tigerjython

Jarka Arnold, Tobias Kohn, Aegidius Pliss

PROGRAMMING CONCEPTS

in Python with the IDE TigerJython

These pages constitute an interactive
and fully online textbook on program-
ming with Python. It offers a wealth of
complete code examples, exercises, and
ideas on how to bring current topics to
your programming class. Its primary ob-
jective is to build up a solid under-
standing of the concepts of program-
ming, rather than a mere introduction to
the programming language Python.

www.programmierkonzepte.ch/eng|

Version 2.7, Last update: Nov 24 2021

Content

1. LEARNING ENVIRONMENTuttiiiiiiiiiiiiiieie et e et e e seianeeeaa e e 6
R S 1= (1] TR PR 7
A 1 A0S (=Y o £ SR 12
1.3 Instructions for Teachers...........occcuiiiiiiiii e 16
1.4 RASPDEITY Pl .o 17
2. TURTLE GRAPHICS.ottt 21
21 MoviNg the TURIE ..o 22
2.2 USING COIOIS .. .uuuiiiiiiiiiiiiiiii s 25
2.3 REPELLION ...ueieiiiiei s 28
2.4 FUNCHONS ...ttt e e e e e e e e e e e e s 32
2.5 PaArametlrso 35
2.6 Vari@bIEs.... ..o 38
A S - (Yo 1T o RS PRR 41
2.8 WHIlE IOOP .. e 44
2.9 RECUISIONS....eiiiiieei ittt e ettt e e e e e e r e e e e e e s s ter e e e e e e s annnnneeeeaaaeean 50
2t L O VY o o] o o S 55
211 TURlE ODJECES ..o 60
212 PrINTING oo e 66
213 DocumMeENtationcuuuiiiiiiiiie e 68
3. 2D GRAPHICS & PICTURES ...ttt e 72
R Tt O 0o o] o 14 F=1 =Y RS SRR 73
I3 (o] gl (o To] o 1= S PRSP SRR 77
3.3 Structured programming.........ccccciiiiiieeeie i e 81
3.4 Functions with return valuecccce e 84
3.5 Global variables,animationsooouuuueiiiiiieeeeeee e 87
3.6 Keyboard CONMIOISeeiiiiiiiieiie e 91
T A |V (o TU 1= =) =Y o | O 95
3.8 Thread graphiCs........couiiii i 101
3.9 Growing and ShrinKiNg........ccueiiiiiiiiii e 109
310 RANAOMNESS ..coiiiiiiiiiiiiii e e e e e e e e nnreeeeaaeeean 119
1 Tt I B [0 0 = To TN o] o Lot TS o o [H PRSI 125
312 Printing IMage..ccoo oo 134
B Tt I T VAT o T 1= SRR 137
3.14 Documentation GPanel ... 141
S 10 16 1 N PR PSR 146
4.1 Playing back SOUNGcoooiiiiiiiiii e 147
S To 10 Lo I =Yo 111 Vo TR PSPPSR 151
4.3 ReCOrding SOUNccoiiiiiiiiiiiiie et 154
4.4 SPEeCh SYNNESISccoiiiiiiiiiiiie e 158
4.5 AcoustiC €XPerimeENntsSccoooiiiiiiiieii e 161
4.6 Documentation SOUNd........coooiiiiiiiiiiiiiie e 164
LT (@ 1= T @ N N (8 PSR 165
5.1 Real and simulation mode..........c..oeoiiiiiiii e 166
5.2 Intelligent robOtS ... 173
5.3 Controlling and regulatingcccccveiiiiie i 182
5.4 SensorteChNOIOgY..........ooiiiiiiiiiiii et 186
5.5 Documentation RODOLICSuuui e 193
B. INTERNET ..ottt ettt e e st e e e st e e e et e e e enbee e e esbaeeeennreas 197
6.1 HTIML, StNGS.cciiieiiiiiiiiiiie et e e e e e e e e e e sennraeeeaaeeean 198
6.2 Client-Server-Modell, HTTP ... 203

