordering of a set of objects with the comparative operations larger, smaller and

equal [more...] is and remains a standard task in computer science. Although you will find

library routines in all common high-level programming languages that you can sort with, you

should include the concepts of sorting to your standard knowledge because there are always

situations where you need to implement or optimize the sorting yourself.

A collection of unsorted objects is referred to as a set. The objects are saved in a one-dimensional

data structure in the computer where a list is especially well suited [more...].

In the program, consider the dwarfs to be actors of the game library JGameGrid. You can easily

display their sprite images in a grid [more...]. The height of the sprite image (in pixels) also

serves as a measure of the body size.

Algorithms are often borrowed directly from processes that we also apply in your everyday life. If

you ask children how they organize a set of objects by size, they often describe the process as

follows: "You take the smallest (or biggest) object and set it down in order". This solution process

seems very plausible, but there is a problem for the computer because it can not determine the
Page 370

smallest or biggest object like humans can with just a simple glance. It must first look for the

smallest object in the unordered list by running through all the objects in order and comparing

them. To implement the sorting process, in this case called children sort, you need a function

getSmallest(row) which returns the smallest dwarf from the reviewed list. You can start as

follows:

Save the first list element in the variable smallest and run through all subsequent elements in a

for-loop. If the element you are looking at is smaller than smallest, replace smallest with it.

You use two lists for children sort, one list startList with the given objects and another list

targetList which is initially empty. You search for the smallest element in startList, remove it

from there, and then add it to the back of targetList until startList is empty.

from gamegrid import *
import random

def bodyHeight(dwarf):
 return dwarf.getImage().getHeight()

def updateGrid():
 removeAllActors()
 for i in range(len(startList)):
 addActor(startList[i], Location(i, 0))
 for i in range(len(targetList)):
 addActor(targetList[i], Location(i, 1))

def getSmallest(li):
 global count
 smallest = li[0]
 for dwarf in li:
 count += 1
 if bodyHeight(dwarf) < bodyHeight(smallest):
 smallest = dwarf
 return smallest

n = 7

makeGameGrid(n, 2, 170, Color.red, False)
setBgColor(Color.white)
show()

startList = []
targetList = []

for i in range(0 , n):
 dwarf = Actor("sprites/dwarf" + str(i) + ".png")
 startList.append(dwarf)
random.shuffle(startList)
updateGrid()
setTitle("Children Sort. Press <SPACE> to sort...")
count = 0
while not isDisposed() and len(startList) > 0:
 c = getKeyCodeWait()
 if c == 32:
 smallest = getSmallest(startList)
 targetList.append(smallest)
 startList.remove(smallest)
 count += 1
 setTitle("Count: " + str(count) + " <SPACE> for next step...")
 updateGrid()
setTitle("Count: " + str(count) + " All done")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 371

MEMO

With children sort, besides the given unordered list of length n, you need a second list that

eventually also has the length n. If n is very large this could lead to a memory problem.

[more...].

You can easily figure out how many elementary steps are required to solve the problem:

Regardless of how the objects are arranged in the given list, you first need to run through all n

elements of the list, then through n-1, etc. In addition to this, you have to perform the

operation of moving the found element from the start list to the target list each time. The

number of operations c is therefore the sum of all natural numbers from 2 to n + 1 as you can

see with your variable count. Using the formula for sums of natural numbers we get:

 c = (n + 1)*(n + 2)
 2

- 1 = n2

2
- 3n

2

For example, when n = 1000 we already get

 c = 1000*1000
 2

+ 3*1000
 2

= 500000 + 1500 ≈ 500000

steps! As you can see, the quadratic term prevails for large n values and this is why we say

The complexity of the algorithm is of the n-square order

which we write as:

Complexity = O(n2)

SORTING THE CARD GAME: INSERTION SORT

When you hold the cards in a fan shape while playing cards, you often intuitively use another sorting

method: You add each newly obtained card to your 'fan' in a particular place where it fits best

according to its value. In your program that inserts the disordered cards from the start list (the

deck) into the target list (your hand), you proceed exactly in this way:

You take card by card from left to right from the start list and run though the already ordered target

list from the left to right as well. As soon as the card you picked up is considered to be higher in

value than the last one considered in your hand, you add it to the target list right there.

from gamegrid import *
import random

def cardValue(card):
 return card.getImage().getHeight()

def updateGrid():
 removeAllActors()
 for i in range(len(startList)):
 addActor(startList[i], Location(i, 0))
 for i in range(len(targetList)):

Page 372

 addActor(targetList[i], Location(i, 1))

n = 9

makeGameGrid(n, 2, 130, Color.blue, False)
setBgColor(Color.white)
show()

startList = []
targetList = []

for i in range(0 , 9):
 card = Actor("sprites/" + "hearts" + str(i) + ".png")
 startList.append(card)

random.shuffle(startList)
updateGrid()
setTitle("Insertion Sort. Press <SPACE> to sort...")
count = 0

while not isDisposed() and len(startList) > 0:
 getBg().clear()
 c = getKeyCodeWait()
 if c == 32:
 pick = startList[0] # take first
 startList.remove(pick)
 i = 0
 while i < len(targetList) and cardValue(pick) > cardValue(targetList[i]):
 i += 1
 count += 1
 targetList.insert(i, pick)
 count += 1
 setTitle("Count: " + str(count) + " <SPACE> for next step...")
 updateGrid()
setTitle("Count: " + str(count) + " All done")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

This sorting method is called insertion sort. The number of steps necessary depends on the

order of the cards in the deck. The most steps are needed in a situation where the deck of

cards is coincidentally ordered in reverse. One can reflect about it, or find out with a computer

simulation, that the number of steps on average (for large n) increase with n2 / 4 , and thus

the average complexity is also O(n2), as with children sort.

SORTING WITH BUBBLES: BUBBLE SORT

A known way to sort objects in a list is to repeatedly run through the list from left to right and to

always swap two adjacent elements if they are in the wrong order.

With this method, first the largest element moves successively from left to right until it has

arrived in the final cell. In the next pass you start again on the left, but only go up to the second

to last element since the largest is already in place. No second list is necessary in this process

[more...].

Page 373

from gamegrid import *
import random

def bubbleSize(bubble):
 return bubble.getImage().getHeight()

def updateGrid():
 removeAllActors()
 for i in range(len(li)):
 addActor(li[i], Location(i, 0))

def exchange(i, j):
 temp = li[i]
 li[i] = li[j]
 li[j] = temp

n = 7
li = []

makeGameGrid(n, 1, 150, Color.red, False)
setBgColor(Color.white)
show()
for i in range(0 , n):
 bubble = Actor("sprites/bubble" + str(i) + ".png")
 li.append(bubble)
random.shuffle(li)
updateGrid()
setTitle("Bubble Sort. Press <SPACE> for next step...")
k = n - 1
i = 0
count = 0
while not isDisposed() and k > 0:
 getBg().fillCell(Location(i, 0), makeColor("beige"))
 getBg().fillCell(Location(i + 1, 0), makeColor("beige"))
 refresh()
 c = getKeyCodeWait()
 if c == 32:
 count += 1
 bubble1 = li[i]
 bubble2 = li[i + 1]
 refresh()
 if bubbleSize(bubble1) > bubbleSize(bubble2):
 exchange(i, i + 1)
 setTitle("Last Action: Exchange. Count: " + str(count))
 else:
 setTitle("Last Action: No Exchange. Count: " + str(count))
 getBg().clear()
 updateGrid()
 if i == k - 1:
 k = k - 1
 i = 0
 else:
 i += 1
getBg().clear()
refresh()
setTitle("All done. Count: " + str(count))

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The largest elements move over to the right, just like bubbles move up in water. Because of

this, the name of this sorting algorithm is bubble sort. You can think about it, or check the

built-in step counter, its complexity is independent of the arrangement of the elements in the

Page 374

specified list, but again of the order O(n2).

To make the demonstration a bit more exciting, both cells whose bubbles were compared last

are colored using the background method fillCell(). The background color can be cleared with

getBg().clear(). You have to call refresh() so that the image is re-rendered on the screen.

SORTING WITH LIBRARY ROUTINES: TIMSORT

Since sorting is one of the most important tasks, all high-level programming languages provide

built-in library functions for sorting. In Python, the function sorted(list, cmp) even belongs to the

standard built-in functions, which means that it can be used without having to import anything.

You can thus save yourself from having to write a sorting algorithm, but in order to do that you

have to learn how the library function is used. Clearly it need the list to be sorted as a

parameter. With a second parameter, you have to tell it according to which classification criterion

it should sort the objects.

You define the sorting criterion in a function which here you call compare(). This function has to

obtain two objects as parameters and return one of the three values 1, 0, and -1, depending on

whether the first object is greater, equal to, or less than the second object. You pass the library

function sorted() your freely chosen function name as a second parameter or using the named

parameter cmp.

from gamegrid import *
import random

def bodyHeight(dwarf):
 return dwarf.getImage().getHeight()

def compare(dwarf1, dwarf2):
 if bodyHeight(dwarf1) < bodyHeight(dwarf2):
 return -1
 elif bodyHeight(dwarf1) > bodyHeight(dwarf2):
 return 1
 else:
 return 0

def updateGrid():
 removeAllActors()
 for i in range(len(li)):
 addActor(li[i], Location(i, 0))

n = 7
li = []

makeGameGrid(n, 1, 170, Color.red, False)
setBgColor(Color.white)
show()
for i in range(0 , n):
 dwarf = Actor("sprites/dwarf" + str(i) + ".png")
 li.append(dwarf)
random.shuffle(li)
updateGrid()
setTitle("Timsort. Press any key to get result...")
getKeyCodeWait()
li = sorted(li, cmp = compare)
updateGrid()
setTitle("All done.")

MEMO

If you want to use library functions to sort, you have to specify with a comparison function how

two elements are compared to find out whether they are greater, equal or lesser [more...].

Page 375

The algorithm used in Python was invented by Tim Peters in 2002 and is thus called Timsort. It

has (on average) the order O(nlog(n)). So, for example, when n = 106 only about 107

operations are necessary instead of about 1012 as it would be with a sorting algorithm with the

order O(n2).

EXERCISES

1. Sort the 7 dwarfs with a bubble sort.

2. Add the sprite image snowwhite.png of Snow White that has the same size as the largest

dwarf into the bubble sort from exercise 1. Show that the order of Snow White and the

largest dwarf always correspond to their order in the start list. (Such a sorting algorithm is

called stable.)

3. You can very easily generate long unsorted lists of numbers using row = range(n) and

subsequently random.shuffle(row). Measure the execution time of the internal sorting

algorithm (Timsort) for different values of n and show that the complexity is much better than

O(n2). Instructions: In order to measure a time difference, import the module time and

calculate the difference between two calls of time.clock().

ADDITIONAL MATERIAL

OVERLOADING THE COMPARISON OPERATIONS

Comparing two objects is an important operation. You can use the 5 comparison operations <,

<=, ==, >, = > for numbers. In Python it is possible to apply these operators to some other

data types, for example for dwarfs. Through this, your code gains elegance and clarity.

You can do the following:

In the class definition of your data type, define the methods _lt_(), __le__(), __eq__(), __ge__(),

__gt__() that return the Boolean values of the comparison operations less, less-and-equal, equal,

greater-and-equal, greater. In addition, you can also define the method __str()__, which is used

when the function str() is called.

In the class Dwarf (derived from Actor), you also save the name of the dwarf as an instance

variable that you can write out as a TextActor upon updateGrid().

from gamegrid import *
import random

class Dwarf(Actor):
 def __init__(self, name, size):
 Actor.__init__(self, "sprites/dwarf" + str(size) + ".png")
 self.name = name
 self.size = size
 def __eq__(self, a): # ==
 return self.size == a.size
 def __ne__(self, a): # !=
 return self.size != a.size

Page 376

 def __gt__(self, a): # >
 return self.size > a.size
 def __lt__(self, a): # <
 return self.size < a.size
 def __ge__(self, a): # >=
 return self.size >= a.size
 def __le__(self, a): # <=
 return self.size <= a.size
 def __str__(self): # str() function
 return self.name

def compare(dwarf1, dwarf2):
 if dwarf1 < dwarf2:
 return -1
 elif dwarf1 > dwarf2:
 return 1
 else:
 return 0

def updateGrid():
 removeAllActors()
 for i in range(len(row)):
 addActor(row[i], Location(i, 0))
 addActor(TextActor(str(row[i])), Location(i, 0))

n = 7
row = []
names = ["Monday", "Tuesday", "Wednesday", "Thursday",
 "Friday", "Saturday", "Sunday"]

makeGameGrid(n, 1, 170, Color.red, False)
setBgColor(Color.white)
show()
for i in range(0 , n):
 dwarf = Dwarf(names[i], i)
 row.append(dwarf)
random.shuffle(row)
updateGrid()
setTitle("Press any key to get result...")
getKeyCodeWait()
row = sorted(row, cmp = compare)
updateGrid()
setTitle("All done.")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The use of comparison operators for arbitrary data types is not mandatory, but elegant. One

says that the operators are overloaded.

Page 377

10.2 UNSOLVABLE PROBLEMS

INTRODUCTION

Increasingly many problems can be solved with clever computer programs. In this chapter,

however, you will be confronted with questions that can be simply formulated but that may

never be algorithmically solvable, despite the rapid evolution of computers and enormous

scientific effort.

PROGRAMMING CONCEPTS: Unsolvable problems, subset sum problem, enumeration methods,

combinatorial explosion, polynomial order, undecidable problem

UNSOLVABLE PROBLEMS

There are still some problems that are unsolved, even though they are easy to formulate and

especially important in practice. One of these, known as the subset sum problem, can be

described as follows [more...]:

You have a number of coins in your purse and you must pay a

certain amount with it (without getting change back). Is it

possible with the existing coins, and if so, what coins should

you pay with?

In your first program you will first learn to handle the coins.

You save the names of the Euro coins with the values 1, 2, 5,

10, 20, 50 cents in the list coins. The function value() returns

the value of a coin. The purse is modeled as a list (or a tuple)

named moneybag and contains the names of the coins

contained in the purse. The function getSum(moneybag) then

returns the total value of all coins in the purse.

The purse should initially contain exactly one of each coin. You

create all possible variations of coin combinations with 1, 2, 3,

4, 5 or 6 coins and display them in a JGameGrid window. To do

this, you make an actor out of each coin of moneybag in

showMoneybag(moneybag, y) and display them in the game

window in the line y.

from gamegrid import *
import itertools

coins = ["one", "two", "five", "ten", "twenty", "fifty"]

def value(coin):
 if coin == "one":
 return 1
 if coin == "two":
 return 2
 if coin == "five":
 return 5
 if coin == "ten":

Page 378

 return 10
 if coin == "twenty":
 return 20
 if coin == "fifty":
 return 50
 return 0

def getSum(moneybag):
 sum = 0
 for coin in moneybag:
 sum += value(coin)
 return sum

def showMoneybag(moneybag, y):
 x = 0
 for coin in moneybag:
 loc = Location(x, y)
 removeActor(getOneActorAt(loc))
 coinActor = Actor("sprites/" + coin + "cent.png")
 addActor(coinActor, loc)
 x += 1
 addActor(TextActor(str(getSum(moneybag))), Location(x, y))

makeGameGrid(8, 20, 40, False)
setBgColor(Color.white)
show()

n = 6
k = 1
while k <= n:
 combinations = list(itertools.combinations(coins, k))
 print type(combinations)
 setTitle("(n, k) = (" + str(n) + ", " + str(k) + ") nb = "
 + str(len(combinations)))
 y = 0
 for moneybag in combinations:
 showMoneybag(moneybag, y)
 y += 1
 getKeyCodeWait()
 removeAllActors()
 k += 1

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The combinations of k elements that you can build from a list of n, are easily retrievable with

the function combinations() from the module itertools. You have to convert the return value to

a list, from which the found combinations can then be retrieved (as tuples).

As you can see, the obtained combinations are ordered in a way similar to how you would

reasonably order them by hand. You can calculate the number of combinations of n elements

to the order k as follows, as you know:

where n! is the factorial, meaning the product of all numbers from 1 to n. In our case n = 6

can result in 6, 15, 20, 15, 6, 1, so a total of 63 combinations.

Page 379

You can now solve the subset sum problem of the

purse as follows: Determine all combinations of the

existing coins and examine them individually to see

if their sum adds up to the desired value.

This enumeration method is probably not the

best to use, but it is definitely correct and it

provides all possible solutions. For a purse that

contains 3 one-cent, 1 two-cents, 2 five-cents, 4

ten-cents, 2 twenty-cents, and 3 fifty-cents coins

(15 coins in total) it would already become difficult

to find the solution by hand. You only write all

different sets of coins that amount to 1 Euro.

from gamegrid import *
import itertools

coins = ["one", "one", "one", "two", "five", "five",
 "ten", "ten", "ten", "ten", "twenty", "twenty",
 "fifty", "fifty", "fifty"]

def value(coin):
 if coin == "one":
 return 1
 if coin == "two":
 return 2
 if coin == "five":
 return 5
 if coin == "ten":
 return 10
 if coin == "twenty":
 return 20
 if coin == "fifty":
 return 50
 return 0

def getSum(moneybag):
 sum = 0
 for coin in moneybag:
 sum += value(coin)
 return sum

def showMoneybag(moneybag, y):
 x = 0
 for coin in moneybag:
 loc = Location(x, y)
 removeActor(getOneActorAt(loc))
 coinActor = Actor("sprites/" + coin + "cent.png")
 addActor(coinActor, loc)
 x += 1
 addActor(TextActor(str(getSum(moneybag))), Location(x, y))

makeGameGrid(15, 20, 40, False)
setBgColor(Color.white)
show()

target = 100

k = 1
result = []
count = 0
while k <= len(coins):
 combinations = tuple(itertools.combinations(coins, k))

Page 380

 nb = len(combinations)
 for moneybag in combinations:
 count += 1
 sum = getSum(moneybag)
 if sum == target:
 if not moneybag in result:
 result.append(moneybag)
 k += 1

y = 0
for moneybag in result:
 showMoneybag(moneybag, y)
 y += 1
setTitle("Step: " + str(count) + ". number of solutions for the sum "
 + str(target) + ": " + str(len(result)))

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

With only 15 coins there are already 32,767 steps necessary in order to solve the subset sum

problem using the enumeration method.

Your enjoyment of solving problems with the computer is unfortunately spoiled once you try

with a slightly larger purse of money, let's say 50 or 100 coins. If you count the necessary

steps it takes for a purse with n coins and display them in a graph, there is a downright

combinatorial explosion at n = 20 and you reach the limit of what is possible [more...].

from gpanel import *
from math import factorial

z = 100

def nbCombi(n, k):
 return factorial(n) / factorial(k) / factorial(n - k)

makeGPanel(-5, 55, -1e5, 1.1e6)
drawGrid(0, 50, 0, 1e6, "gray")
setColor("black")
lineWidth(2)
for n in range(2, z + 1):
 sum = 0
 for k in range(1, n):
 sum += nbCombi(n, k)

Page 381

 print "n =", n, ", nb =", sum
 if n == 2:
 move(n, sum)
 else:
 draw(n, sum)
print "Runtime with 10^9 operations per second:", sum / 3.142e16, "years"
print "or:", int(sum / 2e20), "times the age of the universe"

MEMO

Using the enumeration method, the subset sum problem is already unsolvable at relatively

small amounts of elements, even though the method of solving is known. Hence the question

arises whether there could be much better algorithms to solve the problem, the number of

steps or complexity of which is a power of n (thus polynomial), just as the ones in the

previous chapter for sorting. Unfortunately, until today no one has succeeded in finding such

an algorithm for the subset sum problem and one assumes that there is none. However, there

is also no theoretical proof for this assumption.

At least we know today from the theoretical computer science that there are many similarly

difficult problems and that one could expect to solve all these problems in one shot with

polynomial complexity, if one finds such a solution for one of them.

UNDECIDABLE PROBLEMS

The limits of the human mind and computer technology are also visible in a context different

from complexity. The mathematician and number theorist Lothar Collatz examined certain

sequences of natural numbers and in 1939 he formulated the following question:

Begin from any initial number n and build the following numbers according to these rules:

If n is even, divide n by 2 (a natural number again)

If n is odd, build the following number 3n +1 (an even number)

Question: Does this sequence always reach 1 for any possible starting number n?

Collatz and many other number theorists and computer scientists have searched for a solution

to this, because even the largest and fastest computers continuously yield sequences that

arrive at the result 1. (The series does not converge because it endlessly repeats through the

sequence 4, 2, 1).

Therefore, it seems likely that the following theorem applies:

The 3n+1 series reaches the number 1 for all natural starting numbers n after a finite number

of steps.

You can run through the 3n+1 series with a computer program for an arbitrarily settable

starting number.

from gpanel import *

def collatz(n):
 while n != 1:
 if n % 2 == 0:
 n = n // 2
 else:
 n = 3 * n + 1
 print n,
 print "Result 1"
while True:
 n = inputInt("Enter a start number:")
 collatz(n)

Page 382

MEMO

In Python you can even run through the 3n+1 series with large starting numbers and you will

find that you always land at 1. Of course you have not proven the assumption this way.

It is interesting and aesthetically appealing

to plot the length of the 3n+1 series in

relation to the starting number. It fluctuates

quite considerably. To do this, remove the

writing out of the terms in the function

collatz() and only return the number of

steps.

from gpanel import *

def collatz(n):
 nb = 0
 while n != 1:
 nb += 1
 if n % 2 == 0:
 n = n // 2
 else:
 n = 3 * n + 1
 return nb

z = 10000 # max n
yval = [0] * (z + 1)
for n in range(1, z + 1):
 yval[n] = collatz(n)
ymax = (max(yval) // 100 + 1) * 100

makeGPanel(-0.1 * z, 1.1 * z, -0.1 * ymax, 1.1 * ymax)
title("Collatz Assumption")
drawGrid(0, z, 0, ymax, "gray")

for x in range(1, z + 1):
 move(x, yval[x])
 fillCircle(z / 200)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 383

MEMO

Collatz's assumption is a stubborn problem. If the assumption really is true, then it cannot be

proved by conducting computer tests with increasingly larger starting numbers. It is even

possible that the assumption is true, but a proof will never be found. In 1931 the

mathematician Kurt Gödel showed with the incompleteness theorem that there can be

correct propositions in a theory, whose correctness can, however, not be proven.

Collatz's assumption can also be formulated as a decision problem:

Does an algorithm that calculates the terms of the 3n+1 progression and stops at 1, really

stop for any possible initial values?

You could try to solve this question with a computer. Unfortunately, this could be hopeless too,

since the great mathematician and computer scientist Alain Turing has already proved with the

halting problem that there will never be a general algorithm that allows you to decide if any

given program with arbitrary input really stops.

Collatz's assumption of 3n+1 could thus indeed be true, but an undecidable problem.

Page 384

10.3 BACKTRACKING

INTRODUCTION

In the development of computer games, it only gets really interesting when the computer itself

becomes an intelligent game partner. Such a program must not only comply with the rules of the

game, but it must also pursue a winning strategy. In order to implement a game strategy, the

game should be understood as a sequence of game situations that can be clearly identified with

a suitable variable s. These are known as game states and is therefore s is called a state

variable. The goal of the strategy is to move from an initial state to a winning state where the

game is usually over.

The game states can be neatly shown as nodes in a game graph. For each turn, there is a

transition from one node to one of its successors. The rules of the game specify what the

possible successor nodes or neighbors of a particular game state are. You can draw the

transition as a directional connecting line, also called an edge [more...].

In this section you will learn important techniques that have a general validity and help you to

write computer games that can win even against very intelligent human players. However, in

addition to these general techniques there is still plenty of room for your own ideas, to write

more efficient, simpler, and better adapted game strategies that possibly have a better chance of

winning or consumes less computing time.

It is a fact that many political, economical, and social systems can be understood as a game, and

so you can apply your acquired knowledge on a wide array of practically relevant fields.

PROGRAMMING CONCEPTS: Game state, game graph, depth-first search, backtracking

SEARCHING FOR A SOLUTION FOR A SOLO GAME

As previously mentioned, you represent the game states as nodes in a graph that is run through

step by step. You have to first uniquely determine the game states by certain criteria, such as

the arrangement of the tokens on a game board. The rules of the game specify which are the

possible successor nodes or neighbors for a specific game state. These are connected with the

node by lines (edges). Since they are successor node, the edges have a direction from the node

to its neighbors. Sometimes a node is also called a "mother" and its neighbors "daughters", and

there is also the possibility that there is an edge from a daughter back to her mother.