LS 2R T =11 0T T B I Tox (o o =1 o VUSRS 208

7. GAMES & OOP ..ot 212

7.1, ODbJECtS BVEIYWRNEIEciiiiiiii e 213
7.2 Classes and ODJECESceiieiiiiiiiiiiee e 218
7.3 Arcade Games, FrOQQET.......cccuuiiiieeiiiiciieeee et e e e e 226
7.4 Gridgames, SONAIrEcccciiiiiii e 233
7.5 Sprite @animation...........cooiiiiiiiiiiiie e 240
7.6 DoCUMENTALIONeiiiiiiiiiie e 252
8. COMPUTER EXPERIMENTS ...oiiiiiiiii ittt 256
8.1 SIMUIALIONS ... 257
8.2 POPUIAIONS ...t 261
8.3 StatistiCal TeStS .ooeeeeieiee e 275
8.4 Average Waiting TiMEScocuueiiiiiiiiie e 284
8.5 Sequences, CONVEIGENCEcccuuriiiieee e ieeiiieeee e e e e eeeeeeeee e e e e s senneeeeeeaeee s 294
8.6 Correlation, REGreSSION..........cocciiiiiiie e 301
8.7 Complex Numbers & Fractalscccccceeviiiiiiiiii e, 318
8.8 SpPecCtral ANalYSiS......ccuuiiiiiei e 329
8.9 Group DYNaAMICS.......cccuviiiiiee et 335
8.10 RaANAOM WalKooiiiiiiiiiie e 342
9. DATABASES & SQL itiiiieiiiiiie ittt 349
9.1 PersiSteNCE, FilESuuee e 350
9.2 Online-Databases...........couiiiiiiiiiiiiiiiie e 354
9.3 Reservation SyStem ... 362
9.4 Documentation SQLcooviiiiiiiiiiiiire e 368
10. EFFICIENCY & LIMITATIONSooiiiii it e e s 369
10.1 Complexity With SOMINGcccooiiiiiiiii e 370
10.2 Unsolvable Problems ... 378
10.3 BacKiraCkingoooooiice e 385
10.4 Shortest Path, 3 JUGSuueiiiiiiii e 394
10.5 CryploSYSIEMIS ..o 405
10.6 Finite-state Machingscooooiiiiiiiii e 411
10.7 Information & OFAEr.........ueeiiiiiii e e e 419
I AN o o |] SRR 427
111 FUN MINd GamES ..ottt e e e e e e e e s nneeeeeeeeeean 428
11.2 Pitfalls, RUIES & THCKS.....ueeiiiiiiiiee e 441
11.3 BUQS & DEDUGGING ..t 447
11.4 Parallel ProCeSSINGcoueeieiiieee et e e e 455
11.5 Serial INterfaceooo i 468
116 TCOP SOCKELS....iii ittt et e e e 471
12. LITERATURE & LINKSttt ettt e e nnaee s 485
(O10]\ 17X G LRSS 486

This work is not protected by copyright and may be reproduced for any personal use and use in
the classroom. For non-commercial purposes can you make use off all Texts and programs
without reference to their origin.

Version 2.6, July 2016

Autors: Jarka Arnold, Tobias Kohn, Aegidius Pliss
English translation: Kristin and Florian Thalmann
Contact: help@tigerjython.com

Supported by the SVIA / SSIE / SVIA
Swiss Association for computer science in education

mailto:help@tigerjython.com

FOREWORD

In the beginning of the 1950s I had the privilege of using the first available programmable computer
in Switzerland, Zuse 4, to write my doctoral thesis at the Swiss Federal Institute of Technology (ETHZ)
in Zirich. The first steps in our country in computer sciences, later combined under the name
“informatics", only gradually found their way into cantonal universities, particularly the recognition of
informatics as a separate scientific discipline. At the ETHZ it was only in 1974 that the group of
computer science professors got their own institute in computer science and it took until 1981 for an
entire department of computer science to be initiated. The rapid development of the performance and
the miniaturization of computers significantly contributed to a huge increase in data production. This
led to an enormous expansion of data communications, which could only be accomplished with a more
widespread use of computers. Consequently, communication techniques had to be expanded and
access to them had to be enabled.

On our planet, which is threatened by an increasing growth of populations and their demands for
better living conditions, Switzerland can only maintain its position as one of the wealthiest and most
advanced countries with an exquisite standard of living, and direct democracy by having a modern and
efficient education system with high quality research. However, this requires not only taking account
of the latest developments in the ICT sector in an optimal expansion of our universities, but also a
redesign of the basic education offered in primary and secondary schools, as well as the teaching of
computer science in grammar schools. The three basic skills of reading, writing, and arithmetic are no
longer sufficient to ensure a satisfactory existence in today’s world, where computers play a key role
in personal and professional life. As the former Director of the Federal Office for Education and
Science, I fought for establishing computer science as a separate subject in grammar schools.