Here you begin from a simple game graph for a game that is played either by a single person or

by the computer alone. The single person game, or solo game, should be constructed so that

there are no paths that lead back again. This ensures that you do not fall into a cycle that runs

endlessly when moving through the graph. Such a special graph is called a tree [more...]. You

can identify the nodes in any order with numbers between 0 and 17. The graph has the following

structure:

Page 385

The tree should be saved as a whole in a suitable data structure. A list is well suited for this, in

which the numbers of neighboring nodes are included as sublists where at the index 0 we find

the list of neighbors of node 0, at index 1 is the list of neighbors of node 1, etc. If a node does

not have a neighbor, its neighbor list is empty [more...].

As you can easily see, the following list represents the given tree

neighbours = [[4, 1, 16], [2, 5, 7], [], [], [9, 13],[11, 14], [], [], [17, 6, 3],

[], [], [], [], [10, 12], [], [], [15, 8], []]

Identifying a node by a number is a trick that allows you to determine the neighbors of a node

with a list index. The algorithm for finding the path from a certain node to one in the deeper tree

structure is defined recursively in the function search(node). Formulated in pseudo code it

reads:

 search(node):

 if node == targetnode:

 print "Target achieved"

 return

 determine list of neighbors

 run through this list and execute:

 search(neighbors)

Additionally, the "visited" nodes are entered in the back of the list visited. If the goal is not

reached earlier, the node is removed again from visited after all nodes were traversed, in order

to go back to the original state [more...]. The start and target node number can be entered at

the beginning of the program.

neighbours = [[4, 1, 16], [2, 5, 7], [], [], [9, 13], [11, 14], [], [],
 [17, 6, 3], [], [], [], [], [10, 12], [], [], [15, 8], []]

def search(node):
 visited.append(node) # put (push) to stack

 # Check for solution
 if node == targetNode:
 print "Target ", targetNode, "achieved. Path:", visited
 targetFound = True
 return

 for neighbour in neighbours[node]:
 search(neighbour) # recursive call
 visited.pop() # redraw (pop) from stack

startNode = -1
while startNode < 0 or startNode > 17:
 startNode = inputInt("Start node (0..17):")
targetNode = -1
while targetNode < 0 or targetNode > 17:

Page 386

 targetNode = inputInt("Target node (0..17):")
visited = []
search(startNode)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The correct path [0, 1, 5, 14] is written out for the start node 0 and the target node 14. If you

add the node 0 as a neighbor at node 13, it results in a disastrous situation and the program is

aborted with a runtime error that says that the maximum recursion depth is reached.

THE TRAVERSING OF AN ALIEN

It is neat to be able to visibly follow the algorithm by representing the game tree graphically and

gradually traversing it (by pressing a key). For this you best use a GameGrid window in which

nodes are made visible as circles in certain cell coordinates (locations).

In the current cell you see a semi-transparent alien waving at you.

You draw the tree with the graphical methods of GGBackground. You can attach a small circle

mark to the edges, instead of an arrow tip, using getMarkerPoint() to show the direction of the

edge. Make sure that you refresh the screen using refresh(). You can view important information

in the status bar.

from gamegrid import *

neighbours = [[4, 1, 16], [2, 5, 7], [], [], [9, 13], [11, 14], [], [],
 [17, 6, 3], [], [], [], [], [10, 12], [], [], [15, 8], []]

locations = [Location(6, 0), Location(6, 1), Location(4, 2), Location(13, 3),
 Location(1, 1), Location(6, 2), Location(12, 3), Location(8, 2),
 Location(12, 2), Location(0, 2), Location(1, 3), Location(5, 3),
 Location(3, 3), Location(2, 2), Location(7, 3), Location(10, 2),
 Location(11, 1), Location(11, 3)]

def drawGraph():
 getBg().clear()
 for i in range(len(locations)):
 getBg().setPaintColor(Color.lightGray)
 getBg().fillCircle(toPoint(locations[i]), 6)
 getBg().setPaintColor(Color.black)
 getBg().drawText(str(i), toPoint(locations[i]))
 for k in neighbours[i]:
 drawConnection(i, k)
 refresh()

def drawConnection(i, k):
 getBg().setPaintColor(Color.gray)
 startPoint = toPoint(locations[i])

Page 387

 endPoint = toPoint(locations[k])
 getBg().drawLine(startPoint, endPoint)
 getBg().fillCircle(getMarkerPoint(endPoint, startPoint, 10), 3)

def search(node):
 global targetFound
 if targetFound:
 return
 visited.append(node) # put (push) to stack
 alien.setLocation(locations[node])
 refresh()
 if node == targetNode:
 setStatusText("Target " + str(targetNode) + "achieved. Path: "
 + str(visited))
 targetFound = True
 return
 else:
 setStatusText("Current node " + str(node) + " . Visited: "
 + str(visited))
 getKeyCodeWait(True) # exit if GameGrid is disposed

 for neighbour in neighbours[node]:
 search(neighbour) # Recursive call
 visited.pop()

makeGameGrid(14, 4, 50, Color.red, False)
setTitle("Tree-traversal (depth-first search). Press a key...")
addStatusBar(30)
show()
setBgColor(Color.white)
drawGraph()

startNode = -1
while startNode < 0 or startNode > 17:
 startNode = inputInt("Start node (0..17):")
targetNode = -1
while targetNode < 0 or targetNode > 17:
 targetNode = inputInt("Target node (0..17):")

visited = []
targetFound = False
alien = Actor("sprites/alieng_trans.png")
addActor(alien, locations[startNode])

search(startNode)
setTitle("Tree-traversal (depth-first search). Target achieved")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

As you can see, the alien moves to the daughter nodes "in the depth of the tree" and then

jumps back to the last mother node. For this reason, this principle is called depth-first

search with backtracking.

THE ALIEN ON THE WAY BACK

If you want to make visible the path that the alien moves while moving back, you need to save

the sequence of nodes while moving forward in a list steps. There is a new list at each recursion

depth and you save these in stepsList. After moving back, you have to remove the last entry.

from gamegrid import *

Page 388

neighbours = [[4, 1, 16], [2, 5, 7], [], [], [9, 13], [11, 14], [], [],
 [17, 6, 3], [], [], [], [], [10, 12], [], [], [15, 8], []]

locations = [Location(6, 0), Location(6, 1), Location(4, 2), Location(13, 3),
 Location(1, 1), Location(6, 2), Location(12, 3), Location(8, 2),
 Location(12, 2), Location(0, 2), Location(1, 3), Location(5, 3),
 Location(3, 3), Location(2, 2), Location(7, 3), Location(10, 2),
 Location(11, 1), Location(11, 3)]

def drawGraph():
 getBg().clear()
 for i in range(len(locations)):
 getBg().setPaintColor(Color.lightGray)
 getBg().fillCircle(toPoint(locations[i]), 6)
 getBg().setPaintColor(Color.black)
 getBg().drawText(str(i), toPoint(locations[i]))
 for k in neighbours[i]:
 drawConnection(i, k)
 refresh()

def drawConnection(i, k):
 getBg().setPaintColor(Color.gray)
 startPoint = toPoint(locations[i])
 endPoint = toPoint(locations[k])
 getBg().drawLine(startPoint, endPoint)
 getBg().fillCircle(getMarkerPoint(endPoint, startPoint, 10), 3)

def search(node):
 global targetFound
 if targetFound:
 return
 visited.append(node) # put (push) to stack
 alien.setLocation(locations[node])
 refresh()
 if node == targetNode:
 setStatusText("Target " + str(targetNode) + "achieved. Path: "
 + str(visited))
 targetFound = True
 return
 else:
 setStatusText("Current nodes " + str(node) + " . Visited: "
 + str(visited))
 getKeyCodeWait(True) # exit if GameGrid is disposed

 for neighbour in neighbours[node]:
 steps = [node]
 stepsList.append(steps)
 steps.append(neighbour)
 search(neighbour) # Recursive call
 steps.reverse()
 if not targetFound:
 for loc in steps[1:]:
 setStatusText("Go back")
 alien.setLocation(locations[loc])
 refresh()
 getKeyCodeWait()
 stepsList.pop()
 visited.pop()

makeGameGrid(14, 4, 50, Color.red, False)
setTitle("Tree-traversal (depth-first search). Press a key...")
addStatusBar(30)
show()
setBgColor(Color.white)
drawGraph()

startNode = -1

Page 389

while startNode < 0 or startNode > 17:
 startNode = inputInt("Start node (0..17):")
targetNode = -1
while targetNode < 0 or targetNode > 17:
 targetNode = inputInt("Target node (0..17):")

visited = []
stepsList = []
targetFound = False
alien = Actor("sprites/alieng_trans.png")
addActor(alien, locations[startNode])

search(startNode)
setTitle("Tree-traversal (depth-first search). Target achieved")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The alien now really moves back up in the tree, which makes it particularly clear why the

algorithm is called backtracking. Recursive backtracking plays an important role in many

algorithms and is sometimes also referred to as the “Swiss army knife of computer scientists”.

STRATEGY IN A MAZE

Sometimes it is difficult, or even just frightening, to find your way out of a maze. However, now

you can write a program with your knowledge about backtracking that can find its way out of a

maze with certainty. It is quite obvious that you can model a maze that has no circles as a tree.

Finding the exit in such a maze therefore corresponds a tree traversal.

Here you use only a small random maze with 11x11 cells. The alien moves one step when you

press the button, but if you hit the Enter key it searches for the exit completely autonomously.

You generate the maze with the class Maze. You pass it the desired number of rows and columns

as odd numbers. Each time, a different random maze is created with an entry at the top left side

and an exit at the bottom right. You can test whether there is a wall cell at the location loc using

isWall(loc).

It is often not suitable to determine the full game graph

before the game. In many cases this is simply

impossible, since there are so many game situations

that you are not able to determine them in a reasonable

time and there would also not be enough space for the

data. Due to this, it is usually better to determine the

neighboring nodes of the current node only during

backtracking.

You detect the neighboring nodes in your program by

selecting the 4 adjacent cells that are not a wall or

outside of the grid.

from gamegrid import *

def createMaze():
 global maze
 maze = GGMaze(11, 11)
 for x in range(11):
 for y in range(11):
 loc = Location(x, y)

Page 390

 if maze.isWall(loc):
 getBg().fillCell(loc, Color(0, 50, 0))
 else:
 getBg().fillCell(loc, Color(255, 228, 196))
 refresh()

def getNeighbours(node):
 neighbours = []
 for loc in node.getNeighbourLocations(0.5):
 if isInGrid(loc) and not maze.isWall(loc):
 neighbours.append(loc)
 return neighbours

def search(node):
 global targetFound, manual
 if targetFound:
 return
 visited.append(node) # push
 alien.setLocation(node)
 refresh()
 delay(500)
 if manual:
 if getKeyCodeWait(True) == 10: #Enter
 setTitle("Finding target...")
 manual = False

 # Check for termination
 if node == exitLocation:
 targetFound = True

 for neighbour in getNeighbours(node):
 if neighbour not in visited:
 backSteps = [node]
 backStepsList.append(backSteps)
 backSteps.append(neighbour)

 search(neighbour) # recursive call

 backSteps.reverse()
 if not targetFound:
 for loc in backSteps[1:]:
 setTitle("Must go back...")
 alien.setLocation(loc)
 refresh()
 delay(500)
 if manual:
 setTitle("Went back. Press key...")
 else:
 setTitle("Went back. Find target...")
 backStepsList.pop()
 visited.pop() # pop

manual = True
targetFound = False
visited = []
backStepsList = []
makeGameGrid(11, 11, 40, False)
setTitle("Press a key. (<Enter> for automatic")
show()
createMaze()
startLocation = maze.getStartLocation()
exitLocation = maze.getExitLocation()
alien = Actor("sprites/alieng.png")
addActor(alien, startLocation)
search(startLocation)
setTitle("Target found")

Page 391

MEMO

It is interesting to compare the solution strategy of a human with that of the computers. A

human player can recognize the overall situation with a simple glance and derive a strategy of

how to reach the exit as quickly as possible. They act with a characteristically human global

overview that your computer program lacks. Your program only detects the current situation

locally, but it "remembers" the already passed routes very precisely and then systematically

searches for new routes leading to the target destination. However, the situation changes in

favor of the computer when the human is withheld a global overview, e.g. if they themselves

were actually located inside of the maze.

EXERCISES

1. A binary tree has two neighboring nodes for every node, namely a left and a right one.

Choose a list with two numbers [m, n] as a node identifier, where m indicates the depth in the

tree and n indicates the width.

The program should write out the path after entering the start and target nodes.

2. It is amazing that you can always find the way out of a maze using the right-hand rule, even

if it has circles in it. Following it, you always walk with your right hand along the wall and

stick to the following rules:

If the right is free, then go to the right

If you can not go to the right, but going straight is an option, then go straight

If you can not go to the right or straight ahead, then turn to the left

Implement this rule for a GameGrid maze with a rotatable beetle Actor lady = Actor(True,

"sprites/ladybug.gif"). Instructions: Place the beetle in the next cell according to the rule

using move(). If it is a wall cell, undo the step.

Compare this solution algorithm with the solution you get by backtracking.

ADDITIONAL MATERIAL

THE N-QUEENS PROBLEM

The following is a chess problem that has already been discussed since the mid-19th century. Place

n queens on a chessboard with nxn fields so that they can not beat each other in accordance with

the rules of chess. (The rules of chess state that a queen can move both horizontally and vertically,

as well as diagonally.) There are two issues with varying degrees of difficulty: On the one hand,

you would like to specify a solution, and on the other hand, you would like to find out how many

solutions there are in total. Already in 1874 the mathematician Glaisher proved that there are a

total of 92 solutions for the classic checkerboard with n = 8.

The queens problem is considered to be a classic example of backtracking. You place the queens

one after another onto the board always making sure that an added queen does not come into

conflict with the queens already present. If you proceed aimlessly, there is usually a moment where

it is no longer possible to place a queen. The applied strategy in backtracking is that it undoes the

Page 392

last step and tries an alternative. If there is still no solution from the alternative step, you must

undo this step as well, etc. With this procedure, a person can easily loose the overview of which

positions have already been tested, but a computer on the other hand, does not have this problem.

As with all tasks in backtracking, you can regard the game states as nodes in a game graph.

Selecting a suitable data structure is very important. Proceeding in accordance with the "brute

force" principle, where you set n queens on the board in all possible ways and after sort out those

cases which can not be beat, is not suitable because with n = 8 there are around 422 million

possible positions.

It is much better if from the beginning you only

consider positions where the placed queens are

located on different rows and columns. For n = 8 you

can specify the game state with a list of 8 numbers,

where the first number is the column index of the

queen in the first row, the second number is the

column index of the queen in the second row, etc. For

rows without queens, write -1 as an index. If you

take row and column indices from 0 to n-1, you

identify the adjacent position with node = [1, 4, -1,

3, 0, 6, -1, 7].

You can determine the neighboring nodes of the

current nodes (node) in the backtracking algorithm

using the function getNeighbours(node).

Thereby you switch from the one-dimensional data structure to Locations, which uses x and y

coordinates of the fields. You gather the already occupied fields in the list squares and you put

those which cannot be filled due to the rules of the game in the list forbidden. (In this case it is

convenient to use the method getDiagonalLocations().) Finally, you create the list allowed for

fields that can still be filled. You now need to replace the -1 in the neighboring nodes list with the

column index on which the new queen is placed. You implement the already known backtracking

algorithm in search(). Once a solution is found, you stop the search (recursion stop).

from gamegrid import *

n = 8 # number of queens

def getNeighbours(node):
 squares = [] # list of occupied squares
 for i in range(n):
 if node[i] != -1:
 squares.append(Location(node[i], i))

 forbidden = [] # list of forbidden squares
 for location in squares:
 a = location.x
 b = location.y
 for x in range(n):
 forbidden.append(Location(x, b)) # same row
 for y in range(n):
 forbidden.append(Location(a, y)) # same column
 for loc in getDiagonalLocations(location, True): #diagonal up
 forbidden.append(loc)
 for loc in getDiagonalLocations(location, False): #diagonal down
 forbidden.append(loc)

 allowed = [] # list of all allowed squares = all - forbidden
 for i in range(n):
 for k in range(n):
 loc = Location(i, k)
 if not loc in forbidden:
 allowed.append(loc)

Page 393

 neighbourNodes = []
 for loc in allowed:
 neighbourNode = node[:]
 i = loc.y # row
 k = loc.x # col
 neighbourNode[i] = k
 neighbourNodes.append(neighbourNode)
 return neighbourNodes

def search(node):
 global found
 if found or isDisposed():
 return
 visited.append(node) # node marked as visited

 # Check for solution
 if not -1 in node:
 found = True
 drawNode(node)

 for s in getNeighbours(node):
 search(s)
 visited.pop()

def drawBoard():
 for i in range(n):
 for k in range(n):
 if (i + k) % 2 == 0:
 getBg().fillCell(Location(i, k), Color.white)

def drawNode(node):
 removeAllActors()
 for i in range(n):
 addActorNoRefresh(Actor("sprites/chesswhite_1.png"), Location(node[i], i))
 refresh()

makeGameGrid(n, n, 600 // n, False)
setBgColor(Color.darkGray)
drawBoard()
show()
setTitle("Searching. Please wait...")

visited = []
found = False
startNode = [-1] * n # all squares empty
search(startNode)
setTitle("Search complete. ")

MEMO

Depending on the performance of your computer, you may have to wait anywhere from a few

seconds to a few minutes until a solution is found. If it takes too long, you can set n = 6.

EXERCISES

1. Solve the same task without using the GameGrid library. Substitute Location with cell lists [i,

k]. You can write out the solution as a node list.

2. Generalize the program declared above for n = 6 or your own program from exercise 1 so

that all solutions are found. Take into account that a solution node is found several times and

avoid duplicates with a list of already found solutions.

Page 394

10.4 SHORTEST PATH, 3 JUGS PROBLEM

INTRODUCTION

Many important algorithmic solution methods were developed from the practice of daily life,

including backtracking. As you have already learned, the computer chooses a game move from

all the possibilities of allowed moves and consequently pursues it. If the computer runs into a

dead end, it undoes previous moves. This solution strategy is called trial and error in the

context of daily life, and it is known that it is not always optimal. It would be better to choose

the next move as favorably as possible depending on the goal [more...].

PROGRAMMING CONCEPTS: Trial and error, graph with circles, backtracking

GRAPH WITH CIRCLES

When traversing a graph, it may happen that you arrive back at the same state after making a

few steps. Think, for example, of the subway network of a big city where the stations have an

interwoven structure. If you want to ride from point A to point B in that city, there are many

different options and you could easily end up riding around in circles. In preparation for such a

navigation task, you look at a graph with 5 nodes where each node is connected to every other

node.

The nodes are identified by a node number 0..4. As you have

already seen, it is possible that the simple backtracking

algorithm cannot find the path from a given node to another

because it gets stuck in a cycle. However, you only need a

small supplement to avoid this: Before you make the

recursive call to search(), check in the list visited to see if the

concerned neighboring nodes were already visited. If so, you

can skip these neighbors. Now all 16 possible routes between

nodes are written out in the program.

def getNeighbours(node):
 return range(0, node) + r ange(node + 1, 5)

def search(node):
 global nbSolution
 visit ed.append(node) # node marked as visited

 # Check for solution
 if node == targetNode:
 nbSolution += 1
 print nbSolution, ". Route:" , visited
 # don't stop to get all solutions

 for neighbour in getNeighbo urs(node):
 if neighbour not in visit ed: # Check if already visited
 search(neighbour) # recursive call
 visited.pop()

startNode = 0
targetNode = 4
nbSolution = 0
visited = []
search(startNode)

Page 395

MEMO

By checking if a neighbor has already been visited, you can also make use of backtracking on

graphs with cycles. If you forget to check this, your program will "hang", resulting in a bad

run-time error due to overflowing of the function call memory.

SHORTEST PATH, NAVIGATION SYSTEMS

Trying to find a path from starting point A to a destination B is omnipresent in daily life. Since

there are often many routes leading from A to B (not only to Rome), it is usually also important

to determine a certain criterion (route length, traveling time, road quality, landmarks, cost, etc.)

in order to find the optimal path [more...].

In your program, we will simply focus on the basics. Therefore, you choose a local network with

only 6 places that you can regard as subway stations in a fictional city. The nodes of the graph

are identified by the names of the stations. (The first letters of these names are A, B, C, D, E, F,

so the stations could also be identified with these letters or with node numbers.) The indication

of the neighboring stations is an allocation of a station name to a list of of names, which is why a

dictionary with the station name as a key and the list of the neighboring stations as a value is

perfectly suited for this. Instead of using a function getNeighbours(), you directly use a

dictionary neighbours.

The distance between the stations are also stored analogously in a dictionary distances that has

the two connected stations as a key and the distance as a value.

In order to enter these stations into a GameGrid, you still need a dictionary locations with the

locations (x, y coordinates) of the stations.

The central part of your program is an exact replication of the backtracking algorithm used

above. In addition, you need some auxiliary functions to represent it graphically.

You use an entry dialog for the user input

and write the outputs to a status bar.

Furthermore, you draw the optimal path in

the graph of stations.

Page 396

from gamegrid import *

neighbours = {
 'Alth aus' :['Bell evue' , 'Dom' , 'Enge'],
 'Bellevue' :['Althaus' , 'City' , 'Dom'],
 'City' :['Bellevue' , 'Dom' , 'Friedhof'],
 'Dom' :['Althaus' , 'Bellevue' , 'City' , 'Enge' , 'Friedhof'],
 'Enge' :['Althaus' , 'Dom'],
 'Friedhof' :['Althaus' , 'City' , 'Dom']}

distances = {
 ('Althaus' , 'Be llevue'):5, ('Althaus' , 'Dom'):9,
 ('Althaus' , 'Enge'):6, ('Alth aus' , 'Friedhof'):15,
 ('Bellevue' , 'City'):3, ('Bel levue' , 'Dom'):13,
 ('City' , 'Dom'):4, ('City' , 'Fr iedhof'):3,
 ('Dom' , 'Enge'):2, ('Dom' , 'Fri edhof'):12}

locations = {
 'Althaus' :Locati on(2, 0),
 'Bellevue' :Location(0, 1),
 'City' :Location(1, 3),
 'Dom' :Location(4, 2),
 'Enge' :Location(5, 0),
 'Friedhof' :Location(3, 4)}

def getNeighbourDistance(station1, station2):
 if station1 < station2:
 return distances[(sta tion1, station2)]
 return distances[(station 2, station1)]

def totalDistance(li):
 sum = 0
 for i in range(le n(li) - 1):
 sum += getNeighbour Distance(li[i], li[i + 1])
 return sum

def drawGraph():
 getBg().clear()
 getBg ().setPaintColor(Color.blue)
 for station in locations:
 location = locatio ns[station]
 getBg().fillCircle(toPoint(location), 10)
 startPoint = toPoint(location)
 getBg().drawText(station, startPoint)
 for s in neighbours[station]:
 drawConnection(station, s)
 if s < station:
 distance = distances[(s, station)]
 else :
 distance = distances[(station, s)]
 endPoint = toPoint(locations[s])
 getBg().drawText(str(distance),
 getDividingPoint(startPoint, endPoint, 0.5))
 refresh()

def drawConnection(startStation, endStation):
 startPoint = toPoint(lo cations[startStation])
 endPoint = toPoint(locations[endStation])
 getBg().drawLine(startPoint, endPoint)

def search(station):
 global trackToTarget, tra ckLength
 visited.append(station) # station marked as visited

 # Check for solution
 if station == targetStation:
 currentDistance = t otalDistance(visited)
 if currentDistance < trackLength:
 trackLength = c urrentDistance

Page 397

 trackToTarget = visited[:]

 for s in neighbour s [station]:
 if s not in visited: # if all are visited, recursion returns
 search(s) # recursive call
 visited.pop() # station may be visited by another path

def init():
 global visited, trackToTa rget, trackLength
 visited = []
 trackToT arget = []
 trackLength = 1000
 drawGraph()

makeGameGrid(7, 5, 100, None, "sprites/city.png" , False)
setTitle("City Guide")
addStatu sBar(30)
show()
init()
st artStation = ""
while not startStation in locations:
 startStation = inputSt r ing("Start station")
targetStation = ""
while not targ etStation in locations:
 targetStation = inputSt ring("Target station")
search(startStation)
setStatu sText("Shortest way from " + startStation + " to " + targetStation
 + ": " + str(trackToTarge t) + " Length = " + str(trackLength))
for i in range(len(trackToTarget) - 1):
 s1 = trackToTarget[i]
 s2 = trackToTarget[i + 1]
 getBg().setPaintColor(Color.black)
 getBg().setLineWidth(3)
 drawConnection(s1, s2)
refresh()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The search for the shortest path in a graph is one of the basic tasks in computer science. The

solution shown here achieves its goal with backtracking, but it is very CPU-intensive (meaning

it takes a lot of processing power). There are much better algorithms for finding the shortest

path where you do not have to systematically search for every route. The most famous is

called "Dikjstra's algorithm".

THE THREE JUGS PROBLEM

Brain teasers in which a given quantity has to be divided into certain partial quantities by

measuring (pouring, weighting, etc.) have already been found in children's books and magazines

for centuries. The well-known three jugs problem is attributed to the French mathematician

Bachet de Méziriac in the 17th century and goes as follows:

Page 398

Two friends have decided to evenly divide

up 8 liters of wine that is in an 8 liter jug by

pouring it. In addition to the 8 liter jug, you

have a 5 liter and a 3 liter jug. The jugs

have no markings on them for measuring

the contents. How should you proceed and

how many pours are necessary, at

minimum?

According to the problem description, it is not only a matter of finding the solution, which you

might be able to do by thinking a bit, but finding all possible solutions, and therefore

determining the shortest of them all. Without a computer, this would be very tiring. Searching

for all solutions, such as in this example, is called an exhaustive search.

To begin with, you again proceed according to the previously tried solution strategy with

backtracking. First invent a suitable data structure for the game states. For this, you use a list

with three numbers that describes the current fill level of the three jugs. [1, 4, 3] should thus

mean that the 8 liter jug currently contains 1 liter of wine, the 5 liter jug contains 4 liters, and

the 3 liter jug contains 3 liters.

You can again model the game states as nodes in a graph and consider the pouring as a

transition from one node to its neighboring node. Here, as in many other examples, it does not

make sense to construct the entire game tree at the beginning. Instead, you can determine the

neighboring nodes of a node node in the function getNeighbours(node) only when you actually

need them during the game. You can begin with the following consideration:

Regardless of how much wine is in the jugs, there are basically 6 options of how you can pour:

You take one of the jugs and either pour all of their contents or as much as there is space

available in the second jug. You therefore collect the neighboring nodes of these 6 cases in the

list neighbours in getNeighbours(). The function transfer(state, source, target) helps you to

figure out the neighboring states of a particular state state and given jug numbers source and

target after pouring from source to target. The jug sizes (maximum capacity) and the already

contained quantity will be considered.

Again your recursive function search() uses the backtracking algorithm as you know it.

def transfer(state, source, target):
 # Assumption: source, t arget 0..2, source != target
 s = state[:] # clone
 if s[source] == 0 or s[target] == capacity[target]:
 return s # source emp ty or target full
 free = capacity[target] - s[target]
 if s[source] <= free: # so urce has enough space in target
 s[target] += s[source]
 s[source] = 0
 else : # target is filled-up
 s[target] = capacity[target]
 s[source] -= free
 return s

def getNeighbours(node):
returns list of neighbours
 neighbours = []
 t = transfer(node, 0, 1) # from 0 to 1
 if t not in neighbours:
 neighbours.append(t)
 t = transfer(node, 0, 2) # from 0 to 2
 if t not in neighbours:
 neighbours.append(t)
 t = transfer(node, 1, 0) # from 1 to 0
 if t not in neighbours:
 neighbours.append(t)

Page 399

 t = transfer(node, 1, 2) # from 1 to 2
 if t not in nei ghbours:
 neighbours.append(t)
 t = transfer(node, 2, 0) # from 2 to 0
 if t not in neighbours:
 neighbours.append(t)
 t = transfer(node, 2, 1) # from 2 to 1
 if t not in neighbours:
 neighbours.append(t)
 return neighbours

def search(node):
 global nbSolution
 v isited.append(node)

 # Check for solution
 if node == targetNode:
 nbSolution += 1
 print nbSolution, ". Route:" , visited, ". Length:" , len(visited)

 for s in getNeighbou rs(node):
 if s not in visited:
 search(s)
 vis ited.pop()

capacity = [8, 5, 3]
startNode = [8, 0, 0]
targetNode = [4, 4, 0]
nbSolution = 0
visited = []
search(startNode)
print "Done. Find the best solution!"

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The solutions are written out to the output window. They are not published here so that you

are able to approach the problem with an open mind and possibly first try to find the solution

with pencil and paper. After they are revealed, you will see that there are 16 solutions, and 16

pours are necessary for the longest.

EXERCISES

1. Simplify the navigation program so that the nodes are identified by the numbers 0, 1, 2, 3,

4, 5 and neighbours is a list with sublists.

2. You should scoop exactly 4 liters of water from a lake with a 3 liter and 5 liter jug. Describe

how you would proceed and find the shortest amount of pours it would take. Keep in mind

that you can pour the water back into the lake again

3. Invent a solvable pouring problem and give it to other people in your community as a brain

teaser.

Page 400

ADDITIONAL MATERIAL

CITY NAVIGATION WITH MOUSE SUPPORT

The graphical user interface plays a central role in any professional program. While designing it,

the programmer has to be guided less by programmatic considerations but rather by putting

themselves into the shoes of an unbiased user who uses the program with as little effort as

possible and natural human logic. Today such an interface usually includes a graphical surface

with mouse or touch controls. The task of developing the user interface can often take up a

considerable amount of the total effort spent on a project in computer science.

Touch screens are becoming popular for navigation systems. However, their logic differs only

slightly from programming for mouse control. Due to this, you will now alter your city navigation

program to support mouse control, so that the user can select the starting and destination point

with a mouse click. Output information will be written both to the title bar and to the status bar.

The mouse click triggers an event that is processed in the callback pressEvent(). You register

these in makeGameGrid() using the named parameter mousePressed. You should remember that

the program can be in two different states depending on whether the user will click on the

starting station as the next action, or whether they have already done so and have to choose the

target station next. A Boolean variable (a flag) isStart will suffice for this state change, which will

be True when the starting station has to be chosen next.

The program should be structured so that the user can perform the route search multiple times

without having to restart the program. Therefore, the program has to internally reset to a

well-defined initial state. This is referred to as initialization and is best carried out with the

function init(). Since certain initializations are performed automatically at the start up, it is by no

means trivial to repeatedly reset a currently running program to a well-defined initial state using

its own function. Initialization errors are therefore programming errors which are widespread,

dangerous, and difficult to locate since the program often behaves correctly during testing and

only later behaves incorrectly when put into operation.

from gamegrid import *

locations = {
 'Altha us' :Locati on(2, 0),
 'Bellevue' :Location(0, 1),
 'City' :Location(1, 3),
 'Dom' :Location(4, 2),
 'Enge' :Location(5, 0),
 'Friedhof' :Location(3, 4)}

neighbours = {
 'Althaus' :['Bel l evue' , 'Dom' , 'Enge'],

Page 401

 'Bellevue' :['Althaus' , 'City' , 'Dom'],
 'C i ty' :['Bellevue' , 'Dom' , 'Friedhof'],
 'Dom' :['Althaus' , 'Bellevue' , 'City' , 'Enge' , 'Friedhof'],
 'Enge' :['Althaus' , 'Dom'],
 'Friedhof' :['Althaus' , 'City' , 'Dom']}

distances = {('Althaus' , 'Bell evue'):5, ('Althaus' , 'Dom'):9,
 ('Althaus' , 'Enge '):6, ('Althaus' , 'Friedhof'):15,
 ('Bellevue' , 'Cit y'):3, ('Bellevue' , 'Dom'):13,
 ('City' , 'Dom'):4, ('City' , 'Friedhof'):3,
 ('Dom' , 'Enge'):2, ('Dom' , 'Friedhof'):12}

def getNeighbourDistance(station1, station2):
 if station1 < station2:
 return distances[(sta tion1, station2)]
 return distances[(station 2, station1)]

def totalDistance(li):
 sum = 0
 for i in range(l en(li) - 1):
 sum += getNeighbour Distance(li[i], li[i + 1])
 return sum

def drawGraph():
 getBg().clear()
 getBg ().setPaintColor(Color.blue)
 for station in locations:
 location = location s[station]
 getBg().fillCircle(toPoint(location), 10)
 startPoint = toPoint(location)
 getBg().drawText(station, startPoint)
 for s in neighbours[station]:
 drawConnection(station, s)
 if s < station:
 distance = distances[(s, station)]
 else :
 distance = distances[(station, s)]
 endPoint = toPoint(locations[s])
 getBg().drawText(str(distance),
 getDividingPoint(startPoint, endPoint, 0.5))
 refresh()

def drawConnection(startStation, endStation):
 startPoint = toPoint(l ocations[startStation])
 endPoint = toPoint(locations[endStation])
 getBg().drawLine(startPoint, endPoint)

def search(station):
 global trackToTarget, tra ckLength
 visited.append(station) # station marked as visited

 # Check for solution
 if station == targetStation:
 currentDistance = t otalDistance(visited)
 if currentDistance < trackLength:
 trackLength = c urrentDistance
 trackToTarget = visited[:]

 for s in neighbours[station]:
 if s not in visited: # if all are visited, recursion returns
 search(s) # recursive call
 visited.pop() # station may be visited by another path

def getStation(location):
 for station in locations:
 if locations[station] == location:
 return station
 r eturn None # station not found

Page 402

def init():
 global visited, trackT oTarget, trackLength
 visited = []
 trackToT arget = []
 trackLength = 1000
 drawGraph()

def pressEvent(e):
 global isStart, startStat ion, targetStation
 mouseLoc = toLocationIn Grid(e.getX(), e.getY())
 mouseStation = getStation(mouseLoc)
 if mouseStation == None:
 return
 if isStart:
 isStart = False
 init()
 setTitle("Click on destination station")
 startStation = mou seStation
 getBg().setPaintColor(Color.red)
 getBg().fillCircle(toPoint(mouseLoc), 10)
 else :
 isStart = True
 setTitle("Once again? Click on starting station.")
 targetStation = mou seStation
 getBg().setPaintColor(Color.green)
 getBg().fillCircle(toPoint(mouseLoc), 10)
 search(startStation)
 setStatusText("Shortest route from " + startStation + " to "
 + targetStation + ": " + str(trackToTarget) + " Length = "
 + str(trackLeng th))
 for i in range(len(trackToTarget) - 1):
 s1 = trackToTar get[i]
 s2 = trackToTarget[i + 1]
 getBg().setPaintColor(Color.black)
 getBg().setLineWidth(3)
 drawConnection(s1, s2)
 getBg().setLineWidth(1)
 refresh()

isStart = True
makeGameGrid(7, 5, 100, None, "sprites/city.png" , False,
 mousePressed = pressEvent)
setTitle("City Guide. Click on starting station.")
addStatusBar(30)
show()
init()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The algorithmic part with the backtracking remains pretty much unchanged. The user interface

with mouse control is quite complex, despite good support from callbacks.

Using global easily leads to initialization errors in Python, as global variables can be created in

functions and you might later forget to reset their value.

Page 403

10.5 CRYPTOSYSTEMS

INTRODUCTION

The principle of secrecy plays an increasingly important role in our modern world. To protect

privacy, but to also maintain confidentiality of important government, industrial, and military

information, it is necessary to encrypt data so that, if they fell into the hands of the wrong

people, it would be impossible or at least very difficult to find out the original information

without the disclosure of the decryption method.

When encoding the original data, they are transformed into encoded data. During decoding the

original data are restored. If the original data are written using the letter alphabet, we also

speak of plaintext and cryptotext.
The description of the method used for decoding is called key. It can also simply consist of a

single number, a number string, or a letter string (a keyword). If the same key is used for

encoding and decoding, on also speaks of symmetric-key cryptography, or otherwise of an

asymmetric (public-key) cryptographic method.

PROGRAMMING CONCEPTS: Encoding, decoding, symmetric/asymmetric cryptography, Caesar

cipher, Vigenère cipher, RSA encryption, private/public key

CAESAR CIPHER

According to tradition, Julius Caesar (100 B.C. - 44 B.C.) already applied the following method

for his military correspondence: Each plaintext letter is shifted down the alphabet to the right by

a certain fixed number of places, continuing on to A again after Z.

With this method, the alphabet is thus laid out in a ring

buffer. With the a shift (key) of 3, the letter A will be

encoded in D, B in E, C in F, D in G, etc.

You use text files for data in your program so that you can

change and share them easily. Write the plaintext using any

text editor in the file original.txt that you have to save in

the directory where your program is located. Only use

capital letters and spaces for the text. You may write

multiple lines, so for example:

TODAY WE MEET AT EIGHT

GREETINGS

TANIA

The encoder encodes the read text string msg from the file using the function encode(msg),

where each character is replaced by the corresponding crypto character, except for the line

break \n.

Page 404

import string
key = 4
alphabet = string.ascii_uppercase + " "

def encode(text):
 enc = ""
 for ch in text:
 if ch != "\n":
 i = alphabet.index(ch)
 ch = alphabet[(i + key) % 27]
 enc += ch
 return enc

fInp = open("original.txt")
text = fInp.read()
fInp.close()

print "Original:\n", text
krypto = encode(text)
print "Krypto:\n", krypto

fOut = open("secret.txt", "w")
for ch in krypto:
 fOut.write(ch)
fOut.close()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Your encoded text reads as follows:

XSHEBD IDQIIXDEXDIMKLX

KVIIXMRKW

XERME

The decoder is built analogously, except that the characters in the alphabet are shifted

backwards.

import string
key = 4
alphabet = string.ascii_uppercase + " "

def decode(text):
 dec = ""
 for ch in text:
 if ch != "\n":
 i = alphabet.index(ch)
 ch = alphabet[(i - key) % 27]
 dec += ch
 return dec

fInp = open("secret.txt")
krypto = fInp.read()
fInp.close()

print "Krypto:\n", krypto
msg = decode(krypto)
print "Message:\n", msg

fOut = open("message.txt", "w")
for ch in msg:
 fOut.write(ch)
fOut.close()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 405

MEMO

Keep in mind that you have to retain all empty spaces in the crypto text, even if they are at

the beginning or the end of a line. It is clear that the encoding can be cracked easily. A good

trick is to try it out for all key numbers 1 to 26.

ENCODING WITH THE VIGENÈRE METHOD

You can make Caesar cipher safer by applying a different

alphabetic shift on each character of the plaintext. This

so-called poly-alphabetic substitution could use any

permutation of 27 numbers as a key. There is thus a huge

number of possible keys, namely:

 27! = 10'888'869'450'418'352'160'768'000'000 ≈ 1027

It is a bit easier to use a keyword that is assigned the list of

the corresponding characters in the alphabet, so for example,

the key ALICE is assigned to the list [0, 11, 8, 2, 4]. When

encoding, the characters of the sequence are then shifted

alphabetically to 0, 11, 8, 2, 4 and then repeated at 0, 11,...

characters.

Blaise Vigenère (1523-1596)

import string
key = "ALICE"
alphabet = string.ascii_uppercase + " "

def encode(text):
 keyList = []
 for ch in key:
 i = alphabet.index(ch)
 keyList.append(i)
 print "keyList:", keyList
 enc = ""
 for n in range(len(text)):
 ch = text[n]
 if ch != "\n":
 i = alphabet.index(ch)
 k = n % len(key)
 ch = alphabet[(i + keyList[k]) % 27]
 enc += ch
 return enc

fInp = open("original.txt")
text = fInp.read()
fInp.close()

print "Original:\n", text
krypto = encode(text)
print "Krypto:\n", krypto

fOut = open("secret.txt", "w")
for ch in krypto:
 fOut.write(ch)
fOut.close()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

The decoder is again virtually identical.

Page 406

import string
key = "ALICE"
alphabet = string.ascii_uppercase + " "

def decode(text):
 keyList = []
 for ch in key:
 i = alphabet.index(ch)
 keyList.append(i)
 print "keyList:", keyList
 enc = ""
 for n in range(len(text)):
 ch = text[n]
 if ch != "\n":
 i = alphabet.index(ch)
 k = n % len(key)
 ch = alphabet[(i - keyList[k]) % 27]
 enc += ch
 return enc

fInp = open("secret.txt")
krypto = fInp.read()
fInp.close()

print "Krypto:\n", krypto
msg = decode(krypto)
print "Message:\n", msg

fOut = open("message.txt", "w")
for ch in msg:
 fOut.write(ch)
fOut.close()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The Vigenère encoding method was invented in the 16th century by Blaise de Vigenère and

was considered very safe for centuries. If someone knows that the length of the keyword is 5,

they must nevertheless try out 265 = 11'881'376 key numbers unless they know something

about the word itself, for example that it is the first name of a woman.

ENCODING WITH THE RSA METHOD

In this method, named after its inventors Rivest, Shamir and Adleman, a key-pair is used,

namely a private key and a public key. The original data are encoded with the public key and

decoded with the private key. It is an asymmetric cryptographic method.

Step 1:
The receiver generates the private key and
the public key and sends the public key to the
sender.

Step 2:
The sender encodes their message with the
public key and sends the encoded text back.

Page 407

Step 3:
The receiver decodes the text with the private
key.

The keys are generated using the following algorithm based on number theory [more...].

First, two prime numbers p and q are chosen, which should have several hundred digits in order

for the system to be secure. You multiply these and form m = p*q. From number theory, we

know that the Euler function φ(m) = (p-1)*(q-1) is the total of co-prime numbers to m (a, b are

co-prime if the largest common factor is ggT(a,b) = 1).

Next, you select a number e that is smaller than φ and co-prime to φ. With this, we already have

the public key and it consists of the number pair:

Public key: [m, e]

Below is an example with the small prime numbers p = 73 and q = 151:

m = 73 * 151 = 11023, φ = 72 * 150 = 10800, e = 11 (chosen co-prime to φ)

Public key: [m, e] = [11023, 11]

The private key then consists of the number pair:

Private key: [m, d]

where for the number d we must ensure: (d * e) mod φ = 1

(since e and φ are co-prime, Bézout's lemma from number theory says that the equation has to

have at least one solution).

You can determine the number d with your values for e and φ using a simple program by trying

out 100,000 values for d in a for loop.

e = 11
phi = 10800

for d in range(100000):
 if (d * e) % phi == 1:
 print "d", d

You get several solutions (5891, 16691, 27491, 49091, etc.). However, in principle you only

need the first solution to determine the private key.

Private key: [m, d] = [11023, 5891]

In this case, calculating the private key is only so easy because you already know the numbers p

and q, and hence also the number φ. Without knowing these numbers, the private key can only

be calculated with great effort.

The RSA algorithm is used to encode numbers. In order to encode a text, you can use the ASCII

code for each character and create the encoded value s with the public key [m, s] for the

ciphertext according to the formula:

s = re (modulo m).

Write these encoded numbers line by line in the file secret.txt.

publicKey = [11023, 11]

def encode(text):

Page 408

 m = publicKey[0]
 e = publicKey[1]
 enc = ""
 for ch in text:
 r = ord(ch)
 s = int(r**e % m)
 enc += str(s) + "\n"
 return enc

fInp = open("original.txt")
text = fInp.read()
fInp.close()

print "Original:\n", text
krypto = encode(text)
print "Krypto:\n", krypto

fOut = open("secret.txt", "w")
for ch in krypto:
 fOut.write(ch)
fOut.close()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

In the decoder, you read the numbers from the file secret.txt (first) into a list. In order to

decode, you calculate the original number according to the formula below which uses the private

key s:

r = sd (modulo m).

This is the ASCII code of the original character.

privateKey = [11023, 5891]

def decode(li):
 m = privateKey[0]
 d = privateKey[1]
 enc = ""
 for c in li:
 s = int(c)
 r = s**d % m
 enc += chr(r)
 return enc

fInp = open("secret.txt")
krypto = []
while True:
 line = fInp.readline().rstrip("\n")
 if line == "":
 break
 krypto.append(line)
fInp.close()

print "Krypto:\n", krypto
msg = decode(krypto)
print "Message:\n", msg

fOut = open("message.txt", "w")
for ch in msg:
 fOut.write(ch)
fOut.close()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 409

MEMO

The big advantage of the RSA method is that no secret key information has to be exchanged

between the sender and the receiver. Rather, the receiver generates both the public and the

private key and only communicates the public key to the sender, while keeping the private key

secret. The sender can now encode its data, but only the receiver can decode it [more...].

In practice, one could choose very large prime numbers p and q (several hundred digits longs).

Generating the public key only requires the product formation m = p * q, which is very simple.

If a hacker wants to find out the private key from the public key, they have to inversely

determine both secret prime factors of m. Until now, factorizing a long number is only possible

with an enormous amount of computational effort. That is how cryptosystems utilize the limits

of calculability.

In principle, however, there are no absolutely secure encoding methods. Encoding is already

considered to be safe once the time it takes to decode is considerably longer than the time

during which the information is of importance.

EXERCISES

1. Try to decode the ciphertext

OAL SHDXTKMJXSASTVVXHLSL XSAFNALTLAGF

UMLSASVTFSGFDQSUXSL XJXSTLSXAZ L

ZJXXLAFZK

XNXDAFX

It is a Caesar cipher.

Note: One possible solution is to assume that the letter E occurs the most often in English

texts. However, you can also try out all shifting possibilities.

2. Educate yourself on the Scytale encoding method from the Internet and implement an

encoder/decoder based on its principle.

3. Explain why the Caesar cipher is a special case of the Vigenère method.

4. Generate a public and a private key using two prime numbers p and q (both smaller than

100) according to the RSA method and encode/decode a text.

Page 410

10.6 FINITE-STATE MACHINES (AUTOMATA)

INTRODUCTION

If you want to investigate which problems a computer can generally solve, you first have to

define what exactly a computing machine is. The famous mathematician and computer scientist

Alan Turing published a study on this subject in 1936, long before a programmable digital

computer even existed. The Turing machine, which was named after him, gradually runs

programmatically through individual states. It does this on the basis of input values that it reads

from a tape, and again writes output values onto the tape. This basic notion about how the

computer functions are still valid today because each processor is actually a Turing machine that

runs state by state at the ticks of a clock. However, state machines that can be modeled using

transition graphs are better suited for practical applications. Because there is a finite number of

states, they are called finite-state machines.

PROGRAMMING CONCEPTS: Turing machine, finite-state machines (automata), Mealy machine,

transition graph, formal language theory

THE ESPRESSO MACHINE AS A MEALY MACHINE

You are bound to encounter many devices and machines that you can regard as automata every

single day. Automata include devices such as vending machines, washing machines, ATMs, and

many others. As an engineer and computer scientist you develop such machines with the clear

understanding that these perform their task in such way that they move from the current state

to a successor state, depending on the sensor data and the operation of the buttons and

switches. You call these the inputs of the automaton. Depending on the input values, the

automaton operates certain actuators at each transition, such as motors, pumps, lights, etc.

These are the outputs of the automaton.

In this example, you will develop an espresso machine that has 3 states: It can be turned off

(OFF), it can be enabled and ready for operation (STANDBY) and it can be actively pumping

water to make an espresso (WORKING). There are 4 push buttons available that allow you to

operate the machine: turnOn, turnOff, work, and stop.

Although you can describe the operation of an espresso machine in words, it becomes much

clearer if you draw an transition graph. For this, you illustrate the states as circles and the

transitions as arrows that you can denote with the inputs/outputs. It is also important to

determine which initial state the automaton is in when you connect it to the power line. Since

any key can be pressed in each state, all inputs have to be possible at every state. If no action is

performed, the output is omitted.

Transition graph:

Page 411

You can also record the behavior in a table in which you specify for each state s and each input t

the successor state s'. You denote the initial state with a star.

Transition table:

 t = s = OFF(*) STANDBY WORKING

 turnOff OFF OFF OFF

 turnOn STANDBY STANDBY WORKING

 stop OFF STANDBY STANDBY

 work OFF STANDBY WORKING

In mathematical terms, you can say that the successor state s' is a function of the current state

s and the input t: s' = F(s, t). You call F the transitional function.

You can also record the outputs belonging to each state and input:

Output table:

 t = s = OFF(*) STANDBY WORKING

 turnOff - LED off LED off, Pump off

 turnOn LED on - -

 stop - - Pump off

 work - Pump on -

Here too, you can say mathematically that the output g is a function of the current state s and

the input t: g = G(s, t). G is called the output function.

MEMO

Together the states (with a labeled initial state), input values, and output values, as well as

the transitional functions and output functions, form a so-called Mealy machine.

Page 412

IMPLEMENTING THE ESPRESSO MACHINE WITH STRINGS

A key press should trigger the transition from one state to the next. The respective key, one of

the 4 cursor keys, specifies the input value. The implementation is quite straightforward: The

program waits on a key entry in an endless event loop with getKeyEvent(). With the return

value, the current state is changed according to the transition table and the outputs are given

according to the output table.

from gconsole import *

def getKeyEvent():
 keyCode = getKeyCodeWait(True)
 if keyCode == KeyEvent.VK_UP:
 return "stop"
 if keyCode == KeyEvent.VK_DOWN:
 return "work"
 if keyCode == KeyEvent.VK_LEFT:
 return "turnOff"
 if keyCode == KeyEvent.VK_RIGHT:
 return "turnOn"
 return ""

state = "OFF" # Start state
makeConsole()
while True:
 gprintln("State: " + state)
 entry = getKeyEvent()
 if entry == "turnOff":
 if state == "STANDBY":
 state = "OFF"
 gprintln("LED off")
 if state == "WORKING":
 state = "OFF"
 gprintln("LED and pump off")
 elif entry == "turnOn":
 if state == "OFF":
 state = "STANDBY"
 gprintln("LED enabled")
 elif entry == "stop":
 if state == "WORKING":
 state = "STANDBY"
 gprintln("Pumpe off")
 elif entry == "work":
 if state == "STANDBY":
 state = "WORKING"
 gprintln("Pumpe enabled")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Only the events that lead to a change of state or generate an output are treated in the event

loop.