A question that arose was whether the integration of ICT subjects in teaching programs was sufficient
enough, or whether a more comprehensive knowledge in computer science, which allows for a better
use of modern computer technology, should be taught. The authors of the learning platform
TigerJython, who demonstrate how the most important concepts in computer science can be taught in
a simple way while using the Python programming language and a didactically designed programming
environment, give a concrete answer to this question. It provides an excellent foundation for their
recommendation that the subject of computer science be introduced in the 6th grade. The following
recently published Swiss press release titled "Die Schweizer EGovernmentAngebote sind im
internationalen Vergleich nur Mittelmass... Die Schweiz ist unter den europdischen Staaten gar auf den
vorletzten Platz zurlickgefallen" shows, in my opinion, the need for a timely response to this proposal
since this alarming regression is above all due to an inadequate knowledge of computer science in the
educational institutions. In our rich country with its high density of computers there exists no lack of
the necessary material requirements to correct this relaps!

Prof. Dr. sc. math., Dr. h.c. Urs Hochstrasser, former Director of the Federal Office for Education and
Science (http://hochstrasserurs.blogspot.ch)

PREFACE

TigerJython consists of online teaching materials and a development environment specially designed
for education. The online teaching materials begin with turtle graphics, but then continue on with
topics reaching from the programming of Lego robots, multimedia, and computer games to databases
and stochastic simulations. TigerJython is suitable for use both in the classroom and for self-study due
to its modular structure and its numerous examples and exercises. The first chapters can already be
used in introductory computer science courses in elementary schools (in Switzerland S1). As a whole,
the choice of topics and the material's scope correspond to a basic course of computer science at
grammar schools.

The authors are convinced that education in computer science contributes essentially to the
intellectual development of adolescents. In our opinion, it should already be taught in primary schools
no later than at the age of 12-13 years old, in order to awaken an early enjoyment and interest in
logical and technical thinking in pupils. The first version of the teaching materials were developed in
2013, and this is now the second version with revised and corrected materials. Throughout these
materials we have incorporated our years of experience with students, as well as our experience in
educating computer science teaching staff. Our intention was always to develop the interest and
enjoyment of algorithmic problem solving in girls and boys, and to support teachers.

In this teaching material, any barriers that might prevent someone from entering into programming
are deliberately kept very low, and throughout, the TigerJython programming environment and the
Python programming language are used. The teaching material was formed from a single mold, so to
speak. Much of the content comes from daily environments and problem situations in other school
subjects. This way, the knowledge from computer science class can be applied to other disciplines as
well.

Although Python was developed by Dutchman Guido van Rossum already over 20 years ago, it has
only really become used in schools in recent years and is now experiencing a real 'hype' in many
training institutions. This may be because Python as an interpreted language with its global scope is
very easy to learn, but also because Python can work with very few computer resources and even runs
on micro systems. Also, with our development environment TigerJython we offer a student-friendly
environment that is balanced between simplicity and professionalism. In our opinion, it is particularly
well suited for a computer science class for the following reasons:

* Installation on Windows/Mac/Linux consists of copying a single file to the computer. This way,

instructors can immediately start teaching, even in computer labs without administrator rights

The IDE is so simple that absolutely no introductory instruction is necessary for its operation.
Particularly, there is no need to create projects

TigerJython performs a precise error analysis of the program, and outputs error messages that are
understandable by novice programmers

TigerJython contains numerous additional modules that are specifically tailored for the classroom,
such as turtle graphics, coordinate graphics, robotics, and game programming

We hope that with TigerJython and the online teaching materials we are able to pass on some of our
enthusiasm for education in computer science.

Acknowledgements:

We want to thank all of those who contributed to the success of TigerJython with suggestions and
feedback, namely Walter Gander (ETH Zirich), Juraj Hromkovic (ETH Zirich), Theo HeuBer
(Gymnasium Hemsbach), Urs Hochstrasser (former Federal Office for Education and Science, Bern).

October 2014. Jarka Arnold, Tobias Kohn, Aegidius Pliss

chapter one

LEARNING ENVIRONMENT

Learning Objectives

You can install the TigerJython development environment on your computer.
You know how to edit and running a program.

You know how to change settings.
You know how to use the console window for simple calculations.
You know that you can even use Tigerlython on the Raspberry PI.

"I think everybody in this country should learn how to program a
computer because it teaches you how to think."

Steve Jobs, The lost interview

Page 6

1.1 SETUP

H INTRODUCTION

The development environment of Tigerlython is well suited for novice programmers and for
users who work in a protected environment (for example, computer labs without administrator
rights). The distribution of TigerJython consists of a single JAR file that can be downloaded for
free.

Download TigerJython

The distribution contains all of the components necessary for programming, except for the Java
Runtime Environment (JRE). Tigerlython is even capable of running from an external data
storage device (USB-Stick, CD).