ENUMERATIONS AS STATE AND EVENT IDENTIFIERS

Since the automaton operates with certain states, input values, and output values, it makes

sense to introduce a particular data structure for that. Many programming languages offer a

specific data type for enumeration. Unfortunately this data type is missing in the standard syntax

of Python, but it can be added in TigerJython using the additional keyword enum(). You should

use strings when defining the enumeration values, however they must adhere to the variable

naming convention.

Page 413

from gconsole import *

def getKeyEvent():
 keyCode = getKeyCodeWait(True)
 if keyCode == KeyEvent.VK_UP:
 return Events.stop
 if keyCode == KeyEvent.VK_DOWN:
 return Events.work
 if keyCode == KeyEvent.VK_LEFT:
 return Events.turnOff
 if keyCode == KeyEvent.VK_RIGHT:
 return Events.turnOn
 return None

State = enum("OFF", "STANDBY", "WORKING")
state = State.OFF
Events = enum("turnOn", "turnOff", "stop", "work")
makeConsole()
while True:
 gprintln("State: " + str(state))
 entry = getKeyEvent()
 if entry == Events.turnOn:
 if state == State.OFF:
 state = State.STANDBY
 elif entry == Events.turnOff:
 state = State.OFF
 elif entry == Events.work:
 if state == State.STANDBY:
 state = State.WORKING
 elif entry == Events.stop:
 if state == State.WORKING:
 state = State.STANDBY

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

It is up to you whether you want to use the additional data type enum. The programs will not

be shorter, but rather more clear and secure, since only enumeration values defined in the

enum may occur.

MOUSE-CONTROLLED IMPLEMENTATION OF ESPRESSO MACHINE

With just a little extra effort you can simulate the espresso

machine graphically using the JGameGrid library, whereby

the program gains a lot of clarity and programming

becomes a lot more fun. Instead of with the keyboard, the 4

inputs are triggered by mouse clicks on simulated buttons,

and the output of the LED and the pump are made

immediately visible with sprite images. Instead of the event

loop, you use the callback pressEvent() which will always be

called when you click on the image with the mouse. Since

you use a grid with 7 x 11 cells as a GameGrid, you can

capture the clicks on the buttons using grid coordinates.

Page 414

from gamegrid import *

def pressEvent(e):
 global state
 loc = toLocationInGrid(e.getX(), e.getY())
 if loc == Location(1, 2): # off
 state = State.OFF
 led.show(0)
 coffee.hide()
 elif loc == Location(2, 2): # on
 if state == State.OFF:
 state = State.STANDBY
 led.show(1)
 elif loc == Location(4, 2): # stop
 if state == State.WORKING:
 state = State.STANDBY
 coffee.hide()
 elif loc == Location(5, 2): # work
 if state == State.STANDBY:
 state = State.WORKING
 coffee.show()
 setTitle("State: " + str(state))
 refresh()

State = enum("OFF", "STANDBY", "WORKING")
state = State.OFF
makeGameGrid(7, 11, 50, None, "sprites/espresso.png", False,
 mousePressed = pressEvent)
show()
setTitle("State: " + str(state))
led = Actor("sprites/lightout.gif", 2)
addActor(led, Location(3, 3))
coffee = Actor("sprites/coffee.png")
addActor(coffee, Location(3, 6))
coffee.hide()
refresh()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

 A simulation becomes very clear and attractive with a graphical user interface.

THINKING IN STATES WITH GRAPHICAL USER INTERFACES

At first glance, Mealy machines appear to be a rather

theoretical matter. This is not at all the case. Rather,

you must always think in states with modern, event-

driven programs with a graphical user interface. As an

example, you write a turtle program controlled by 3

buttons: The start_button sets the turtle in motion, the

stop_button stops the movement, and the quit_button

ends the program. In order to correctly implement the

program, you have to keep the transition graph in

mind::

Page 415

As you already know, no animations and only short-lasting code may be executed in GUI event

callbacks, since the screen is only re-rendered at the end of the function. This is why in the

callbacks of the button clicks you only shift the state, and you execute the movement of the

turtle in the main part of the program.

(You can learn more about this problem in Appendix 4: Parallel processing)

from javax.swing import JButton
from gturtle import *

def buttonCallback(evt):
 global state
 source = evt.getSource()
 if source == runBtn:
 state = State.RUNNING
 setTitle("State: RUNNING")
 if source == stopBtn:
 state = State.STOPPED
 setTitle("State: STOPPED")
 if source == quitBtn:
 state = State.QUITTING
 setTitle("State: QUITTING")

State = enum("STOPPED", "RUNNING", "QUITTING")
state = State.STOPPED

runBtn = JButton("Run", actionPerformed = buttonCallback)
stopBtn = JButton("Stop", actionPerformed = buttonCallback)
quitBtn = JButton("Quit", actionPerformed = buttonCallback)
makeTurtle()
setTitle("State: STOPPED")
back(100)

pg = getPlayground()
pg.add(runBtn)
pg.add(stopBtn)
pg.add(quitBtn)
pg.validate()

while state != State.QUITTING and not isDisposed():
 if state == State.RUNNING:
 forward(200).left(127)
dispose()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 416

MEMO

This program structure is typical of event-driven programs and you should try to remember it

well. You have to import the package JButton in order to use the buttons, and then add them

to the turtle window (the playground) using add(). You have to re-render the turtle window

using validate() in order to make them visible.

EXERCISES

1. A parking ticket vending machine only takes 1 € and 2 € coins that are inserted individually,

one after the other. Once the machine has received at least the amount of the parking fee, it

issues the ticket and gives back the change if you overpaid. The parking fee is 3 €.

Starting at the initial state S0, the machine runs through the states S1 or S2, depending on

whether you inserted a 1 € or a 2 € coin. It outputs the values - (nothing), K (ticket), or K,R

(ticket and change).

a. Create the input and output tables

b. Draw the transition graph

c. Create a program using the GConsole, which interprets the pressing of the number 1 key

as an insertion of a 1 € coin and the number 2 as a 2 € coin and writes the subsequent

state and the output values to the console window.

ADDITIONAL MATERIAL

ACCEPTORS FOR REGULAR LANGUAGES

A formal language consists of an alphabet of symbols and a set of rules, which allows someone

to clearly decide whether a particular sequence of symbols belongs to the language. If it is

possible to implement the set of rules using an automaton, it is called a regular language.

As an example, look at a very simple language with an alphabet consisting only of the letters a

and b. You can regard the set of rules as a special case of a Mealy machine that does not

generate output values. In this case, the machine reads character by character starting at an

initial state and transitions to a successive state based on the read character. If it is located in

one of the predetermined final states after reading the last character, the word does indeed

belong to the language. Look at the following transition graph (S: initial state, A: end state):

In the implementation, the change of state is triggered by pressing the character keys a or b.

Then, your program writes out the current state and the input word.

Page 417

from gconsole import *

def getKeyEvent():
 global word
 keyCode = getKeyCodeWait(True)
 if keyCode == KeyEvent.VK_A:
 return Events.a
 if keyCode == KeyEvent.VK_B:
 return Events.b
 return None

State = enum("S", "A", "B")
state = State.S
Events = enum("a", "b")
makeConsole()
word = ""
gprintln("State: " + str(state))
while True:
 entry = getKeyEvent()
 if entry == Events.a:
 if state == State.A:
 state = State.S
 elif state == State.B:
 state = State.S
 word += "a"
 gprint("Word: " + word + " -> ")
 gprintln("State: " + str(state))
 elif entry == Events.b:
 if state == State.S:
 state = State.B
 elif state == State.B:
 state = State.A
 word += "b"
 gprint("Word: " + word + " -> ")
 gprintln("State: " + str(state))

MEMO

An acceptor checks to see if a word belongs to a language. It is a special case of a Mealy

machine without output values. The word does indeed belong to the language if you arrive at

the end state A after reading all letters, beginning in the initial state S. For example, abbabb

belongs to the language, whereas baabaa does not.

EXERCISES

1. A laughing machine should accept only the words ha. or haha. or hahaha. etc. (last character

a period). Draw the transition graph and implement it.

Additional instructions: You can introduce an error state E to the program, which cannot be

left anymore with any input.

Page 418

10.7 INFORMATION & ORDER

INTRODUCTION

Even though the word information is used often, it is not that easy to grasp the concept precisely

and to make it measurable. In daily life, more information is associated with more knowledge

and it is said that a person A informed in a certain thing knows more than an uninformed person

B.

In order to measure how much more information A has than B (or team B), or the lack of

information of B with respect to A, you best imagine a TV quiz show. Person or team B has to

find something out that only person A knows, for example their profession. Thereby B asks

questions that A has to answer with a Yes or a No. The rules are as follows:

The lack of information I of B in relation to A (in bits) is the number of questions with Yes/No

answers that B (on average and at an optimal asking strategy) has to ask in order to have the

same knowledge about a certain thing as A has.

PROGRAMMING CONCEPTS: Information, information content, entropy

NUMBER GUESSING GAME

You can enact such a guessing game in your classroom (or just in your head) as follows: Your

classmate Judith is sent out of the room. One of the remaining W = 16 classmates receives a

"desired" object, such as a bar of chocolate. After Judith is called back into the classroom, you

and your classmates know who has the chocolate, but Judith does not. How big is her lack of

information?

For the sake of simplicity, the classmates are numbered from 0 to 15 and Judith can now ask

everyone questions in order to find out the secret number of the classmate with the chocolate.

The less questions she asks, the better. One possibility would be for her to ask any random

number: "Is it 13?". If the answer is No, she asks a different number.

Judith could also proceed systematically and ask starting

from 0: "Is it 0?", then "Is it 1?", etc. In your computer

simulation, you determine how many questions she

needs to ask on average (i.e. if the game is played

many times) with this type of questions, in order to

finally find out the secret number. Think about the

following:

If the secret number is 0, then 1 question is needed to find the answer; if the secret number is

1, 2 questions are needed, etc. If the secret number is 14, then 15 questions are needed, but

when the secret number is 15, again only 15 questions are needed since it is the last possible

option. The program plays the game 100,000 times and counts the number of questions it takes

in each case until the secret number is determined. Those numbers are added up to finally

determine the average.

import random

sum = 0
z = 100000
repeat z:
 n = random.randint(0, 15)
 if n != 15:

Page 419

 q = n + 1 # number of questions
 else:
 q = 15
 sum += q
print "Mean:", sum / z

Highlight program code (Ctrl+C copy, Ctrl+V paste)

With this strategy, Judith would need to ask an average of 8.43 questions. That is quite a lot.

But since Judith is clever, she decides to use a much better strategy. She asks them: "Is it a

number between 0 and 7?" (limits included). If the answer is Yes, she divides the area into two

equal parts again and asks: "Is the number between 0 and 3?". If the answer is again Yes, she

asks "Is it 0 or 1?" and if the answer is Yes she asks: "Is it 0?". No matter what the response,

she now knows the number. With this "binary" (questioning) strategy and when W = 16, Judith

always has to ask exactly 4 questions and therefore 4 is the average number of questions asked.

This shows us that the binary (questioning) strategy is optimal and the information about the

owner of the chocolate bar has thus the value I = 4 bit.

MEMO

As you can easily find out, with W = 32 numbers the information amounts to I = 5 bit, and

with W = 64 numbers I = 6 bit. So apparently we get 2I = W or I = ld(W). It also does not

need to be a number that one is searching for, but rather it can consist of any one state that

has to be found out from W (equally probable) number of states.

So the information at the knowledge of a state from W equally probable states is

 I = ld(W) (ld is the logarithm dualis, logarithm with base 2)

INFORMATION CONTENT OF A WORD

Since the W states are equally likely, the probability of the states is p = 1/W. You can also write

the information as follows:

 I = ld(1/p) = -ld(p)

You certainly know that the probabilities of certain letters in a spoken language differ greatly.

The following table shows the probabilities for the English language [more...].

A 8.34% I 6.71% Q 0.09% Y 2.04%

B 1.54% J 0.23% R 5.68% Z 0.96%

C 2.73% K 0.87% S 6.11%

D 4.14% L 4.24% T 9.37%

E 12.60% M 2.53% U 2.85%

F 2.03% N 6.80% V 1.06%

G 1.92% O 7.70% W 2.34%

H 6.11% P 1.66% X 0.20%

It is certainly not the case that the probability of a letter in a word is independent of the letters

of the words you already know and the context in which the word appears. However, if we make

this simple assumption, then the probability p of a 2-letter combination with the individual

probabilities p1 and p2 is, according to the product rule, p = p1 * p2 and for the information:

I = -ld(p) = -ld(p1*p2) = -ld(p1) - ld(p2)

or for arbitrarily many letters:

I = - ld(p1) - ld(p2) - ld(p3) - ... - ld(pn) = - Σ ld(pi)

Page 420

In your program, you can enter a word and you will get the information content of the word as

an output. For this you should download the files with the letter frequencies in German, English,

and French from here and copy them to the directory where your Python program is.

import math

f = open("letterfreq_de.txt")
s = "{"
for line in f:
 line = line[:-1] # remove trailing \n
 s += line + ", "
f.close()
s = s[:-2] # remove trailing ,
s += "}"
occurance = eval(s)

while True:
 word = inputString("Enter a word")
 I = 0
 for letter in word.upper():
 p = occurance[letter] / 100
 I -= math.log(p, 2)
 print word, "-> I =", round(I, 2), "bit"

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The data are saved in the text file line by line in the format 'letter' : percentage. In Python, a

dictionary is well suited as a data structure for this. In order to convert the data information to

a dictionary, the lines are read and packed into a string in standard dictionary format {key :

value, key : value,...}. This string is interpreted as a line of code with eval() and a dictionary

is created.

As you can find out with your program, the information content of words with rare letters is

greater. However, the information content determined this way has nothing to do with the

importance or personal relevance of a certain word in a certain context, or in other words

whether the information connected to the word is trivial for you or of crucial importance. It is

far beyond the capabilities of today's information systems to determine a measure for this.

EXERCISES

1. When playing a guessing game with 16 classmates, the clever classmate could also ask

something else by saying that you should imagine the secret number of the person with the

chocolate as a binary number with 4 digits. Write out how you would ask this.

2. Use the list of English words from the file words-1$.txt and determine the word with the

smallest and largest information content from words that have a length of 5. Comment on

your findings. Download the word lists from here.

3*. Determine the average number of questions it takes in the guessing of the number, in a

situation where the numbers go from 0 to 15 and you use the questioning strategy "Is it 0, is

it 1, etc." from a theoretical consideration..

Page 421

ADDITIONAL MATERIAL

THE RELATIONSHIP BETWEEN DISORDER AND ENTROPY

There is an extremely interesting relationship between the information that we have about a

system and the order of the system. For example, the order is certainly much greater when all

students in a classroom are sitting at their desks, than when they are all moving around

randomly in the room. In the disordered state, our lack of information of where each individual

person is located is very high, thus we can use this lack of information as a measure of disorder.

For this, one defines the concept of entropy:

Entropy (in bits) is the lack of information I which we possess

when describing the system macroscopically, in relation to

someone who knows the microscopic state. For the entropy in

(J/K) we set S = k * ln2 * I

The factor k is the Bolzmann constant. Entropy and the lack of

information are thus the same except for one pre-factor. If we

assume a system with W equally probable states, we have:

S = k * ln2 * ldW or S = k * log W

This fundamental relationship comes from famous physicist

Ludwig Boltzmann (1844-1900) and it is written on his

gravestone.

As you can determine, systems left to their own resources have the tendency to move from an

ordered to a disordered state. For example:

Passengers in a train spread out over the entire car

Cigarette smoke spreads in a room

A blot of ink disperses in a water glass

The temperature between the coffee and the cup evens out over time

Since the disordered state has a higher

entropy than the ordered state, one can

formulate this as a law of nature (2nd law

of thermodynamics):

In a closed system, the entropy either

increases or remains the same, but it

never decreases.

You simulate a particle system with your

program where the particles act as gas

atoms and collide with each other while

exchanging their direction and kinetic

energy. All of the particles should first be

located in the left part of the container,

where they can escape through a hole in

the divider. What happens?

The module gamegrid is used for the animation. The particles are modeled in the class Particle

that is derived from the class Actor. You can move the particles using the method act(), which is

automatically called in each simulation cycle. The collisions are handled with collision events. For

this, derive the class CollisionListener from GGActorCollisionListener and override the method

collide(). This procedure is the same as what you saw in chapter 8.10 on Brownian Movement.

The 20 particles are then divided into 4 different velocity groups. Since the velocities are

Page 422

switched between particles that collide, the total energy of the system remains constant, i.e. the

system is closed.

from gamegrid import *
from gpanel import *
import math
import random

=================== class Particle ====================
class Particle(Actor):
 def __init__(self):
 Actor.__init__(self, "sprites/ball_0.gif")

 # Called when actor is added to gamegrid
 def reset(self):
 self.isLeft = True

 def advance(self, distance):
 pt = self.gameGrid.toPoint(self.getNextMoveLocation())
 dir = self.getDirection()
 # Left/right wall
 if pt.x < 0 or pt.x > w:
 self.setDirection(180 - dir)
 # Top/bottom wall
 if pt.y < 0 or pt.y > h:
 self.setDirection(360 - dir)
 # Separation
 if (pt.y < h // 2 - r or pt.y > h // 2 + r) and \
 pt.x > self.gameGrid.getPgWidth() // 2 - 2 and \
 pt.x < self.gameGrid.getPgWidth() // 2 + 2:
 self.setDirection(180 - dir)

 self.move(distance)
 if self.getX() < w // 2:
 self.isLeft = True
 else:
 self.isLeft = False

 def act(self):
 self.advance(3)

 def atLeft(self):
 return self.isLeft

=================== class CollisionListener =========
class CollisionListener(GGActorCollisionListener):
 # Collision callback: just exchange direction and speed
 def collide(self, a, b):
 dir1 = a.getDirection()
 dir2 = b.getDirection()
 sd1 = a.getSlowDown()
 sd2 = b.getSlowDown()
 a.setDirection(dir2)
 a.setSlowDown(sd2)
 b.setDirection(dir1)
 b.setSlowDown(sd1)
 return 5 # Wait a moment until collision is rearmed

=================== Global sections =================
def drawSeparation():
 getBg().setLineWidth(3)
 getBg().drawLine(w // 2, 0, w // 2, h // 2 - r)
 getBg().drawLine(w // 2, h, w // 2, h // 2 + r)

def init():
 collisionListener = CollisionListener()
 for i in range(nbParticles):

Page 423

 particles[i] = Particle()

 # Put them at random locations, but apart of each other
 ok = False
 while not ok:
 ok = True
 loc = getRandomLocation()
 if loc.x > w / 2 - 20:
 ok = False
 continue

 for k in range(i):
 dx = particles[k].getLocation().x - loc.x
 dy = particles[k].getLocation().y - loc.y
 if dx * dx + dy * dy < 300:
 ok = False
 addActor(particles[i], loc, getRandomDirection())
 delay(100)

 # Select collision area
 particles[i].setCollisionCircle(Point(0, 0), 8)
 # Select collision listener
 particles[i].addActorCollisionListener(collisionListener)

 # Set speed in groups of 5
 if i < 5:
 particles[i].setSlowDown(2)
 elif i < 10:
 particles[i].setSlowDown(3)
 elif i < 15:
 particles[i].setSlowDown(4)

 # Define collision partners
 for i in range(nbParticles):
 for k in range(i + 1, nbParticles):
 particles[i].addCollisionActor(particles[k])

def binomial(n, k):
 if k < 0 or k > n:
 return 0
 if k == 0 or k == n:
 return 1
 k = min(k, n - k) # take advantage of symmetry
 c = 1
 for i in range(k):
 c = c * (n - i) / (i + 1)
 return c

r = 50 # Radius of hole
w = 400
h = 400
nbParticles = 20
particles = [0] * nbParticles
makeGPanel(Size(600, 300))
window(-6, 66, -2, 22)
title("Entropy")
windowPosition(600, 20)
drawGrid(0, 60, 0, 20)
makeGameGrid(w, h, 1, False)
setSimulationPeriod(10)
addStatusBar(20)
drawSeparation()
setTitle("Entropy")
show()
init()
doRun()

t = 0
while not isDisposed():

Page 424

 nbLeft = 0
 for particle in particles:
 if particle.atLeft():
 nbLeft += 1
 entropy = round(math.log(binomial(nbParticles, nbLeft), 2), 1)
 setStatusText("(Left,Right) = (" + str(nbLeft) +
 "," + str(nbParticles - nbLeft) + ")" +
 " Entropie = " + str(entropy) + " bit")
 if t % 60 == 0:
 clear()
 lineWidth(1)
 drawGrid(0, 60, 0, 20)
 lineWidth(3)
 move(0, entropy)
 else:
 draw(t % 60, entropy)
 t += 1
 delay(1000)
dispose() # GPanel

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

When seen from the outside (macroscopically), a state is determined by the number k of

particles in the right part, and thus N - k in the left part. A macroscopic observation lacks the

precise knowledge, which k of the N numbered particles are on the right. According to

combinatorics there are

such possibilities. The lack of information is therefore

and the entropy

The temporal process is plotted in a GPanel graphic. You can clearly see that the particles

distribute themselves throughout the entire container over time, but there is also a chance

that all particles end up again in the left half. The probability of this decreases rapidly with an

increasing number of particles. The 2nd law thus relies on a statistical property of multiple-

particle systems.

Since the reverse process is not observed, these processes are called irreversible. However,

there are indeed processes that passed from disorder to order. For this, they need an

"ordering constraint" [more...].

Some examples are:

The matter of the cosmos forms galaxies, stars, and planetary systems

Life emerges from non-living matter

With sufficient enforcement the disorder in kitchens, or classrooms, diminishes

Clouds (liquid) and ice (solid) emerge from the cooling of water vapor (gas). Thus,

phase transitions change the order

Concert-goers flock back to their seats after the break

These processes decrease the disorder, and therefore the entropy, so that structures gradually

become visible from chaos.

Page 425

EXERCISES

1. Modify the gas simulation so that after 50 seconds a “demon” makes sure that the particles

only fly from right to left through the gap, but not from left to right. Show that entropy now

decreases.

2. Find other examples of systems that:

a. switch from order to disorder

b. switch from disorder to order. State the ordering constraint.

Page 426

 Learning Objectives

 You expand your knowledge of algorithms and their implementation in Python.

 You know in which contexts programming errors are particularly often made.

 You know important procedures for troubleshooting (debugging).

You know what parallel processing means and you can write simple programs with their own

threads.

 You can describe what is meant by race conditions and deadlock.

Page 427

11.1 FUN MIND GAMES

INTRODUCTION

Mind games with mathematical backgrounds are very popular and wide-spread. The goal of this

chapter is not to spoil your pleasure of solving such puzzles "by hand" using paper and pen.

Much rather, you should experience that the computer can find the solution by solving

systematically using backtracking, however, with two significant differences. On the one hand, if

no other limitations and strategies are incorporated into the solution process, the solution can

take an enormous amount of time, even on a fast computer. On the other hand, the computer

can basically find all solutions which may be very difficult to do by hand. This makes it possible

to use the computer to provide evidence that a certain solution is the simplest (shortest).

SUDOKU

The game Sudoku has boomed and spread ever since 1980, and today it is very popular. You

can find them in the puzzle section of many different daily and weekly newspapers. They work

like a typical number puzzle with simple rules. In the standard version, the numbers 1 to 9 must

be placed in a 9x9 grid so that every number appears exactly once in each row and each

column. In addition, the grid is divided into 9 sub-grids with 3x3 cells where the numbers have

to occur exactly once. At the beginning of the game, a certain number of cells are already

occupied. With an ideal initial situation there should be only one solution.

Depending on the initial situation, the puzzle can be easier or more difficult to solve. An

experienced Sudoku player uses certain well-known or personal strategies to solve the game.

When backtracking with the computer, open cells are systematically one by one filled with

numbers from 1 to 9, so that there is no conflict with the rules of the game. If there is no

possibility anymore, the last turn is cancelled.

In the following, the computer uses this backtracking

algorithm. Using a GameGrid is ideal for the graphical

representation, since the game has a grid structure.

You draw the initial numbers in black as a TextActor,
and the inserted numbers in red.

As you know about backtracking from chapter 10.3.

you must first find a favorable data structure for the

game states. Since there is a 9x9 grid in this case, you

should choose a list of 9 row lists. The number 0

indicates an empty cell. Thus, the game shown here

begins with the following state:

startState = [\

[0, 6, 0, 7, 9, 8, 0, 1, 2],

[7, 9, 4, 1, 0, 5, 0, 6, 8],

[2, 0, 1, 4, 0, 0, 9, 5, 7],

[0, 0, 0, 2, 1, 0, 5, 0, 0],

[0, 5, 6, 3, 0, 0, 2, 4, 1],

[0, 1, 2, 5, 4, 0, 7, 3, 9],

[6, 3, 0, 8, 7, 4, 0, 0, 0],

[1, 0, 5, 6, 0, 2, 8, 0, 0],

[4, 2, 8, 9, 0, 1, 0, 7, 0]]

Page 428

As usual, you will develop the program step by step. Your first task is to display the game state

in the GameGrid and give the user the ability to assign the empty cells with a mouse click.

While this is unnecessary in the automatic search of the solution, it allows you to interactively

influence the game, which can be especially helpful in the testing phase. Also, this way you can

solve the puzzle on the screen instead of on a piece of paper.

from gamegrid import *

def pressEvent(e):
 loc = toLocationInGrid(e.getX(), e.getY())

if loc in fixedLocations:
 setStatusText("Location fixed")

return
 x = loc.x
 y = loc.y
 value = startState[y][x]
 value = (value + 1) % 10
 startState[y][x] = value
 showState(startState)

def showState(state):
 removeAllActors()

for y in range(9):
for x in range(9):

 loc = Location(x, y)
 value = state[y][x]

if value != 0:
if loc in fixedLocations:

 c = Color.black
else:

 c = Color.red
 digit = TextActor(str(value), c, Color.white,
 Font("Arial", Font.BOLD, 20))
 addActorNoRefresh(digit, loc)
 refresh()

makeGameGrid(9, 9, 50, Color.red, False, mousePressed = pressEvent)
show()
setTitle("Sudoku")
setBgColor(Color.white)
getBg().setLineWidth(3)
getBg().setPaintColor(Color.red)
for x in range(4):
 getBg().drawLine(150 * x, 0, 150 * x, 450)
for y in range(4):
 getBg().drawLine(0, 150 * y, 450, 150 * y)

startState = [
[0, 6, 0, 7, 9, 8, 0, 1, 2],
[7, 9, 4, 1, 0, 5, 0, 6, 8],
[2, 0, 1, 4, 0, 0, 9, 5, 7],
[0, 0, 0, 2, 1, 0, 5, 0, 0],
[0, 5, 6, 3, 0, 0, 2, 4, 1],
[0, 1, 2, 5, 4, 0, 7, 3, 9],
[6, 3, 0, 8, 7, 4, 0, 0, 0],
[1, 0, 5, 6, 0, 2, 8, 0, 0],
[4, 2, 8, 9, 0, 1, 0, 7, 0]]

fixedLocations = []
for x in range(9):

for y in range(9):
if startState[y][x] != 0:

 fixedLocations.append(Location(x, y))

showState(startState)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 429

The next step is to build a function isValid(state) that

checks if a given game state state complies with the

rules of the game. This is tedious work because you

have to check the 9 rows and 9 columns, as well as

the 9 square blocks. You can write out the result to

the status bar.

from gamegrid import *

def pressEvent(e):
 loc = toLocationInGrid(e.getX(), e.getY())

if loc in fixedLocations:
 setStatusText("Location fixed")

return
 xs = loc.x // 3
 ys = loc.y // 3
 x = loc.x % 3
 y = loc.y % 3
 value = startState[ys][xs][y][x]
 value = (value + 1) % 10
 startState[ys][xs][y][x] = value
 showState(startState)

if isValid(startState):
 setStatusText("State valid")

else:
 setStatusText("Invalid state")

def showState(state):
 removeAllActors()

for ys in range(3):
for xs in range(3):

for y in range(3):
for x in range(3):

 loc = Location(x + 3 * xs, y + 3 * ys)
 value = state[ys][xs][y][x]

if value != 0:
if loc in fixedLocations:

 c = Color.black
else:

 c = Color.red
 digit = TextActor(str(value), c, Color.white,
 Font("Arial", Font.BOLD, 20))
 addActorNoRefresh(digit, loc)
 refresh()

def isValid(state):
Check lines
for ys in range(3):

for y in range(3):
 line = []

for xs in range(3):
for x in range(3):

 value = state[ys][xs][y][x]
if value > 0 and value in line:

return False
else:

 line.append(value)
Page 430

 # Check rows
 for xs in range(3):
 for x in range(3):
 row = []
 for ys in range(3):
 for y in range(3):
 value = state[ys][xs][y][x]
 if value > 0 and value in row:
 return False
 else:
 row.append(value)

 # Check subgrids
 for ys in range(3):
 for xs in range(3):
 subgrid = state[ys][xs]
 square = []
 for y in range(3):
 for x in range(3):
 value = subgrid[y][x]
 if value > 0 and value in square:
 return False
 else:
 square.append(value)
 return True

makeGameGrid(9, 9, 50, Color.red, False, mousePressed = pressEvent)
show()
setTitle("Sudoku")
addStatusBar(30)
visited = []
setBgColor(Color.white)
getBg().setLineWidth(3)
getBg().setPaintColor(Color.red)
for x in range(4):
 getBg().drawLine(150 * x, 0, 150 * x, 450)
for y in range(4):
 getBg().drawLine(0, 150 * y, 450, 150 * y)

stateWiki = [[[[0, 3, 0], [0, 0, 0], [0, 0, 8]],
 [[0, 0, 0], [1, 9, 5], [0, 0, 0]],
 [[0, 0, 0], [0, 0, 0], [0, 6, 0]]],
 [[[8, 0, 0], [4, 0, 0], [0, 0, 0]],
 [[0, 6, 0], [8, 0, 0], [0, 2, 0]],
 [[0, 0, 0], [0, 0, 1], [0, 0, 0]]],
 [[[0, 6, 0], [0, 0, 0], [0, 0, 0]],
 [[0, 0, 0], [4, 1, 9], [0, 0, 0]],
 [[2, 8, 0], [0, 0, 5], [0, 7, 0]]]]
startState = stateWiki

fixedLocations = []
for xs in range(3):
 for ys in range(3):
 for x in range(3):
 for y in range(3):
 if startState[ys][xs][y][x] != 0:
 fixedLocations.append(Location(x + 3 * xs, y + 3 * ys))

showState(startState)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

For the backtracking, you have to determine the subsequent nodes of a state with the function

getNeighbours(state). For this, you choose an empty cell with getEmptyCell() and insert all

numbers in order which belong to a legal game state. At least one of them will be the correct

one.

In getNeighbours(state), you first copy the given list of states into a clone, since you are not

Page 431

allowed to overwrite the state received as a parameter. Then, you fill the empty cells

successively with the numbers 1 to 9 and add copies of the allowed states into the neighbor

list, which you then finally return [more...]

You can adopt the recursively defined function search(), which performs the actual

backtracking, almost without changing anything from other backtracking problems. In this

case, you are looking for just a single solution and you end the recursive call with the flag

found.

from gamegrid import *

def pressEvent(e):
 loc = toLocationInGrid(e.getX(), e.getY())
 if loc in fixedLocations:
 setStatusText("Location fixed")
 return
 x = loc.x
 y = loc.y
 value = startState[y][x]
 value = (value + 1) % 10
 startState[y][x] = value
 showState(startState)
 if isValid(startState):
 setStatusText("State valid")
 else:
 setStatusText("Invalid state")

def getBlockValues(state, x, y):
 return [state[y][x], state[y][x + 1], state[y][x + 2],
 state[y + 1][x], state[y + 1][x + 1], state[y + 1][x + 2],
 state[y + 2][x], state[y + 2][x + 1], state[y + 2][x + 2]]

def showState(state):
 removeAllActors()
 for y in range(9):
 for x in range(9):
 loc = Location(x, y)
 value = state[y][x]
 if value != 0:
 if loc in fixedLocations:
 c = Color.black
 else:
 c = Color.red
 digit = TextActor(str(value), c, Color.white,
 Font("Arial", Font.BOLD, 20))
 addActorNoRefresh(digit, loc)
 refresh()

def isValid(state):
 # Check lines

Page 432

 for y in range(9):
 values = []
 for x in range(9):
 value = state[y][x]
 if value > 0 and value in values:
 return False
 else:
 values.append(value)
 # Check rows
 for x in range(9):
 values = []
 for y in range(9):
 value = state[y][x]
 if value > 0 and value in values:
 return False
 else:
 values.append(value)

 # Check blocks
 for yblock in range(3):
 for xblock in range(3):
 values = []
 li = getBlockValues(state, 3 * xblock, 3 * yblock)
 for value in li:
 if value > 0 and value in values:
 return False
 else:
 values.append(value)
 return True

def getEmptyCell(state):
 emptyCells = []
 for y in range(9):
 for x in range(9):
 if state[y][x] == 0:
 return [x, y]
 return []

def cloneState(state):
 li = []
 for y in range(9):
 line = []
 for x in range(9):
 line.append(state[y][x])
 li.append(line)
 return li

def getNeighbours(state):
 clone = cloneState(state)
 cell = getEmptyCell(state)
 validStates = []
 for value in range(1, 10):
 clone[cell[1]][cell[0]] = value
 if isValid(clone):
 validStates.append(cloneState(clone))
 return validStates

def search(state):
 global found, solution
 if found:
 return
 visited.append(state) # state marked as visited

 # Check for solution
 if getEmptyCell(state) == []:
 solution = state
 found = True
 return

Page 433

 for neighbour in getNeighbours(state):
 if neighbour not in visited: # Check if already visited
 search(neighbour) # recursive call
 visited.pop()

makeGameGrid(9, 9, 50, Color.red, False, mousePressed = pressEvent)
show()
setTitle("Sudoku")
addStatusBar(30)
visited = []
setBgColor(Color.white)
getBg().setLineWidth(3)
getBg().setPaintColor(Color.red)
for x in range(4):
 getBg().drawLine(150 * x, 0, 150 * x, 450)
for y in range(4):
 getBg().drawLine(0, 150 * y, 450, 150 * y)

startState = [
[0, 6, 0, 7, 9, 8, 0, 1, 2],
[7, 9, 4, 1, 0, 5, 0, 6, 8],
[2, 0, 1, 4, 0, 0, 9, 5, 7],
[0, 0, 0, 2, 1, 0, 5, 0, 0],
[0, 5, 6, 3, 0, 0, 2, 4, 1],
[0, 1, 2, 5, 4, 0, 7, 3, 9],
[6, 3, 0, 8, 7, 4, 0, 0, 0],
[1, 0, 5, 6, 0, 2, 8, 0, 0],
[4, 2, 8, 9, 0, 1, 0, 7, 0]]

fixedLocations = []
for x in range(9):
 for y in range(9):
 if startState[y][x] != 0:
 fixedLocations.append(Location(x, y))

showState(startState)
setStatusText("Press any key to search solution.")
getKeyCodeWait(True)
setStatusText("Searching. Please wait...")
found = False
solution = None
search(startState)
if solution != None:
 showState(solution)
 setStatusText("Solution found")
else:
 setStatusText("No solution")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

You can also use Sudokus that you find on the Internet or in a puzzle section. If you have

enough patience, your program should always be able to find a solution.

You can greatly reduce the computation time if you include the solution strategies that you

would also use when solving by hand. It is up to you to improve the algorithm with such

heuristic processes.

The process that you use to solve the Sudoku can also be applied to Sudoku puzzles that have

non-square cells. For this, you only need to adjust the function getBlockValues() accordingly.

Page 434

THE JEALOUS HUSBANDS

Already in 1613 the mathematician C. G. Bachet, Sieur

de Méziriac published a study entitled Problèmes
plaisants et détectables qui se font par les nombres, in

which he describes the puzzle Les vilains maris jaloux

described by the following in both French and English:

"Trois maris jaloux se trouvent le soir avec leurs

femmes au passage d'une rivière, et rencontrent un
bateau sans batelier; le bateau est si petit, qu'il ne
peut porter plus de deux personnes à la fois. On
demande comment ces six personnes passeront de tel

sorte qu'aucune femme ne demeure en la compagnie
d'un ou de deux hommes, si son mari n'est présent,
soit sur l'une des deux rives, soit sur le bateau." (Lit.
Édouard Lucas, L'arithmétique amusante" 1885, reprint

2006)

Claude Gaspard Bachet de Méziriac (1581-1638) (©
Wiki)

"Three jealous husbands find themselves with their wives at a river crossing in the evening where

they find a boat without a boatman. The boat is so small that it only fits two people. This poses
the question of how all six people can cross the river without ever putting one of the women in
the presence of one or two men without her own husband being present, on either side of the land
or in the boat."

You again solve this problem step by step. First you create the user interface (a GameGrid works

well for this) since the people can be easily represented by sprite images. Add the GameGrid
actors to an invisible 7x3 grid so that you can draw a river on the middle strip. Since it is only

really important if a person is to the left or the right of the river, a binary number is suitable as a

data structure where each bit belongs to a particular person. The bit value 0 means that the

person is on the left side of the river, and the value 1 means that they are on the right side. Use

the bit with the highest value for the boat.

In the simulation program there is a blue, a green, and a red couple that you related to the digits

of the binary number as follows:

b6 b5 b4 b3 b2 b1 b0

boat man_red female_red man_green female_green man_blue female_blue

b0 is the bit with the smallest value. If you interpret the state in the decimal system, all numbers

between 0 and 127 occur, i.e. there are 128 different states.

It is highly recommended that you take a small detour here so

that you can try the coding of the states in a test program.

The image jumps from one side of the river to the other when

you click on a person or on the boat. The state is written out

to the title bar in both its decimal and its binary notation.

You already build a test here with isStateAllowed(state) to check if the current situation is legal

according to the rules. (You could also first create a prototype without this test.)

from gamegrid import *

def pressEvent(e):
 global state
 loc = toLocationInGrid(e.getX(), e.getY())
 if loc in left_locations:
 actor = getOneActorAt(loc)

Page 435

 if actor != None:
 x = 6 - actor.getX()
 y = actor.getY()
 actor.setLocation(Location(x, y))
 if loc in right_locations:
 actor = getOneActorAt(loc)
 if actor != None:
 x = 6 - actor.getX()
 y = actor.getY()
 actor.setLocation(Location(x, y))
 state = 0
 for i in range(7):
 loc = right_locations[i]
 actor = getOneActorAt(loc)
 if actor != None:
 state += 2**(6 - i)
 showState(state)

def stateToString(state):
 return str(bin(state)[2:]).zfill(7)

def showState(state):
 sbin = stateToString(state)
 for i in range(7):
 if sbin[i] == "0":
 actors[i].setLocation(left_locations[i])
 else:
 actors[i].setLocation(right_locations[i])
 setTitle("State: " + str(state) + ", bin: " + stateToString(state))
 if isStateAllowed(state):
 setStatusText("Situation allowed")
 else:
 setStatusText("Situation not allowed")
 refresh()

def isStateAllowed(state):
 print state
 stateStr = stateToString(state)
 mred = stateStr[1] == "1"
 fred = stateStr[2] == "1"
 mgreen = stateStr[3] == "1"
 fgreen = stateStr[4] == "1"
 mblue = stateStr[5] == "1"
 fblue = stateStr[6] == "1"

 if mred and not fred or not mred and fred: # mred/fred not together
 if not fred and (not mgreen or not mblue) or fred and (mgreen or mblue):
 return False
 if mgreen and not fgreen or not mgreen and fgreen:#mgreen/fgreen not together
 if not fgreen and (not mred or not mblue) or fgreen and (mred or mblue):
 return False
 if mblue and not fblue or not mblue and fblue: # mblue/fblue not together
 if not fblue and (not mred or not mgreen) or fblue and (mred or mgreen):
 return False
 return True

makeGameGrid(7, 3, 50, None, False, mousePressed = pressEvent)
setBgColor(Color.white)
addStatusBar(30)
show()
actors = [Actor("sprites/boat.png"),
 Actor("sprites/man_0.png"), Actor("sprites/woman_0.png"),
 Actor("sprites/man_1.png"), Actor("sprites/woman_1.png"),
 Actor("sprites/man_2.png"), Actor("sprites/woman_2.png")]

left_locations = [Location(2, 0),
 Location(2, 1), Location(2, 2),
 Location(1, 1), Location(1, 2),
 Location(0, 1), Location(0, 2)]

Page 436

right_locations = [Location(4, 0),
 Location(4, 1), Location(4, 2),
 Location(5, 1), Location(5, 2),
 Location(6, 1), Location(6, 2)]

for i in range(7):
 addActorNoRefresh(actors[i], left_locations[i])
for i in range(3):
 getBg().fillCell(Location(3, i), Color.blue)
refresh()

startState = 0
showState(startState)

In the next step you implement the backtracking algorithm, as you know it from chapter 10.3.

Again, you first have to determine all possible successive states for a given state in

getNeighbours(state). You begin as follows: First you distinguish whether the boat is located on

the left side of the river (state < 64) or the right (state >=64). Then you determine all people

who are available to move across the river either as an individual or in a two person team from

the lists li_one and li_two. When using removeForbiddenTransfers() you also must consider that a

woman can never be in the boat with a man that is not her husband.

You implement the backtracking in its familiar form in search(). You copy the solutions into a list

named solutions, so that you can access them at the end of the search process to examine the

solutions. Thereby you first write out the number of found solutions and then select the shortest

one which can then be run through using key press.

from gamegrid import *
import itertools

def pressEvent(e):
 global state
 loc = toLocationInGrid(e.getX(), e.getY())
 if loc in left_locations:
 actor = getOneActorAt(loc)
 if actor != None:
 x = 6 - actor.getX()
 y = actor.getY()
 actor.setLocation(Location(x, y))
 if loc in right_locations:
 actor = getOneActorAt(loc)
 if actor != None:
 x = 6 - actor.getX()
 y = actor.getY()
 actor.setLocation(Location(x, y))
 state = 0
 for i in range(7):
 loc = right_locations[i]
 actor = getOneActorAt(loc)
 if actor != None:
 state += 2**(6 - i)
 setTitle("State: " + str(state) + ", bin: " + stateToString(state))
 if isStateAllowed(state):
 setStatusText("Situation allowed")
 else:
 setStatusText("Situation not allowed")
 refresh()

def stateToString(state):
 return str(bin(state)[2:]).zfill(7)

def showState(state):
 sbin = stateToString(state)
 for i in range(7):
 if sbin[i] == "0":
 actors[i].setLocation(left_locations[i])

Page 437

 else:
 actors[i].setLocation(right_locations[i])
 refresh()

def getTransferInfo(state1, state2):
 state1 = state1 & 63
 state2 = state2 & 63
 mod = state1 ^ state2
 passList = []
 for n in range(6):
 if mod % 2 == 1:
 if n // 2 == 0:
 couple = "blue"
 elif n // 2 == 1:
 couple = "green"
 elif n // 2 == 2:
 couple = "red"
 if n % 2 == 0:
 passList.append("f" + couple)
 else:
 passList.append("m" + couple)
 mod = mod // 2
 return passList

def getTransferSequence(solution):
 transferSequence = []
 oldState = solution[0]
 for state in solution[1:]:
 transferSequence.append(getTransferInfo(oldState, state))
 oldState = state
 return transferSequence

def isStateAllowed(state):
 stateStr = stateToString(state)
 mred = stateStr[1] == "1"
 fred = stateStr[2] == "1"
 mgreen = stateStr[3] == "1"
 fgreen = stateStr[4] == "1"
 mblue = stateStr[5] == "1"
 fblue = stateStr[6] == "1"

 if mred and not fred or not mred and fred: # mred/fred not together
 if not fred and (not mgreen or not mblue) or fred and (mgreen or mblue):
 return False
 if mgreen and not fgreen or not mgreen and fgreen:#mgreen/fgreen not together
 if not fgreen and (not mred or not mblue) or fgreen and (mred or mblue):
 return False
 if mblue and not fblue or not mblue and fblue: # mblue/fblue not together
 if not fblue and (not mred or not mgreen) or fblue and (mred or mgreen):
 return False
 return True

def removeForbiddenTransfers(li):
 forbiddenPairs = [(0, 3), (0, 5), (1, 2), (2, 5), (1, 4), (3, 4)]
 allowedPairs = []
 for pair in li:
 if pair not in forbiddenPairs:
 allowedPairs.append(pair)
 return allowedPairs

def getNeighbours(state):
 neighbours = []
 li_one = [] # one person in boat
 bin = stateToString(state)
 if state < 64: # boat at left
 for i in range(6):
 if bin[6 - i] == "0":
 li_one.append(i)
 li_two = list(itertools.combinations(li_one, 2)) #two persons in boat

Page 438

 li_two = removeForbiddenTransfers(li_two)
 else: # boat at right
 for i in range(6):
 if bin[6 - i] == "1":
 li_one.append(i)
 li_two = list(itertools.combinations(li_one, 2))
 li_two = removeForbiddenTransfers(li_two)

 li_values = []
 if state < 64: # boat at left, restrict to two persons transfer
 for li in li_two:
 li_values.append(2**li[0] + 2**li[1] + 64)
 else: # boat at right, one or two persons transfer
 for i in li_one:
 li_values.append(2**i + 64)
 for li in li_two:
 li_values.append(2**li[0] + 2**li[1] + 64)

 for value in li_values:
 v = state ^ value
 if isStateAllowed(v): # restrict to allowed states
 neighbours.append(v)
 return neighbours

def search(state):
 visited.append(state) # state marked as visited

 # Check for solution
 if state == targetState:
 solutions.append(visited[:])

 for neighbour in getNeighbours(state):
 if neighbour not in visited: # Check if already visited
 search(neighbour) # recursive call
 visited.pop()

nbSolution = 0
makeGameGrid(7, 3, 50, None, False, mousePressed = pressEvent)
addStatusBar(30)
setBgColor(Color.white)
setTitle("Searching...")
show()
visited = []
actors = [Actor("sprites/boat.png"),
 Actor("sprites/man_0.png"), Actor("sprites/woman_0.png"),
 Actor("sprites/man_1.png"), Actor("sprites/woman_1.png"),
 Actor("sprites/man_2.png"), Actor("sprites/woman_2.png")]

left_locations = [Location(2, 0),
 Location(2, 1), Location(2, 2),
 Location(1, 1), Location(1, 2),
 Location(0, 1), Location(0, 2)]
right_locations = [Location(4, 0),
 Location(4, 1), Location(4, 2),
 Location(5, 1), Location(5, 2),
 Location(6, 1), Location(6, 2)]

for i in range(7):
 addActorNoRefresh(actors[i], left_locations[i])
for i in range(3):
 getBg().fillCell(Location(3, i), Color.blue)
refresh()

startState = 0
targetState = 127
solutions = []
search(startState)

maxLength = 0

Page 439

maxSolution = None
minLength = 100
minSolution = None
for solution in solutions:
 if len(solution) > maxLength:
 maxLength = len(solution)
 maxSolution = solution
 if len(solution) < minLength:
 minLength = len(solution)
 minSolution = solution
setStatusText("#Solutions: " + str(len(solutions)) + ", Min Length: "
 + str(minLength) + ", Max Length: " + str(maxLength))

setTitle("Press key to cycle")
oldState = startState
for state in minSolution[1:]:
 getKeyCodeWait(True)
 showState(state)
 info = getTransferInfo(oldState, state)
 setTitle("#Transferred: " + str(info))
 oldState = state
setTitle("Done. #Boat Transfers: " + str((len(minSolution) - 1)))

MEMO

Puzzles of this type have the feature that you do not know whether they have exactly one or

multiple solutions from the start. It turns out that it is much easier for us humans to find a

solution, than it is to prove that there is no solution. For the computer which systematically

searches for all solutions with an exhaustive search, the search for all solutions is generally

not a problem except that it can take a long time. This is unfortunately already the case with

relatively simple games, due to combinatorial explosion, so we again bump into the limits of

using the computer. It is interesting that Bachet had already published the solution with

minimum amount of 11 crossings, which is also what your computer program finds. He argued

so skillfully crossing by crossing that the strategy of solving the puzzle appears to be evident.

However, whether he found the solution first by “trial and error”, and only later wrote the

arguments for it, remains undecided.

EXERCISES

1. Find a solution for the following X-Sudoku, in

which the 9 numbers can also only appear once

on either of the two main diagonals.

2. Show that there is no solution to the problem of "The Jealous Husbands" if only a single

person is allowed to cross the river from right to left at a time.