TigerJdython is an independent platform that works flawlessly with ..'7 ‘= u&
Windows, Mac and Linux, and even Raspberry Pi. Windows Mac nux

M INSTALLATION

Download the file tigerjython2.jar. Save it to any directory on your hard drive, and if you would
like to, you can create a linked file so that you can start it directly from the desktop. If you are
on Linux, you have to give the JAR file the right to run (executable). You can save all of your
Python programs in the same directory. If you wish to assign a corresponding desktop icon to
the link, you can download it here for Windows and here for Mac/Linux.

B GETTING STARTED

Start the Tigerlython-Editor
either by clicking on
tigerjython2.jar or by clicking _:‘} E B |
on the link to the file.

File Edit Run Help

1 print "pyth
The editor is easy to operate.

There are buttons for New
document, Open, Save, Run
program, Debugger (on/off), -
Display console and Settings.
Test it out by typing in some
print-commands, then click on

~

2 print 2 * 3
3 print 45 %% 1

run program

python
the green Run program button. T
. .]
Unlike most other programming 221380413535717951381715090088095983R85877
languages, Python can deal 1251579035405 20200048
with numbers of any length. 4

Output | Problems

Page 7

http://jython.tobiaskohn.ch/download2.html
http://www.tigerjython.ch/download/tjlogo.ico
http://www.tigerjython.ch/download/tjlogo.ico
http://jython.tobiaskohn.ch/download2.html

B EDITING PROGRAM

Write a simple program to create a turtle graphic When editing, you can use standard
keyboard shortcuts:

Ctrl+C | Copy
Edit Run Help Ctrl+V [Paste
ﬁ&B|}|ﬁ.!|ﬁ Ctrl+X | Cut
: Ctrl+A | Select all

1 from gturtle import* Ctrl+Z | Undo
2 Ctrl+S | Save
3 makeTurtle () Ctrl+N | New document
4 Ctrl+0O | Open
5 forward(30) Ctrl+Y | Redo
& right{90) Ctrl+F | Search
7 forward(30) Ctrl+H | Search and Replace
g | Ctrl+Q | Comment out selected lines

Remove comment
Ctrl+D | Delete row
Shift+ | Highlight

Cursor

The example programs used in the tutorial
fm‘m gturtle import * are chosen so that you are able to use them

easily as templates.

| = ' You can select the entire program by

forward(141)

Teft (135) clicking on highlight program code. You can
forward (100} also select a part of the code by using the
Left (90) mouse. Use Ctrl+C to copy the highlighted
CElmissl ol code to the clipboard and Ctrl+V to paste it

Highlight program code (Ctrl+C copy, Ctrl+y INt0 your Tigerlython-editor window.

With the import command you tell the computer that

it should make certain commands in a module Our highlighting trick will help
available. The command makeTurtle() creates a you find the statements that are
window with a turtle that you n control. The mentioned in the text, in the
following lines of the code consist of'Sgommands (also program.

called statements) for the turtle itself.
By clicking on words written in
green, the corresponding

statement is highlighted in the

makeTurtle() program.

forward({l4l)
left {135)
forward (100}
left {90)
forward(100)

from gturtle import *

Highlight program code (Ctrl+C copy, Ctrl+Viaste)

Page 8

M RUNNING THE PROGRAM

Y Java Turtle Playground - = [IEM ’ Click on the green arrow to run the
program.

The graphic appears in a new window..

If something is wrong with the program, error
messages will appear in the problems window

B SETTINGS

ﬁ You can make some adjustments under the settings:

O Font size, indentation and font colors of the editor

O Language (German, English, French)

O Default size and background color of the turtle window, pen and turtle color
O Additional tools for enabling EV3-robotics, etc.

General | Advanced | Library | Synmxl | General | Advanced

Turtle's window size
() Default

() Auto

(@) Set size to: |(5[m, 500)

Fontsize: 14

Tabwidth:

Pen color
Indent lines automatically. Turtie color

[] save files before running them. Background color

GPanel's window size

(®) Default

Language:
English

() Set size to: |{ﬁun, 600)

Look and feel;

[] Enable EV3-Download

System

Run after download

IP Address: |10.0.1.1

Page 9

l DOCUMENTATION

There are additional modules that are integrated into Tigerlython, for example the turtle
graphic. By clicking on the APLU documentation in the Help tab, you can view the
documentation for these libraries.

Tiger)ython - un

File Edit Run |Help

[d & L_I APLU Documentation... ff——

About Tigerlython...

1

B EXAMPLES

We suggest that you work through the teaching material chapter by chapter. Transfer each
example program individually to the Tigerlython editor using highlight program code, Ctrl+C
and Ctr/+V, save them with an appropriate name, and then execute them.

You can also download all of the programs here.