Page 440

11.2 PITFALLS, RULES & TRICKS

INTRODUCTION

As in any programming language, there are also some pitfalls in Python that even experienced

programmers have to deal with sometimes. You can deal with them too if you know them as a

potential source of danger.

THE VARIABLE MEMORY MODEL OF PYTHON

In chapter 2.6the concept of variables was introduced by a visual representation, the so-called

box metaphor. A variable declaration, for instance a = 100, was considered to be a reservation

of space in computer memory to hold the number 100, simular to creating a drawer or a box

and putting the number 100 inside. Similar to mathematics, the letter a stands for a variable

identifier (name or place holder). However this simple idea is not entirely correct in Python,

since all data, including numbers, are regarded as objects and an object does not only have a

value, but also define "behavior" using functions (or methods). As an example number objects

"knows" how to add values.

The following lines demonstrate this concept:

a = 100

a: 100

a.__add__

built-in method __add__ of int object at 0x2>

Sometimes we say that 2 is the address of the object, in Python called id (identifier).

id(a)

2

In Python, by assigning a value to a variable, you create a name a that points to (or refers) to

an int object, that is stored at memory address 0x2. Therefore a is also called an "alias" (or on

other programming languages a reference or pointer). This situation can be represented

symbolically:

The difference to the box metaphor becomes clearly visible in the following assignment:

b = a

b: 100

Actually this statement does not create a second box and put the number 100 inside, but simply

creates a second alias b that refers to the same object that holds 100, as shown here:

is(b)

2

The situation looks like this:

Page 441

The awareness of this concept becomes most important when the data is not a simply number,

but a structured data type (like a list) as shown in the following example.

First you define a list a with a simple content. Then you create a second list b by assigning b to

a:

a = [1, 2, 3]

a: [1, 2, 3]

b = a

b: [1, 2, 3]

As you suspect correctly the situation can be represented as follows

If you modify now the list using the alias b

b.append(4)

b

[1, 2, 3, 4]

it's like

Therefore you also changed the list referenced by a (it is the same)!

a

a: [1, 2, 3, 4]

This mutual dependency of the two variables a and b causes many subtle programming errors.

But there is no danger if you define a completely new variable b because now you create a new

object and the two objects a and b are completely independent.

a = [1, 2, 3]

a: [1, 2, 3]

b = a

b = [1, 2, 3]

b: [1, 2, 3]

or symbolically:

Now if you modify the list b:

Page 442

b.append(4)

the list a remains unchanged as you can easily check:

b

b: [1, 2, 3, 4]

a

a: [1, 2, 3]

For simple data types like numbers, this mutual dependency does not harm because if you

modify a number, a new number is automatically created. Indeed after the new assignment of

 b, a new object is created in memory. The alias that referred to value 100 after the second line

b = a now refers to a new object 200 after the third line.

a = 100

a: 100

b = a

b: 100

b = 200

b: 200

a

100

The following example demonstrates once again that the assignment of list variable is

dangerous since the content of the list is not copied into the new list.

myGarden = ["Rose", "Lotus"]

yourGarden = myGarden

yourGarden[0] = "Hibiskus"

myGarden

["Hibiskus", "Lotus"]

yourGarden

["Hibiskus", "Lotus"]

Rule 1a:

The copy operation using the equal sign is unproblematic for numbers, strings,

bytes, and tuples. For other data types, it is usually wrong.

If you want to create an independent copy (also called a clone) for mutable data types, for

example of lists, you have to either copy the elements explicitly into a new variable with your

own code, or you can use the function deepcopy() from the module copy:

import copy

myGarden = ["Rose", "Lotus"]

yourGarden = copy.deepcopy(myGarden)

yourGarden[0] = "Hibiskus"

myGarden

["Rose", "Lotus"]

yourGarden

["Hibiskus", "Lotus"]

As a consequence we formulate the following rule:

Page 443

Rule 1b:

The copy operation using the equal sign is is usually wrong, except when the data is

immutual (see below).

Rule 1 is often ignored in the context of parameter passing. Each time you pass a function a

mutable data type, the function can change the values without any problems.

def show(garden)

 print "garden:", garden

 garden[0] = "Hibiskus"

myGarden = ["Rose", "Lotus"]

show(myGarden)

myGarden

["Hibiskus", "Lotus"]

After calling show(), the values of the passed parameters changed! Just like in medicine, it is

usually an unexpected and unwanted adverse effect or side effect.

Rule 2:

In good programming style, you should not change the parameters passed into a

function to avoid side effects.

PACKING & UMPACKING

At first glance, tuples do not seem to differ significantly from lists. As a matter of fact, tuples

are basically immutable lists and thus all list operations that do not change the list, are also

applicable to tuples. However, there are special notations techniques with tuples using commas.

Round parentheses can be omitted in the generation of tuples:

t = 1, 2, 3

t

(1, 2, 3)

In this case, the comma is used as a syntax character to separate the elements from each

other. This is called automatic packing. You can smartly make use of this to return multiple

function values as tuples:

import math

def sqrt(x):

 y = math.sqrt(x)

 return y, -y

sqrt(4)

(2,0, -2,0)

You can also use the comma operator on the left side when defining variables in case a tuple is

placed after the equal sign. In this case, one speaks of automatic unpacking:

import math

def sqrt(x):

 y = math.sqrt(x)

 return y, -y

y1, y2 = sqrt(2)

y1

1.41421356237330951

y2

-1.41421356237330951

Packing is convenient for defining multiple variables simultaneously:

Page 444

a, b, c = 1, 2, 3

a

1

b

2

c

3

In the following, the three numbers are packed on the right side and unpacked again on the left

side:

t = 1, 2, 3

a, b, c = t

a

1

b

2

c

3

By the way, unpacking also works with lists:

li = [1, 2, 3]

a, b, c = li

a

1

b

2

c

3

Using this syntax, two numbers can be permuted in an elegant way without requiring an

auxiliary variable:

li = [1, 2, 3]

a, b = b, a

a

2

b

1

MUTUAL AND IMMUTUAL DATA TYPES

To improve data security by undesirable side effects, Python relies on the concept of alterable

(mutable) and non-alterable (immutable) data types. The latter include the numbers, strings

(str), and byte tuple. For example changing a letter in a string causes an error message:

s = "abject"

s: "abject"

s[0] = "o"

TypeError:can't assign to immutable object

To modify s, you need to redefine the whole string:

s = "abject"

s: "abject"

s = "object"

s: "object"

Page 445

Now a new string object is created and the reference to the old is lost (the memory space is

freed by an internal garbage colllector).

TWO-DIMENSIONAL LISTS, MATRICES

Matrices are constructed as arrays in many programming languages. The rows of the matrix are

arrays and the matrix itself is an array of these row arrays. It is straightforward to use lists

instead of arrays in Python. However, you have to pay close attention since lists do not behave

like elementary data types (immutable), but rather like reference types. You already get into a

known pitfall during the creation of the matrix. Without knowing it, you generate a 3x3 matrix

with zeros in the Python console.

A = [[0] * 3] * 3

A

[[0, 0, 0],

 [0, 0, 0],

 [0, 0, 0]]

You now change the last value of the first row using an allocation. You are probably surprised to

notice that all other rows change too.

A[0][2] = 1

A

[[0, 0, 1],

 [0, 0, 1],

 [0, 0, 1]]

What happened there? Thinking about it a little will start you off. Generating A could have also

been done in two steps:

z = [0] * 3

A = [z] * 3

A

[[0, 0, 0],

 [0, 0, 0],

 [0, 0, 0]]

First, a list z is generated with three zeros. Then a list A is made with three times the same line

reference. All refer to the same list! If you change one of them, the others will also be affected.

Rule 3:

Never use the list multiplication sign for nested lists.

To get around the pitfalls, you can use list comprehension. As you can test out, the matrix now

behaves properly:

A = [[0 for x in range(3)] for y in range(3)]

A

[[0, 0, 0],

 [0, 0, 0],

 [0, 0, 0]]

A[0][2] = 1

A

[[0, 0, 1],

 [0, 0, 0],

 [0, 0, 0]]

Page 446

11.3 BUGS & DEBUGGING

INTRODUCTION

There is no absolute perfection. You can assume that practically every software has its faults.

Instead of calling these mistakes, in programming we call them bugs. These manifest

themselves when, for example, the program produces incorrect results under certain

circumstances or when it even crashes. Troubleshooting, called debugging, is therefore almost

as important as writing code. It is understood, of course, that anyone who writes code should do

their best to avoid bugs. Knowing that bugs are everywhere, you should be careful and program

defensively. If you are not sure if an algorithm or a piece of the code is correct, it is better if

you engage with it especially intensely instead of rushing through it as quickly as possible or

putting it off for later. Nowadays there is a lot of software whose main function is dealing with

large sums of money or even human lives that are at stake. As a programmer of such mission

critical software, you need to be absolutely sure and take the responsibility that every line of

code works correctly. Quick hacks and the principle of trial and error are not appropriate there.

The crucial objective of developing algorithms and large software systems is to produce

programs that are as error-free as possible. There are many approaches for this: You could try

to prove the correctness of programs in a mathematically precise manner without using the

computer, although this can only be done with short programs. Another possibility that exists is

to limit the syntax of the programming language so that the programmer can definitely not

make certain mistakes. The most important example is the elimination of pointer variables

(pointers) that may refer to undefined or wrong objects when not used properly. This is why

there are programming languages with many restrictions of this kind, and others that give the

programmer a considerable amount of freedom and which are therefore less secure. Python

belongs to the class of more liberal programming languages and is based on the motto:

"We are all adults and decide for ourselves what we do and what we shouldn't."

or "After all, we are all consenting adults here".

An important principle for creating software as error-free as possible is Design by Contract

(DbC). It goes back to Bertrand Meyer at ETH Zürich, the father of the programming language

Eiffel. Meyer views software as an agreement between the programmer A and the user B,

where B could again be a programmer who uses the modules and libraries designed by A. In a

contract, A determines under which conditions (preconditions) its modules will provide the

correct results and then describes it exactly (postconditions). In other words: User B complies

with the preconditions so that they have the guarantee from A that they will receive a result in

accordance with the postconditions. B does not need to know the implementation of the modules

and A can change this at any time without affecting B.

ASSERTIONS

Since A, the producer of the module, certainly does not really trust the user B, A incorporates

tests into their software, which check the required preconditions. These are called assertions.

If the assertions are not observed, the program usually terminates with an error message. (It is

also conceivable that the error is only caught without the program terminating.) In this case,

the following principle of software development comes into play:

Forcing a program termination with a clear description of the possible cause (an error

message) is better than an incorrect result.

Page 447

As programmer A, you write a function

sinc(x) (sinus cardinalis) in your example,

which plays an important role in signal

processing. It reads as follows:

As user B, you want to graphically

represent the function values in the range

from x = -20 to x = 20.

from gpanel import *

from math import pi, sin

def sinc(x):

 y = sin(x) / x

return y

makeGPanel(-24, 24, -1.2, 1.2)

drawGrid(-20, 20, -1.0, 1, "darkgray")

title("Sinus Cardinalis: y = sin(x) / x")

x = -20

dx = 0.1

while x <= 20:

 y = sinc(x)

if x == -20:

 move(x, y)

else:

 draw(x, y)

 x += dx

Highlight program code (Ctrl+C copy, Ctrl+V paste)

At first glance there do not seem to be any problems, but then if you (as the user B) change the

increment of x to 1, there is a bad crash.

A way to solve the problem is for A to require the precondition that x is not 0, and output an

assertion that describes the error.

from gpanel import *

from math import pi, sin

def sinc(x):

if x == 0:

return 1.0

 y = sin(x) / x

return y

makeGPanel(-24, 24, -1.2, 1.2)

Page 448

drawGrid(-20, 20, -1.0, 1, "darkgray")

title("Sinus Cardinalis: y = sin(x) / x")

x = -20

dx = 1

while x <= 20:

 y = sinc(x)

if x == -20:

 move(x, y)

else:

 draw(x, y)

 x += dx

Highlight program code (Ctrl+C copy, Ctrl+V paste)

The error message is now much better, since it says exactly where the error occurs.

It would be even better if A wrote the function so that the limit value 1 of the function is returned

when x = 0.

from gpanel import *

from math import pi, sin

def sinc(x):

if x == 0:

return 1.0

 y = sin(x) / x

return y

makeGPanel(-24, 24, -1.2, 1.2)

drawGrid(-20, 20, -1.0, 1, "darkgray")

title("Sinus Cardinalis: y = sin(x) / x")

x = -20

dx = 1

while x <= 20:

 y = sinc(x)

if x == -20:

 move(x, y)

else:

 draw(x, y)

 x += dx

Highlight program code (Ctrl+C copy, Ctrl+V paste)

This code, however, contradicts the basic rule that equality tests with floats are dangerous due

to possible rounding errors. Even better would be to test it with an epsilon boundary:

def sinc(x):

 epsilon = 1e-100

if abs(x) < epsilon:

return 1.0

Your function sinc(x) is still not secure, however, since another precondition should be that x is

a number. If you, for instance, call sinc(x) with the value x = "python", it results again in a

nasty runtime error.

Page 449

from math import sin

def sinc(x):

 y = sin(x) / x

return y

print sinc("python")

This shows the advantage of programming languages with variable declarations, as this error

would be already discovered as a syntax error before the execution of the program.

WRITING OUT DEBUGGING INFORMATION

Successful programmers are known for their ability to eliminate errors quickly [more...]. Since

we all learn from our mistakes, consider the following program that should exchange the values

of two variables. There is a bug, because it outputs 2,2.

def exchange(x, y):

 y = x

 x = y

return x, y

a = 2

b = 3

a, b = exchange(a, b)

print a, b

A well-known and simple strategy for finding bugs is to write out the current values of certain

variables to the console:

def exchange(x, y):

print "exchange() with params", x, y

 y = x

 x = y

print "exchange() returning", x, y

return x, y

a = 2

b = 3

a, b = exchange(a, b)

print a, b

Hence, it becomes obvious where the error occurred and how you can easily fix it.

def exchange(x, y):

print "exchange() with params", x, y

 temp = y

 y = x

 x = temp

print "exchange() returning", x, y

return x, y

Page 450

a = 2

b = 3

a, b = exchange(a, b)

print a, b

Now that the error is fixed, the additional debug lines in the code are unnecessary. Instead of

deleting them, you can simply comment them out using the # symbol since you might need

them again later.

def exchange(x, y):

print "exchange() with params", x, y

 temp = y

 y = x

 x = temp

print "exchange() returning", x, y

return x, y

a = 2

b = 3

a, b = exchange(a, b)

print a, b

It is smart to use debug flags with which you can activate or deactivate debugging information

in different places.

def exchange(x, y):

if debug: print "exchange() with params", x, y

 temp = y

 y = x

 x = temp

if debug: print "exchange() returning", x, y

return x, y

debug = False

a = 2

b = 3

a, b = exchange(a, b)

print a, b

In Python, as you probably already know, you can swap variable values in an elegant way

without using an auxiliary variable. For this, you can use the automatic packing/unpacking of

tuples.

def exchange(x, y):

 x, y = y, x

return x, y

a = 2

b = 3

a, b = exchange(a, b)

print a, b

USING THE DEBUGGER

Debuggers are important tools for developing large program systems. You can run a program

slowly with them, and even run it step by step. So to speak, the enormous execution speed of

the computer is adjusted to the limited human cognitive ability. A confortable debugger is

ncluded in TigerJython which can help you to better understand the program sequence in a

correct program. You are now going to analyze the above defective program with the debugger.

After you have taken it to the editor, click on the debugger button.

Page 451

You can run the program step by step with the single step button and observe the

variables in the debugger window. After clicking 8 times you see that both variables x

and y have the value 2 before returning from the function exchange()..

If you now run the program with the fixed bug, you can observe how the variables are assigned

to one another in exchange(), which finally leads to the correct results. The short life span of

the local variables x and y are clearly visible, as opposed to the global variables a and b.

You can also set breakpoints in the program so that you do not have to run through tedious

non-critical parts of the program in the single step mode. To do this, click on the far left of the

line number column. A flag icon appears which marks the breakpoint. When you press the Run

Page 452

button, the program runs up to this point and then stops.

This gives you the chance to inspect the current state of the variables. By clicking on the Run

button again you can continue to run through the program, or you can investigate it gradually

with the single step button.

You can also set multiple breakpoints. In order to delete a breakpoint, simply click on the flag

icon.

Page 453

CATCHING ERRORS WITH EXCEPTIONS

The method of using exceptions to catch errors is classic. To do this, you put the critical

program code in a try block. If the error occurs, the block is abandoned and the program

continues to run in the except block, where you can react to the error in an appropriate way. In

the worst case, you can stop the program execution by calling sys.exit().

You can, for example, catch the error if the parameter in sinc(x) is not of a numeric data type.

from sys import exit

from math import sin

def sinc(x):

try:

if x == 0:

return 1.0

 y = sin(x) / x

except TypeError:

print "Error in sinc(x). x =", x, "is not a number"

 exit()

return y

print sinc("python")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

The postcondition for sinc(x) could also mean that the returned value is None if the parameter

has an incorrect type. It is then up to the user to deal with this error accordingly.

from math import sin

def sinc(x):

try:

if x == 0:

return 1.0

 y = sin(x) / x

except TypeError:

return None

return y

y = sinc("python")

if y == None:

print "Illegal call"

else:

print y

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 454

11.4 PARALLEL PROCESSING

INTRODUCTION

According to the von Neumann model, one can imagine a computer as a sequential machine

that, based on a program, executes statement by statement in time intervals. In this model

there are no simultaneous actions, so no parallel processing and no concurrency. In daily life

however, parallel processes are omnipresent: Every living being exists as an independent

individual and many processes run simultaneously in the human body.

The advantages of parallel processing are evident: It brings on a huge performance boost,

since tasks are solved in equal time slices. Moreover, the redundancy and the odds of survival

increase because the failure of a particular component does not automatically lead to the

failure of the entire system.

However, parallelizing algorithms is a challenging task, which despite great efforts is still in its

infancy. The problem is mainly the fact that the sub-processes usually use shared resources

and have to wait on the results of other processes.

A thread is code running in parallel within the same program and a process is code that is

executed in parallel by the operation system. Python provides a good support of both types of

parallelism. Here, however, we only consider the use of multiple threads, so multithreading.

MULTITHREADING IS EASIER THAN IT SEEMS

In Python, it is very easy to run the code of one of your functions from its own thread: To do

this you import the module threading and pass start_new_thread() the function name as well

as possible parameter values that you pack into a tuple. The thread begins running

immediately and executes the code of your function.

In your first program with threads, two turtles should

draw a staircase independently of each other. To do

this, you write an arbitrarily named function, in this

case denoted by paint(), which may also have

parameters, such as here the turtle and a flag that

indicates whether the turtle draws a staircase to the

left or the right. You then pass the function name and

a tuple with the parameter values (the turtle and the

flag) to the function thread.start_new_thread(). And

now off you go!

from gturtle import *
import thread

def paint(t, isLeft):
 for i in range(16):
 t.forward(20)
 if isLeft:
 t.left(90)
 else:
 t.right(90)

Page 455

 t.forward(20)
 if isLeft:
 t.right(90)
 else:
 t.left(90)

tf = TurtleFrame()
john = Turtle(tf)
john.setPos(-160, -160)
laura = Turtle(tf)
laura.setColor("red")
laura.setPenColor("red")
laura.setPos(160, -160)
thread.start_new_thread(paint, (john, False))
thread.start_new_thread(paint, (laura, True))

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

In order to move both turtles in the same window you use a TurtleFrame tf and pass it to the

turtle constructor.

A new thread is created and immediately started with start_new_thread(). The thread is

terminated as soon as the passed function returns.

The parameter list has to be specified as a tuple. Be aware that an empty tuple () must be

passed for a function without parameters, and that a tuple with a single element x should be

written as (x,) instead of (x)

CREATING AND STARTING THREADS AS A CLASS INSTANCE

You get a little more leeway when you define a

separate class that is derived from the class Thread.

In this class, you overwrite the method run() which

contains the code to be executed.

To start the thread, you first create an instance and

call the method start(). The system will then execute

the method run() automatically in a new thread and

stop the thread once run() is done.

from threading import Thread
import random
from gturtle import *

class TurtleAnimator(Thread):
 def __init__(self, turtle):
 Thread.__init__(self)
 self.t = turtle

 def run(self):
 while True:
 self.t.forward(150 * random.random())
 self.t.left(-180 + 360 * random.random())

tf = TurtleFrame()

Page 456

john = Turtle(tf)
john.wrap()
laura = Turtle(tf)
laura.setColor("red")
laura.setPenColor("red")
laura.wrap()
thread1 = TurtleAnimator(john)
thread2 = TurtleAnimator(laura)
thread1.start()
thread2.start()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

Even with a multiprocessor system the code is not really run in parallel, but rather in

successive time slices. Therefore, it usually merely consists of quasi-parallel data processing.

However, it is important that the allocation of the processor to the threads takes place at

unpredictable points in time, so somewhere in the middle of your code. The breakpoint and the

local variables are automatically rescued when your thread is interrupted, and restored when it

continues, but problems may arise if in the meantime other threads change shared global data.

This also applies to the content of a graphics window. Therefore, it is not self-evident that the

two turtles do not get in the way of each other [more...].

You can see, the main part of the program finishes running, but the two threads keep

performing their tasks until the window is closed.

ENDING THREADS

Once initiated, a thread can not be stopped directly using a method from outside, such as by

another thread. In order to stop a thread, it must be ensured that the method run() comes to

the end. That is why a non-breakable while loop in the method run() of a thread is never a

good idea. Instead, you should use a global boolean variable isRunning for the while loop that

is normally set to True, but that can also be set to False from another thread.

Both turtles execute a random movement in your program until one of the two moves out of a

circular area.

from threading import Thread
import random, time
from gturtle import *

class TurtleAnimator(Thread):
 def __init__(self, turtle):
 Thread.__init__(self)
 self.t = turtle

 def run(self):
 while isRunning:
 self.t.forward(50 * random.random())
 self.t.left(-180 + 360 * random.random())

tf = TurtleFrame()
john = Turtle(tf)
laura = Turtle(tf)
laura.setColor("red")
laura.setPenColor("red")
laura.setPos(-200, 0)
laura.rightCircle(200)
laura.setPos(0, 0)
thread1 = TurtleAnimator(john)

Page 457

thread2 = TurtleAnimator(laura)
isRunning = True
thread1.start()
thread2.start()

while isRunning and not tf.isDisposed():
 if laura.distance(0, 0) > 200 or john.distance(0, 0) > 200:
 isRunning = False
 time.sleep(0.001)
tf.setTitle("Limit exceeded")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

You should never use a "tight" loop that does not perform actions in the body, because you are

wasting a lot of processor time. Always set a small waiting time of at least a few milliseconds

using time.sleep(), Turtle.sleep(), or GPanel.delay().

Once a thread has ended it can not be initiated again. If you try to call start() once again,

there is an error message.

STOPPING AND CONTINUING THREADS

In order to stop a thread only for a certain time, you

can skip the actions in run() using a global flag

isPaused and continue again later using isPaused =

False.

from threading import Thread
import random, time
from gturtle import *

class TurtleAnimator(Thread):
 def __init__(self, turtle):
 Thread.__init__(self)
 self.t = turtle

 def run(self):
 while True:
 if isPaused:
 Turtle.sleep(10)
 else:
 self.t.forward(100 * random.random())
 self.t.left(-180 + 360 * random.random())

tf = TurtleFrame()
john = Turtle(tf)
laura = Turtle(tf)
laura.setColor("red")
laura.setPenColor("red")
laura.setPos(-200, 0)

Page 458

laura.rightCircle(200)
laura.setPos(0, 0)
thread1 = TurtleAnimator(john)
thread2 = TurtleAnimator(laura)
isPaused = False
thread1.start()
thread2.start()

tf.setTitle("Running")
while not isPaused and not tf.isDisposed():
 if laura.distance(0, 0) > 200 or john.distance(0, 0) > 200:
 isPaused = True
 tf.setTitle("Paused")
 Turtle.sleep(2000)
 laura.home()
 john.home()
 isPaused = False
 tf.setTitle("Running")
 time.sleep(0.001)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

It is even smarter to stop the thread using Monitor.putSleep() and then continue later using

Monitor.wakeUp().

from threading import Thread
import random, time
from gturtle import *

class TurtleAnimator(Thread):
 def __init__(self, turtle):
 Thread.__init__(self)
 self.t = turtle

 def run(self):
 while True:
 if isPaused:
 Monitor.putSleep()
 self.t.forward(100 * random.random())
 self.t.left(-180 + 360 * random.random())

tf = TurtleFrame()
john = Turtle(tf)
laura = Turtle(tf)
laura.setColor("red")
laura.setPenColor("red")
laura.setPos(-200, 0)
laura.rightCircle(200)
laura.setPos(0, 0)
thread1 = TurtleAnimator(john)
thread2 = TurtleAnimator(laura)
isPaused = False
thread1.start()
thread2.start()

tf.setTitle("Running")
while not isPaused and not tf.isDisposed():
 if laura.distance(0, 0) > 200 or john.distance(0, 0) > 200:
 isPaused = True
 tf.setTitle("Paused")
 Turtle.sleep(2000)
 laura.home()
 john.home()
 isPaused = False
 Monitor.wakeUp()
 tf.setTitle("Running")
 time.sleep(0.001)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 459

MEMO

A thread can stop itself using the blocking method Monitor.putSleep() so that it does not waste

any computing time. Another thread can activate it again using Monitor.wakeUp(), i.e. the

blocking method Monitor.putSleep() returns.

WAITING ON THREAD RESULTS

In this program you employ a worker to calculate the sum of natural numbers from 1 to

1,000,000 simply by adding. You wait in the main program until the job is done and then

determine the time that was required. Since this can vary slightly, you let the work be

performed 10 times by a worker thread. In order to wait for the end of the thread, you use

join().

from threading import Thread
import time

class WorkerThread(Thread):
 def __init__(self, begin, end):
 Thread.__init__(self)
 self.begin = begin
 self.end = end
 self.total = 0

 def run(self):
 for i in range(self.begin, self.end):
 self.total += i

startTime = time.clock()
repeat 10:
 thread = WorkerThread(0, 1000000)
 thread.start()
 thread.join()
 print thread.total
print "Time elapsed:", time.clock() - startTime, "s"

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Just like in real life, you can distribute tedious work to multiple workers. If you use two worker

threads for this, so that each of them performs half of the work, you will need to wait for both

to finish before you add up the sum.

from threading import Thread
import time

class WorkerThread(Thread):
 def __init__(self, begin, end):
 Thread.__init__(self)
 self.begin = begin
 self.end = end
 self.total = 0

 def run(self):
 for i in range(self.begin, self.end):
 self.total += i

startTime = time.clock()
repeat 10:
 thread1 = WorkerThread(0, 500000)
 thread2 = WorkerThread(500000, 1000000)
 thread1.start()
 thread2.start()

Page 460

 thread1.join()
 thread2.join()
 result = thread1.total + thread2.total
 print result
print "Time elapsed:", time.clock() - startTime, "s"

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

You could also set a global flag isFinished() to True when the threads terminate, and test this

flag in a waiting loop in the main part of the program. However, this solution is less elegant

than just using join() because you are wasting computing time by constantly testing the flag.

The computing time is somewhat smaller when using two threads. The difference is small since

the program does not really run them in parallel, but rather in sequential time slices and since

a certain time is required for switching threads more...]

CRITICAL SECTIONS AND LOCKS

Because threads execute code virtually independently, it is awkward if multiple threads modify

shared data. To avoid collisions between threads, actions belonging together are encapsulated

in a so-called critical program block and provided with a protection that ensures that the block

is only executed uninterruptedly as a whole (atomically). If another thread tries to execute the

block, it must wait until the current thread has left the block. This protection is carried out in

Python using a lock. A lock is an instance of the class Lock and has two states, locked and

unlocked, as well as two methods acquire() and release() with the following rules:

 state call subsequent state/activity

 unlocked acquire() locked

 locked acquire()
 blocked until another thread calls

 release()

 unlocked release() error message (RuntimeException)

 locked release() unlocked

We say that a thread acquires the lock with acquire() and releases it again with release

[more...].

Specifically, to protect a critical block you proceed as follows: First you create a global lock

object using lock = Lock() that is of course unlocked in its initial state. Every thread then tries

to acquire the lock using acquire() when entering the critical block. If this fails because the lock

is already taken, the thread is automatically placed in a waiting state until the lock is free

again. If a thread does indeed acquire the lock, it runs through the critical block and then

release the lock again when done using release() so that the other threads can obtain it

[more...].

Page 461

If you understand the passing of the critical block as

a resource in a room with a closed door, you can

imagine a lock as similar a key, which a thread needs

in order to open the door of the room. Upon entry, it

takes the key with it and closes the door from the

inside. All threads that now want to enter the room

must wait for a key in a line in front of the door.

Once the thread has done its work in the room, it

leaves and closes the door and hangs up the key.

The first thread waiting in line takes the key and can

now open the door to the room. If no threads are

waiting in line, the key remains suspended until a

new incoming thread needs it.

In your program, the critical block consists of the drawing and deleting of filled squares. When

deleted, the square is painted over with the white background color. The main thread creates a

flashing square by drawing the solid red square and then deleting it again after a certain

waiting period. In a second thread MyThread, the keyboard is continuously prompted with

getKeyCode(). If the user presses the spacebar, the blinking square is shifted to a random

position.

It is self-evident that the critical block needs to be protected by a lock. If the shifting of the

square takes place while it is still drawn or deleted, the result is a chaotic behavior.

from gpanel import *
from threading import Thread, Lock
import random

class MyThread(Thread):
 def run(self):
 while not isDisposed():
 if getKeyCode() == 32:
 print "----------- Lock requested by MyThread"
 lock.acquire()
 print "----------- Lock acquired by MyThread"
 move(random.randint(2, 8), random.randint(2, 8))
 delay(500) # for demonstration purposes
 print "----------- Lock releasing by MyThread..."
 lock.release()
 else:
 delay(1)

def square():
 print "Lock requested by main"
 lock.acquire()
 print "Lock acquired by main"
 setColor("red")
 fillRectangle(2, 2)
 delay(1000)
 setColor("white")
 fillRectangle(2, 2)
 delay(1000)
 print "Lock releasing by main..."
 lock.release()

lock = Lock()
makeGPanel(0, 10, 0, 10)

t = MyThread()
t.start()
move(5, 5)

Page 462

while not isDisposed():
 square()
 delay(1) # Give up thread for a short while

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

You can track in the console how each thread obediently waits until the lock is releasede:

Lock requested by main
Lock acquired by main
----------- Lock requested by MyThread
Lock releasing by main...
----------- Lock acquired by MyThread
Lock requested by main
----------- Lock releasing by MyThread...
Lock acquired by main

If you deactivate the lock by commenting out, you will see that the squares are no longer

correctly drawn and deleted.

Also note that you should always install a small waiting time in short loops in order to avoid

consuming unnecessary processing time.

GUI-WORKERS

Callbacks that are triggered by GUI components run in a specific native thread (sometimes

called Event Dispatch Thread (EDT)). This is responsible for ensuring that the entire graphics

window along with all components (buttons, etc.) are correctly rendered on the screen. Since

the rendering takes place at the end of the callback, the GUI appears to be frozen until the

callback returns. This is why no graphical animations are possible in a GUI callback. You must

strictly adhere to the following rule:

GUI callbacks must return quickly, i.e. no lengthy operations should be performed

in GUI callbacks.

In this case, lengthy means a period of time longer than 10 ms. When dealing with this, you

have to assume the worst possible case, i.e. a slow hardware and a heavy system load. If an

action lasts longer, you should execute it in a separate thread called GUI worker.

You can draw a Rhodonea rose in your program by clicking on one of the two buttons. The

drawing is animated and takes a certain amount of time. Therefore, you have to execute the

drawing in a worker thread, which is not a problem with your current knowledge about

threading.

There is yet another problem to consider: Since each click of the button creates a new thread,

more drawings can be started shortly after one another, leading to chaos. You can prevent this

by making the buttons gray (inactive) during the execution of the drawing.

from gpanel import *
from javax.swing import *
import math
import thread

def rho(phi):
 return math.sin(n * phi)

def onButtonClick(e):

Page 463

 global n
 enableGui(False)
 if e.getSource() == btn1:
 n = math.e
 elif e.getSource() == btn2:
 n = math.pi
drawRhodonea()
 thread.start_new_thread(drawRhodonea, ())

def drawRhodonea():
 clear()
 phi = 0
 while phi < nbTurns * math.pi:
 r = rho(phi)
 x = r * math.cos(phi)
 y = r * math.sin(phi)
 if phi == 0:
 move(x, y)
 else:
 draw(x, y)
 phi += dphi
 enableGui(True)

def enableGui(enable):
 btn1.setEnabled(enable)
 btn2.setEnabled(enable)

dphi = 0.01
nbTurns = 100
makeGPanel(-1.2, 1.2, -1.2, 1.2)
btn1 = JButton("Go (e)", actionListener = onButtonClick)
btn2 = JButton("Go (pi)", actionListener = onButtonClick)
addComponent(btn1)
addComponent(btn2)
validate()

MEMO

Only short lasting code should be executed in GUI callbacks, otherwise the graphics system

freezes. You have to outsource longer lasting code (more than 10 ms) in a separate worker

thread. At any moment, only the components of a GUI whose operation is allowed and useful

may be active.

ADDITIONAL MATERIAL

RACE CONDITIONS, DEADLOCKS

Human beings work in a highly parallel way, but their logical reasoning is largely sequential.

Because of this, it is difficult for us humans to retain an overview of programs with multiple

threads. That is why using threads should be considered carefully, as elegant they may seem at

first glance.

Besides applications based on random data, a program should always return the same results

(postconditions) with the same initial conditions (preconditions). This is in no way guaranteed

for programs with multiple threads accessing shared data, even if the critical areas are

protected with locks. You have two threads in your program, thread1 and thread2, carrying out

an addition and a multiplication with two global numbers a and b. a and b are protected by

lock_a and lock_b. Generate and start both threads one after another in the main part and then

wait until they reach the end. Finally, write out the values of a and b. To generate threads in

this example, you use a slightly different notation where you specify the method run() as a

named parameter in the constructor of the class Thread.

Page 464

from threading import Thread, Lock
from time import sleep

def run1():
 global a, b
 print "----------- lock_a requested by thread1"
 lock_a.acquire()
 print "----------- lock_a acquired by thread1"
 a += 5
sleep(1)
 print "----------- lock_b requested by thread1"
 lock_b.acquire()
 print "----------- lock_b acquired by thread1"
 b += 7
 print "----------- lock_a releasing by thread1"
 lock_a.release()
 print "----------- lock_b releasing by thread1"
 lock_b.release()

def run2():
 global a, b
 print "lock_b requested by thread2"
 lock_b.acquire()
 print "lock_b acquired by thread2"
 b *= 3
sleep(1)
 print "lock_a requested by thread2"
 lock_a.acquire()
 print "lock_a acquired by thread2"
 a *= 2
 print "lock_b releasing by thread2"
 lock_b.release()
 print "lock_a releasing by thread2"
 lock_a.release()

a = 100
b = 200
lock_a = Lock()
lock_b = Lock()

thread1 = Thread(target = run1)
thread1.start()
thread2 = Thread(target = run2)
thread2.start()
thread1.join()
thread2.join()
print "Result: a =", a, ", b =", b

MEMO

If you let the program run several times, it sometimes returns the results a = 205, b = 607

and other times a = 210, b = 621. How is this possible? The explanation is as follows:

Although thread1 is created and started in the main part before thread2, it is not certain which

thread actually begins the execution first. As the first line

lock_a requested by thread1

or

lock_b requested by thread2

can be written out. The following course of events is not unique either, since the thread switch

can happen anywhere. It could be that the addition or multiplication is performed with the

numbers a and b first, which explains the varying results. Since both threads run together

Page 465

almost as if in a competition, a race condition arises.

However, it could be even worse because the program could also completely freeze. Before the

"death" the following is written out:

----------- lock_a requested by thread1
lock_b requested by thread2
lock_b acquired by thread2
lock_a requested by thread2
----------- lock_a acquired by thread1
----------- lock_b requested by thread1

It takes a bit of detective work to find out what happened there. We will try: Apparently, the

thread1 begins to run first and tries to get lock_a. Before it can write out the receipt, thread2

tries to get lock_b and gets this lock. Immediately afterwards, thread2 also tries to get lock_a,

but apparently fails because in the meantime thread1 got it. thread2 therefore blocks. thread1

continues to run and tries to get lock_b, but also fails because thread2 has not yet returned it.

This also blocks thread1 and therefore the entire program. Aptly, this situation is called a

deadlock. (If you activate the two commented out lines using sleep(1), it always results in a

deadlock. Think about why this is.)

As you can see, deadlocks occur when two threads thread1 and thread2 depend on two shared

resources a and b and block them individually. As a consequence, it can happen that thread2

waits on lock_a and thread1 waits on lock_b and thus both are blocked, with the result that the

locks are never released again.

To avoid deadlocks, adhere to the following rule:

Shared resources should be protected with a single lock whenever possible. In

addition, it must be ensured that the lock is given back again.

THREAD-SAFE AND ATOMIC EXPRESSIONS

If there are several threads involved, you never know as a programmer the exact point in time

or at which spot of the code thread switching occurs. As you have already seen before, it can

lead to unexpected and incorrect behavior if the threads work with shared resources. This is

especially the case if multiple threads change a window. So if you generate a worker thread in

a callback in order to execute long-running code, you should almost always expect that this will

result in chaos. In the previous program you avoided this by disabling the buttons during the

callback. You can ensure that multiple threads can run the same code without getting in each

others way by taking special precautions. Such code is called thread-safe. There is an art to

writing thread-safe code so that it can be used in an environment with multiple threads without

any conflicts [more..].

There are few thread-safe libraries, since they are

usually less performative and they have the risk of

deadlocks. As you experienced above, the GPanel

library is not thread-safe, whereas the turtle graphics

is. You can move several turtles with multiple threads

virtually simultaneously. In your program at each

mouse click a new thread is created and a new turtle

appears at the mouse position. The turtle

autonomously draws a star and then fills it.

Page 466

from gturtle import *
import thread

def onMousePressed(event):
createStar(event)
 thread.start_new_thread(createStar, (event,))

def createStar(event):
 t = Turtle(tf)
 x = t.toTurtleX(event.getX())
 y = t.toTurtleY(event.getY())
 t.setPos(x, y)
 t.startPath()
 repeat 9:
 t.forward(100)
 t.right(160)
 t.fillPath()

tf = TurtleFrame(mousePressed = onMousePressed)
tf.setTitle("Klick To Create A Working Turtle")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

If you are not generating a new thread (commented out line), you will only see the already

finished stars. However, you can write the program without its own thread if you use the

named parameter mouseHit instead of mousePressed, just like you did in chapter 2.11. In

this case, the thread will be automatically generated in the turtle library.

It is important that you know that switching threads can even be done in the middle of one

line of code. For example, even in the line a = a + 1 or a += 1 a thread switch can occur

between the reading and writing of the variable value.

In contrast, an expression is called atomic, if it can not be interrupted. Similar to most other

programming languages, Python is also not really atomic. For example, it may happen that a

print command is interrupted by print commands of other threads, resulting in a chaotic

expression. It is the programmer's task to make functions, expressions, and parts of the code

thread-safe and atomic by using locks.

EXERCISES

1. Use a single lock in the above program and set it up so that there are no race conditions

and no deadlocks.

Page 467

11.5 SERIAL INTERFACE

INTRODUCTION

Although Bluetooth, Ethernet, or USB interfaces are commonly used for communication

between a computer and peripherals, the communication over the serial interface (RS-232C) is

still widespread since the complexity of the circuit in external devices is lower. That is why the

serial interface is still used to connect measuring devices (voltmeters, cathode ray

oscilloscopes, etc.) to control devices and robots, and also to communicate with micro-

controllers. Modern computers no longer have serial ports, however this problem can be easily

solved with low cost USB-to-serial serial adapters.

To understand the serial interface it is important to know that there are data lines for sending

and receiving data (TD/RD), two pairs of handshake lines RTS/CTS and DTR/DSR, two status

lines CD/RI and a ground. You can see the output lines TD, RTS, DTR and the input lines RD,

CTS, DSR, CD, RI from the computer. RTS and DTR can thus be activated and deactivated

controlled by the program, and CTS, DSR, CD, and RI can only be read.

Connections of the 9-pin RS-232 connector:

The format of the transmitted data is simple. It consists of chronologically transmitted data

bytes. The transfer begins with a start bit, where the receiver calls attention to the pending

data transfer. Then the data itself follows, including 5, 6, 7 or (usually) 8 bits. In order to

facilitate an error correction, this is usually followed by a parity bit which indicates whether an

odd or an even number of bits were set, but the parity bit may also be omitted. The transfer is

completed with one or two stop bits. The sending and receiving devices are not synchronized

with each other, i.e. the data transfer can begin and end at any time. However, it is necessary

that both devices agree upon the same time duration of a single bit. This is specified by the

baud rate (in baud, bits/s) and can usually only be any of the standardized values 300, 600,

1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 baud. In addition, both devices can

agree on a handshake (flow control), with which they inform each other whether they are ready

for the data transfer. You can distinguish between a hardware and a software handshake

depending on whether the handshake uses specific handshake pathways or whether it occurs

using special ASCII characters (XON/XOFF) embedded in the data stream.

A typical port configuration therefore comprises of: Baud rate, the number of data bits, the

number of stop bits, parity none, odd, or even, handshake none, hardware or software.

The flow of voltage during the transmission of the letter 'B', with the configuration 7 databit/no

parity/1 stopbit looks thus as follows.

Page 468

INSTALLATION

The use of the module pySerial described here works under a 32- or 64-bit operating system,

however only with a 32-bit-Java Runtime Environment (JRE). You can download this from here.

The following additional installation steps are necessary (Lib is a subdirectory of the directory

where tigerjython2.jar is located):

1. Download pyserial.zip. Unpack and copy the entire directory structure in the directory

Lib.

<tigerjythonhome>

 Lib

 Serial

 tools

 urhandler

2. Download javacomm.zip. Unpack and copy comm.jar in Lib.

3. (On Windows): Copy the file win32com.dll from javacomm.zip in c.\windows\system32. In

c:\Program Files (x86) you will find the directory Java and the home directory of the JRE.

Copy the file javax.com.properties from javacomm.zip to the subdirectory Lib. (Note:

When updating the JRE, this file may get lost.)

4. If necessary, install the driver of the USB serial adapter that you are using. Connect the

adapter and find or reset the used COM port in the adapter properties (in the device

manager), e.g. COM1.

5. Test the installation by running PortEnumerator.jar (from javacomm.zip). The COM port

must be displayed.

SIMPLE TERMINAL

For the time being, you should look around in the documentation of pySerial. On

http://pyserial.sourceforge.net under pySerial API, you will find a complete description of

the classes. However, some of them are platform specific. With your program, you can send

characters that you enter on the keyboard one at a time to an external device and write out

characters you receive back in a console. It is the simplest form of a terminal emulator.

To test it out, you have two options. You can either connect two computers via a link cable

which swaps RD (Receive Data) and TD (Transmit Data) and execute the program run on both,

or you can just join these two pins together (hot-connect them with a clip or a similar object).

Then all sent characters will be immediately received again.

import serial
from gconsole import *

makeConsole()
setTitle("Termin al")
ser = serial.Serial(port = " COM1", baudrate = 2400, timeout = 0)
while not isDisposed():
 delay(1)
 ch = getKey()
 if ch != KeyEvent.CHAR_UNDEFINED: # a key is typed
 ser.write(ch)
 nbChars = ser.inWaitin g()
 if nbChars > 0:
 text = ser.read(nb Chars)
 for ch in text:
 if ch == '\n' :
 gprintln()

Page 469

 else :
 gp r int(ch)

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

In order to read the received characters you have to use a non-blocking function, since the

program has to constantly check if a key has been pressed. The method ser.read() does not

block if you set the timeout parameter in the constructor to 0.

If you have a notebook with a built-in modem, the terminal program can communicate with it

using the Hayes command set.

Page 470

11.6. TCP SOCKETS

INTRODUCTION

The exchange of data between computer systems plays an extremely important role in our

interconnected world. Therefore we often speak of the combined computer- and communication

technologies that should be mastered. In this chapter you learn how to handle the data exchange

between two computer systems using the TCP/IP protocol which is used in all Internet

connections, for example the Web and all streaming services (data clouds, voice, music, video

transmission).

TCPCOM: AN EVENT-DRIVEN SOCKET LIBRARY

The socket programming is based on the client-server model, which has already been described

in Section 6.2. The server and the client programs are not completely symmetrical. In

particular, first the server program must be started before the client program can connect to the

server. In order to identify the server on the Internet, its IP address is used. In addition, the

server has 65536 communication channels (IP ports), that is selected with a number in the range

0..64535.

When the server starts, it creates a server socket (like a electrical plug) that uses a particular

port and goes in a wait state. We say that the server is listening for an incoming client, so the

server is in the LISTENING state. The client creates a client socket (the plug counterpart) and

tries to establish a communication link to the server using its IP address and port number. The

library tcpcom simplifies the socket programming essentially, since it describes the current state

of the server and client with state variables. The change of the variable is considered to be

caused by an event. This programming model corresponds to the natural feeling of many people

to describe the communication between two partners by a sequence of events.

As usual in a event-driven model, a callback function, here called stateChanged(state, msg) is

invoked by the system, when an event is fired. The Python module is integrated into TigerJython,

but can also be downloaded from here to be studied or used outside TigerJython.

The server is started by creating a TCPServer object specifying the ports and the callback function

onStateChanged() and embarks in the LISTENING state.

from tcpcom import TCPServer

server = TCPServer(port, stateChanged = onStateChanged)

The callback onStateChanged (state, msg) has two string parameters state and msg that describe

the status change of the server:

state msg description

TCPServer.LISTENING port An existing connection was terminated (or

the server is started) and the server

listens for a new connection

Server.PORT_IN_USE port The server cannot go into the LISTENING

state because the port is occupied by

another process

TCPServer.CONNECTED IP address client A client has signed up and was accepted

TCPServer.MESSAGE received message The server has received a message

Page 471

TCPSever.TERMINATED (empty) The server is terminated and does not

listen anymore

The client starts with the creation of a TCPClient object specifying the IP address of the server,

the port and the callback function onStateChanged (). By invoking connect() it starts a connection

trial.

from tcpcom import TCPClient

client = TCPClient(host, port, stateChanged = onStateChanged)

client.connect()

Again, the callback onStateChanged (state, msg) has two string parameters state and msg,

describing the state change of the client:

state msg description

TCPClient.CONNECTING IP address server Starting connection attempt

TCPClient.CONNECTION_FAILED IP address server Connection trial failed

TCPClient.CONNECTED IP address server Connection established

TCPClient.MESSAGE received message The client has received a message

TCPClient.DISCONNECTED (empty) Connection interrupted (aborted by

client or server)

The call to connect() is blocking, which means that the function returns True once the connection

has succeeded, or False after a certain timeout period (approximately 10 seconds), if the

connection fails. The information about the success or failure of the connection can also be

detected via the callback.

You can try out the client-server programs on the same PC by starting two TigerJython windows.

In this case you choose the host address localhost. Using two different computers for the client

and the server is more close to reality. They must be connected with a network cable or via

wireless LAN and the link must be open for TCP/IP communication with the selected port. If the

connection fails with your normal hotspot (WLAN access point), this is mostly due to firewall

restrictions. In this case you can use your own router or start a mobile hot spot app on your

smartphone. Access of the mobile phone to the Internet is not necessary.

As your first socket programming duty you create a server that provides a time service. When a

client logs on, it sends the current time (with date) back to the client. There are numerous such

time server on the Internet and you can be proud that you are already able to code a

professional server application.

In order to turn off the time server, you use a well-known trick: The main program "hangs" in a

TigerJython modal message dialog opened by the blocking function msgDlg(). When the function

returns by pressing the OK or clicking the close button, the server is stopped by calling

terminate().

from tcpcom import TCPServer

import datetime

def onStateChanged(state, msg):

print state, msg

if state == TCPServer.CONNECTED:

 server.sendMessage(str(datetime.datetime.now()))

 server.disconnect()

port = 5000

server = TCPServer(port, stateChanged = onStateChanged)

msgDlg("Time Server running. OK to stop")

server.terminate()

Page 472

The client first asks for the IP address and tries to establish the link to the server by calling

connect(). The time information received back from the server is written in a dialog window.

from tcpcom import TCPClient

def onStateChanged(state, msg):

print state, msg

if state == TCPClient.MESSAGE:

 msgDlg("Server reports local date/time: " + msg)

if state == TCPClient.CONNECTION_FAILED:

 msgDlg("Server " + host + " not available")

host = inputString("Time Server IP Address?")

port = 5000

client = TCPClient(host, port, stateChanged = onStateChanged)

client.connect()

MEMO

The server and the client implement the event model with a callback function

onStateChanged(state, msg). The two parameters provide important information about the

event. Make sure that you finish the server with terminate(), in order to release the IP port.

ECHO-SERVER

The next training session is famous because it shows the archetype of a client-server

communication. The server makes nothing else than sending back the non-modified message

received from the client. For this reason it is called an echo server. The system can be easily

extended so that the server analyzes the message received from the client and returns a tailored

response. This is exactly the concept of all WEB servers, because they reply to a HTTP request

issued by the client browser.

You first code the echo server and start it immediately. As you see, the code differs only slightly

from the time server. For illustration and debugging purposes you display the state and msg

parameter values in the console window.

Page 473

from tcpcom import TCPServer

def onStateChanged(state, msg):

print state, msg

if state == TCPServer.MESSAGE:

 server.sendMessage(msg)

port = 5000

server = TCPServer(port, stateChanged = onStateChanged)

msgDlg("Echo Server running. OK to stop")

server.terminate()

For the client you invest a bit more effort by using the EntryDialog class to display a non-modal

dialog to show status information. Also in other contexts the EntryDialog is very convenient, since

you can easily add editable and non-editable text fields and other GUI elements such as various

types of buttons and sliders.

from tcpcom import TCPClient

from entrydialog import *

import time

def onStateChanged(state, msg):

print state, msg

if state == TCPClient.MESSAGE:

 status.setValue("Reply: " + msg)

if state == TCPClient.DISCONNECTED:

 status.setValue("Server died")

def showStatusDialog():

global dlg, btn, status

 status = StringEntry("Status: ")

 status.setEditable(False)

 pane1 = EntryPane(status)

 btn = ButtonEntry("Finish")

 pane2 = EntryPane(btn)

 dlg = EntryDialog(pane1, pane2)

 dlg.setTitle("Client Information")

 dlg.show()

host = "localhost"

port = 5000

showStatusDialog()

client = TCPClient(host, port, stateChanged = onStateChanged)

status.setValue("Trying to connect to " + host + ":" + str(port) + "...")

time.sleep(2)

rc = client.connect()

if rc:

 time.sleep(2)

 n = 0

while not dlg.isDisposed():

if client.isConnected():

 status.setValue("Sending: " + str(n))

 time.sleep(0.5)

 client.sendMessage(str(n), 5) # block for max 5 s

 n += 1

if btn.isTouched():

 dlg.dispose()

 time.sleep(0.5)

 client.disconnect()

else:

 status.setValue("Connection failed.")

Page 474

MEMO

In the client program you use the function sendMessage(msg, timeout) with an additional

timeout parameter. The call is blocking for a maximum time interval (in seconds) until the

server sends back a response. sendMessage() returns either the server's response or None, if

no response is received within the given timeout.

It is important to know the difference between modal and non-modal (modeless) dialog boxes.

While the modal window blocks the program until the dialog is closed, with a modeless dialog

the program continues, so that at any time status information can be displayed and user input

read by the running program.

TWO PERSONS ONLINE GAME WITH TURTLE GRAPHICS

"Sinking Boats" is a popular game between two people, in which the memory plays an important

role. The playing boards of each player is a one or two dimensional arrangement of grid cells

where vessels are placed. They occupy one or multiple cells and have different values depending

on the type of the ship. By turns, each player denotes a cell where, so to speak, a bomb is

dropped. If the cell contains a portion of a ship, it will be sunk, so removed from the board and

its value credited to the aggressor. If one of the players has no more ships, the game ends and

the player with the greater credit wins.

In the simplest version, the ships are displayed as colored square cells in a one-dimensional

array. All ships are of equal rank. The winner is the player who has first eliminated all enemy

ships.

As for the game logic, the client and server programs are largely identical. To show the board, it

is sufficient to use elementary drawing operations from turtle graphics that you know for a long

time. You select a cell numbering from 1 to 10 and you have to produce 4 different random

numbers out of 1..10 for the random selection of the ships. To do so, is is elegant to use the

library function random.sample(). To launch a bomb, you send the full Python command to the

partner who executes it with exec(). (Such a dynamic code execution is only possible in a few

programming languages.) To find out whether there has been a hit, you test the background color

with getPixelColorStr().

In the game, the two players are equal, but their programs vary slightly, depending on who is

server and and who is client. In addition, the server must start first.

from gturtle import *

from tcpcom import TCPServer

import random

def initGame():

 clear("white")

for x in range(-250, 250, 50):

 setPos(x, 0)

 setFillColor("gray")

 startPath()

 repeat 4:

 forward(50)

 right(90)

Page 475

 fillPath()

def createShips():

 setFillColor("red")

 li = random.sample(range(1, 10), 4) # 4 unique random numbers

for i in li:

 fill(-275 + i * 50, 25)

def onMouseHit(x, y):

global isMyTurn

 setPos(x, y)

if getPixelColorStr() == "white" or isOver or not isMyTurn:

return

 server.sendMessage("setPos(" + str(x) + "," + str(y) + ")")

 isMyTurn = False

def onCloseClicked():

 server.terminate()

 dispose()

def onStateChanged(state, msg):

global isMyTurn, myHits, partnerHits

if state == TCPServer.LISTENING:

 setStatusText("Waiting for game partner...")

 initGame()

if state == TCPServer.CONNECTED:

 setStatusText("Partner entered my game room")

 createShips()

if state == TCPServer.MESSAGE:

if msg == "hit":

 myHits += 1

 setStatusText("Hit! Partner's remaining fleet size "

 + str(4 - myHits))

if myHits == 4:

 setStatusText("Game over, You won!")

 isOver = True

elif msg == "miss":

 setStatusText("Miss! Partner's remaining fleet size "

 + str(4 - myHits))

else:

exec(msg)

if getPixelColorStr() != "gray":

 server.sendMessage("hit")

 setFillColor("gray")

 fill()

 partnerHits += 1

if partnerHits == 4:

 setStatusText("Game over, Play partner won!")

 isOver = True

return

else:

 server.sendMessage("miss")

 setStatusText("Make your move")

 isMyTurn = True

makeTurtle(mouseHit = onMouseHit, closeClicked = onCloseClicked)

addStatusBar(30)

hideTurtle()

port = 5000

server = TCPServer(port, stateChanged = onStateChanged)

isOver = False

isMyTurn = False

myHits = 0

partnerHits = 0

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 476

The client program is almost the same:

from gturtle import *

import random

from tcpcom import TCPClient

def initGame():

for x in range(-250, 250, 50):

 setPos(x, 0)

 setFillColor("gray")

 startPath()

 repeat 4:

 forward(50)

 right(90)

 fillPath()

def createShips():

 setFillColor("green")

 li = random.sample(range(1, 10), 4) # 4 unique random numbers 1..10

for i in li:

 fill(-275 + i * 50, 25)

def onMouseHit(x, y):

global isMyTurn

 setPos(x, y)

if getPixelColorStr() == "white" or isOver or not isMyTurn:

return

 client.sendMessage("setPos(" + str(x) + "," + str(y) + ")")

 isMyTurn = False

def onCloseClicked():

 client.disconnect()

 dispose()

def onStateChanged(state, msg):

global isMyTurn, myHits, partnerHits

if state == TCPClient.DISCONNECTED:

 setStatusText("Partner disappeared")

 initGame()

elif state == TCPClient.MESSAGE:

if msg == "hit":

 myHits += 1

 setStatusText("Hit! Partner's remaining fleet size "

 + str(4 - myHits))

if myHits == 4:

 setStatusText("Game over, You won!")

 isOver = True

elif msg == "miss":

 setStatusText("Miss! Partner's remaining fleet size "

 + str(4 - myHits))

else:

exec(msg)

if getPixelColorStr() != "gray":

 client.sendMessage("hit")

 setFillColor("gray")

 fill()

 partnerHits += 1

if partnerHits == 4:

 setStatusText("Game over, Play partner won")

 isOver = True

return

else:

 client.sendMessage("miss")

 setStatusText("Make your move")

 isMyTurn = True

makeTurtle(mouseHit = onMouseHit, closeClicked = onCloseClicked)

addStatusBar(30)

hideTurtle()

Page 477

initGame()

host = "localhost"

port = 5000

client = TCPClient(host, port, stateChanged = onStateChanged)

setStatusText("Client connecting...")

isOver = False

myHits = 0

partnerHits = 0

if client.connect():

 setStatusText("Connected. Make your first move!")

 createShips()

 isMyTurn = True

else:

 setStatusText("Server game room closed")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

In two players games, the players can have the same or different game situations. In the

second case, which includes most card games, the game must necessarily be played with two

computers, because the game situation must be kept secret.

Instead of always let the client start the game, the player to move first could be selected

randomly or by negotiating.

Both programs are completed by clicking on the close button in the title bar. But then some

additional "cleanup" is required like stopping the server or breaking the communication link. To

do so, register the callback onCloseClicked() and the default closing process is disabled. It is

now up to you, to perform the adequate operation in the callback and closing the turtle window

by calling dispose(). Disregarding so, the Task Manager is the needed to get you out of a jam.

TWO PERSONS ONLINE GAME WITH GAMEGRID

For more complex games, it is of great advantage to refer to a game library that simplifies the

code considerably. You already learned in Chapter 7 how to use GameGrid, a full-featured game

engine integrated into TigerJython. By combining GameGrid with tcpcom, you can create

sophisticated multi-person online games where the game partners are located anywhere in the

world. For illustration you expand the "Sinking Boats" game in 2 dimensions. The game logic

remains unchanged, however you transfer now x and y coordinates of the selected cell. On the

receiving side, the partner can find out if one of his ships is hit and report back a "hit" or "miss"

message.

In game programming it is important to make a special effort that games proceed "reasonably",

even if the two players behave somewhat unreasonably. So the firing of bombs must be disabled

if it is not the player's move. When one of the programs terminates unexpectedly, the partner

should be informed. Although these additional checks blow up the code, this is the hallmark of

careful programming

Since a large part of the code for the server and client is the same, and code duplication is one of

the greatest sins of programming, the common code is exported into a module shiplib.py that can

imported by both applications. Different behavior is taken into account by additional parameters

like node that refers to a TCPServer or TCPClient object.

Page 478

Library:

shiplib.py

from gamegrid import *

isOver = False

isMyMove = False

dropLoc = None

myHits = 0

partnerHits = 0

nbShips = 2

class Ship(Actor):

def __init__(self):

 Actor.__init__(self, "sprites/boat.gif")

def handleMousePress(node, loc):

global isMyMove, dropLoc

 dropLoc = loc

if not isMyMove or isOver:

return

 node.sendMessage("" + str(dropLoc.x) + str(dropLoc.y)) # send location

 setStatusText("Bomb fired. Wait for result...")

 isMyMove = False

def handleMessage(node, state, msg):

global isMyMove, myHits, partnerHits, first, isOver

if msg == "hit":

 myHits += 1

 setStatusText("Hit! Partner's fleet size " + str(nbShips - myHits)

 + ". Wait for partner's move!")

 addActor(Actor("sprites/checkgreen.gif"), dropLoc)

if myHits == nbShips:

 setStatusText("Game over, You won!")

 isOver = True

elif msg == "miss":

 setStatusText("Miss! Partner's fleet size " + str(nbShips - myHits)

 + ". Wait for partner's move!")

 addActor(Actor("sprites/checkred.gif"), dropLoc)

else:

 x = int(msg[0])

 y = int(msg[1])

 loc = Location(x, y)

 bomb = Actor("sprites/explosion.gif")

 addActor(bomb, loc)

 delay(2000)

 bomb.removeSelf()

 refresh()

 actor = getOneActorAt(loc, Ship)

if actor != None:

 actor.removeSelf()

 refresh()

 node.sendMessage("hit")

 partnerHits += 1

if partnerHits == nbShips:

 setStatusText("Game over! Partner won")

 isOver = True

return

else:

 node.sendMessage("miss")

 isMyMove = True

 setStatusText("You fire!")

Highlight program code (Ctrl+C copy, Ctrl+V paste)

By using the external module shiplib.py the code of the server and the client becomes much

simpler and clearer.

Page 479

Server:

from gamegrid import *

from tcpcom import TCPServer

import shiplib

def onMousePressed(e):

 loc = toLocationInGrid(e.getX(), e.getY())

 shiplib.handleMousePress(server, loc)

def onStateChanged(state, msg):

global first

if state == TCPServer.PORT_IN_USE:

 setStatusText("TCP port occupied. Restart IDE.")

elif state == TCPServer.LISTENING:

 setStatusText("Waiting for a partner to play")

if first:

 first = False

else:

 removeAllActors()

for i in range(shiplib.nbShips):

 addActor(shiplib.Ship(), getRandomEmptyLocation())

elif state == TCPServer.CONNECTED:

 setStatusText("Client connected. Wait for partner's move!")

elif state == TCPServer.MESSAGE:

 shiplib.handleMessage(server, state, msg)

def onNotifyExit():

 server.terminate()

 dispose()

makeGameGrid(6, 6, 50, Color.red, False, mousePressed = onMousePressed,

 notifyExit = onNotifyExit)

addStatusBar(30)

for i in range(shiplib.nbShips):

 addActor(shiplib.Ship(), getRandomEmptyLocation())

show()

port = 5000

first = True

server = TCPServer(port, stateChanged = onStateChanged)

shiplib.node = server

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Client:

from gamegrid import *

from tcpcom import TCPClient

import shiplib

def onMousePressed(e):

 loc = toLocationInGrid(e.getX(), e.getY())

 shiplib.handleMousePress(client, loc)

def onStateChanged(state, msg):

if state == TCPClient.CONNECTED:

 setStatusText("Connection established. You fire!")

 shiplib.isMyMove = True

elif state == TCPClient.CONNECTION_FAILED:

 setStatusText("Connection failed")

elif state == TCPClient.DISCONNECTED:

 setStatusText("Server died")

 shiplib.isMyMove = False

elif state == TCPClient.MESSAGE:

 shiplib.handleMessage(client, state, msg)

def onNotifyExit():

 client.disconnect()

 dispose()

Page 480

makeGameGrid(6, 6, 50, Color.red, False,

 mousePressed = onMousePressed, notifyExit = onNotifyExit)

addStatusBar(30)

for i in range(shiplib.nbShips):

 addActor(shiplib.Ship(), getRandomEmptyLocation())

show()

host = "localhost"

port = 5000

client = TCPClient(host, port, stateChanged = onStateChanged)

client.connect()

Client Server

MEMO

The end of the game is a special situation that must be programmed carefully. Since it is an

"emergency state", you are using a global flag isOver that is set to True when the game is

over. It also raises the question of whether the game can be played again without restarting

the server or client program. In this implementation, the client needs to terminate his program

and the server then goes back into the LISTENING state, waiting for a new client to play again.

The programs could be improved in many ways. As general rule game programming is very

attractive because there are no limits for the imagination and ingenuity of the developer.

Moreover, after all your effort, relaxing and playing the game is also lot of fun.

Until now the two playmates have to start their programs according to the rule "First, the

server and then the client". To circumvent this restriction the following trick could be applied: A

program always starts first as a client and tries to create a connection to the server. If this

fails, it starts a server [more...].

COMMUNICATION WITH HANDSHAKE

Even in every days life, communication between two partners need some kind of

synchronization. In particular, data may be sent only if the recipient is actually ready for the

reception and further processing. Failure to observe this rule may result in data loss or even

block the programs. Different computing power of the two nodes and a variing transmission time

must be considered too.

Page 481

One known method to get these timing problems under control, is to provide feedback from the

receiver to the transmitter, which can be compared with an amicable handshake. The process is

basically simple: data is transmitted in blocks and the receiver acknowledges the correct

reception and and readiness for the next block with a feedback. Only when it is received, the next

block is sent. The feedback may also cause the transmitter to send the same block again

[more...].

To demonstrate the handshake principle, your the turtle program of the server draws relatively

slowly lines dictated by the client's mouse clicks. The client's turtle moves much faster. Therefore

the client must wait from click to click until the server reports back that he has completed its

drawing operation and is ready to dispatch the next command.

Server:

from gturtle import *

from tcpcom import TCPServer

def onCloseClicked():

 server.terminate()

 dispose()

def onStateChanged(state, msg):

if state == TCPServer.MESSAGE:

 li = msg.split(",")

 x = float(li[0])

 y = float(li[1])

 moveTo(x, y)

 dot(10)

 server.sendMessage("ok")

makeTurtle(mouseHit = onMouseHit, closeClicked = onCloseClicked)

port = 5000

server = TCPServer(port, stateChanged = onStateChanged)

Client:

from gturtle import *

from tcpcom import TCPClient

def onMouseHit(x, y):

global isReady

if not isReady:

return

 isReady = False

 client.sendMessage(str(x) + "," + str(y))

 moveTo(x, y)

 dot(10)

def onCloseClicked():

 client.disconnect()

 dispose()

def onStateChanged(state, msg):

global isReady

if state == TCPClient.MESSAGE:

 isReady = True

makeTurtle(mouseHit = onMouseHit, closeClicked = onCloseClicked)

speed(-1)

host = "localhost"

port = 5000

isReady = True

client = TCPClient(host, port, stateChanged = onStateChanged)

client.connect()

Page 482

MEMO

To bring the actions of the transmitter and receiver in an orderly temporal sequence, the

transmitter waits to send the next data until he receives a feedback that the receiver is ready

for further processing.

EXERCISES

1a. Create a client-server system in which the server provides good math skills. In an input

dialog the client can enter any function from the module math, for example sqrt(2), and

gets the result as a server response that is displayed in the output window. Use the Python

function exec(cmd) to execute a given command.

1b. Modify your program that the server reports "illegal" if he cannot fulfill the request. Hint:

Catch the exception that is thrown by exec().

2. Create a remote commander: The server starts a turtle window, waiting for a commander

client. In a client dialog box, you can type a turtle command that is sent to the server

where the command is executed. If successful, "OK", otherwise "Fail" is sent back to the

client and displayed there. After receiving this response, the commander can send the next

command. Note: You can also merge together multiple commands separated by a

semicolon.

3. Add sound output to the two-dimensional Sinking-Boats game. Suggestion: Emit a short

sound clip when firing, and when you get a hit or miss feedback. Use your skills from

Chapter 4: Sound. You can use predefined sounds, but your own sounds are funnier.

4*. Improve the one-dimensional Sinking-Boat game so ships are no more represented by

colored cells, but with pictures that disappears when hit.

ADDITIONAL MATERIAL

REMOTE-SENSING WITH RASPBERRY PI

Client-server communications over TCP/IP play an important role in measuring and control

technology. Often a measuring instrument or a robot is far away from a command center and the

measurement and control data are transmitted via TCP/IP. In example 2 you already realized a

remote control. Below you are using a Raspberry Pi, which acts as interface between the

measuring sensors and the Internet, and sends the measurement data to a remote recording

station. To simplify the system, no actual sensors are used and only the pressed or released state

of a pushbutton is reported.

For the Raspberry Pi you write a measurement detection program in Python using the tcpcom

module that you need to copy to the same directory on the RPi. You can either work with a

keyboard and a screen directly attached to the RPi or from a remote PC using SSH, WinSCP or

VNC. For further instructions, check the literature or search the Internet.

The server program is very simple: In the measuring loop you call periodically GPIO.input() to

get the state of the button. Here 0 is reported when the button is pressed. Subsequently, the

button state information is transferred to the client. By holding the key pressed during 3

measuring cycles, the server program terminated.

import time

import RPi.GPIO as GPIO

Page 483

from tcpcom import TCPServer

def onStateChanged(state, msg):

print "State:", state, "Msg:", msg

P_BUTTON1 = 16 # Switch pin number

dt = 1 # 1 s period

port = 5000 # IP port

GPIO.setmode(GPIO.BOARD)

GPIO.setwarnings(False)

GPIO.setup(P_BUTTON1, GPIO.IN, GPIO.PUD_UP)

server = TCPServer(port, stateChanged = onStateChanged)

n = 0

while True:

if server.isConnected():

 rc = GPIO.input(P_BUTTON1)

if rc == 0:

 server.sendMessage("pressed")

 n += 1

if n == 3:

break

else:

 server.sendMessage("released")

 n = 0

 time.sleep(dt)

server.terminate()

print "Server terminated"

Highlight program code (Ctrl+C copy, Ctrl+V paste)

The client writes only the data obtained in the output window.

from tcpcom import TCPClient

def onStateChanged(state, msg):

print "State: " + state + ". Message: " + msg

host = "192.168.0.5"

#host = inputString("Host Address?")

port = 5000 # IP port

client = TCPClient(host, port, stateChanged = onStateChanged)

rc = client.connect()

if rc:

 msgDlg("Connected. OK to terminate")

 client.disconnect()

Highlight program code (Ctrl+C copy, Ctrl+V paste)

Page 484

http://tigerjython.ch/download/tigerjython_en.pdf

Download tutorial (PDF)

http://examples.tigerjython.ch

Source code of all examples

http://jython.tobiaskohn.ch/PythonScript.pdf

Python. An Introduction to Computer Programming by Tobias Kohn (in German)

http://www.jython.ch

Turtle Graphics, Robotics and Games by Jarka Arnold (in German)

http://www.aplu.ch/jython

Libraries and Examples by Aegidius Plüss (in English)

http://www.tigerjython.ch/download/ACMandIEreport.pdf

Informatics education: Europe cannot afford to miss the boat

http://www.tigerjython.ch/download/ForteGuzdialCommNotCalc.pdf

Computers for Communication, Not Calculation:

Media as a Motivation and Context for Learning

http://de.padlet.com/myschool/python

Introduction to Programming with Python by Günter Öller, Linz (Austria)

http://fit-in-it.ch/sites/default/files/downloads/informatik_d.pdf informatik@gymnasium

A Proposal for Switzerland by J. Kohlas, J. Schmid, C.A. Zehnder, ed. (Hasler Foundation)

Literature References:

Böhm C., Jacopini G., Flow diagrams, turing machines and languages with only two formation rules,

Communications of the ACM 9(5), 366-371 (1966)

Wirth Niklaus, Algorithms and Data Structures, Pearson Education (1985)

Wong Baoswan Dzung, Bézierkurven: gezeichnet und gerechnet, Orell Füssli (2003)

Page 485

http://www.tigerjython.ch/download/tierjython_en.pdf
http://examples.tigerjython.ch
http://jython.tobiaskohn.ch/PythonScript.pdf
http://www.jython.ch/
http://www.aplu.ch/jython
http://www.tigerjython.ch/download/ACMandIEreport.pdf
http://www.tigerjython.ch/download/ForteGuzdialCommNotCalc.pdf
http://de.padlet.com/myschool/python
http://fit-in-it.ch/sites/default/files/downloads/informatik_d.pdf

Developer team: Jarka Arnold, University of Teacher Education Bern

www.java-online.ch

 Tobias Kohn, Cantonal School Zürich Oberland

www.tobiaskohn.ch

 Dr. Aegidius Plüss, University of Bern

www.aplu.ch

 About the authors

Jarka Arnold

Jarka Arnold has longstanding experience as a lecturer of computer science at the Bern

University of Teacher Education. Web-based learning environments for programming

courses were developed under her guidance in the context of several research projects,

which are successfully being used at many education institutions (http://www.java-

online.ch and http://www.jython.ch).

Tobias Kohn

Tobias Kohn (http://www.tobiaskohn.ch/) completed his studies of mathematics at the

ETH Zürich in 2008 and since then works as a teacher of mathematics and computer

science at the Swiss high school (Gymnasium) Zürcher Oberland in Wetzikon. In the fall of

2012 he began his doctoral studies at the ETH Zürich in addition to his teaching, and seeks

ways of simplifying the introduction to computer programming.

Aegidius Plüss

Aegidius Plüss (http://www.aplu.ch) is a former professor for computer science and its

didactics at the University of Bern. He wrote the course book "Java exemplarisch" and was

involved in several courses in further education for computer science teachers. He

develops extensive libraries and programming environments for computer science classes.

Page 486

	titelseite
	inhalt
	00_00
	00_01
	01_00
	01_01
	01_02
	01_03
	01_04
	02_00
	02_01
	02_02
	02_03
	02_04
	02_05
	02_06
	02_07
	02_08
	02_09
	02_10
	02_11
	02_12
	02_13
	03_02
	03_00
	03_01
	03_02
	03_03
	03_04
	03_05
	03_06
	03_07
	03_08
	03_09
	03_10
	03_11
	03_12
	03_13
	03_14
	04_00
	04_01
	04_02
	04_03
	04_04
	04_05
	04_06
	05_00
	05_01
	05_02
	05_03
	05_04
	05_05
	06_00
	06_01
	06_02
	06_03
	07_00
	07_01
	07_02
	07_03
	07_04
	07_05
	07_06
	08_00
	08_01
	08_02
	08_03
	08_04
	08_05
	08_06
	08_07
	09_00
	09_01
	09_02
	09_03
	09_04
	10_00
	10_01
	10_02
	10_03
	10_04
	10_05
	10_06
	10_07
	10_5
	11_00
	11_01
	11_03
	11_04
	11_1
	11_2
	11_3
	11_5
	12_00