Il INSTALLATION IN COMPUTER LABS FOR MULTIPLE USERS

TigerJython is limited to a single JAR file tigerjythonZ2.jar, so it is easily removable from any
computer. No installation process is required and no registry entries are made. For
user-definable options, a configuration file named tigerjython2.cfg is used, which is usually
automatically generated in the home directory of tigerjython2.jar. In computer labs, this file
can be managed by a system administrator. More information can be found here.

Note: In rare cases in computer labs, the JARs of APLU libraries (e.g. aplu5.jar) used by Java
are copied into <jrehome>/lib/ext. This may lead to conflicts with TigerJython which uses
specifically configured APLU libraries.

Il DESKTOP LAUNCHER FOR UBUNTU

Download image file tjlogo64.png from here and copy it into the directory where is
tigerjython2.jar.

For newer versions of Ubuntu, the gnome-panel must be installed:
sudo apt-get install gnome-panel

Generating the launcher file by pressing Alt-F2 and entering
gnone-desktop-itemedit --create-new ~/ Desktop

The dialog box fill (path to adjust tigerjython2.jar):

Create Launcher

* Type: | Application v
Name: | TigerJython

Command: | java-jar /home/aplu/tigerjython/tigerjython2.jar Browse...

Click on the icone and specify the downloaded image file tjlogo64.png. Confirm with OK.
Page 10

http://examples.tigerjython.ch

Il STARTING A PROGRAM WITHOUT THE TIGERJYTHON IDE

Since Python is an interpreted language, it is necessary that the interpreter is started to
execute a program script. Under Windows you may run a script from the command line with

java -jar jython.jar <prog.py>

provided that the current directory contains jython.jar and the script.

To ensure that the additional modules from the APLU library are automatically loaded, they
have to be included in the JAR file. Here you can download a modified jython.jar (named
ajython.jar) that contains the modules. Check the readme.txt in the download to get more
information how to proceed. Be aware that some Tigerlython specific language features are
missing, especially the repeat structure and some input dialogs. However it is not necessary to
install Python nor Jython.

Page 11

1.2 FIRST STEPS

M INTRODUCTION

A computer program typically consists of several statements. With Python, you can immediately
execute single statements. This approach is a particularly good way to try out Python for the
first time or test something out. To get started you have to click on the console icon, which
opens the console window. On the command line that starts with >>>, you can type the
instruction and then end it with the ENTER key (carriage return). As in any other ordinary
editor, you can easily use the cursor keys to move back and forth on the command line and
delete or insert single characters. As soon as you press ENTER the command line is executed,
unless it is a multi-line command. In this case, the command is only executed after you press
ENTER repeatedly.

You can mark already processed statements with the mouse, and copy it to the clipboard using
Ctr/+C. You can paste the contents of the clipboard when you are on the command line using
Ctrl+V.

The underline symbol is a placeholder for the result of a previous calculation, using Cursor-Up
you can get the last command and using Cursor-Left/Cursor-Right edit.

M GETTING TO KNOW PYTHON

2 Tigerlyt

You can vary the following proposals File Edit Run Help
as you wish, how ever you might find 2 -
them to be more interesting or fun. Ly O H‘r‘}'| @ | 'F.. ;. | 7%
Start TigerJython and select the 1 I
Console button.
Start by typing the examples below to
get to know the four basic arithmetic open console
operations:
>>>4 + 13
17
>>>25-57
-3.2

>>> 1356 * 22345
30299820

>>>1/7
0.14285714285714285

As you see, you can use whole numbers or decimals. The whole numbers are called integer
(int) and the decimals are called float.

You can write several operations on a single line. Pay attention to the order of operations
that applies, where * and / bind more strongly than + and -, and with operations of the same
rank, the expression is evaluated from left to right. You can put the operations that belong

together in parentheses. (Square and curly brackets have different meanings):
Page 12

>>>(66-12)*5/6
45.0

>>>66-12*5/ 6
56.0

The integer division and the remainder (modulo operation) are also important:

>>>5//3
1

>>> 503
2

Python can easily manage long numbers without a problem, for example with the use of the
power operator:

>>> 45%*123
22138041353571795138171990088959838587798501812515796
35495262099494113535880540560608088894435720496058262
03407737866682728901508127084151522949268748976128137
6128136645054322872994134741020388901233673095703125L

There are a number of built-in functions, for example:

>>> abs(-9)
9

>>>max(l, 5, 2, 4)
5

Many other functions are available only after you import the respective modules. You can
import in two ways. In the first way, you must precede a function with its module name
followed by a dot. In the second way, you can call the function directly.

>>> import math >>> from math import *
>>> math.pi >>> pi
3.141592653589793 3.141592653589793
>>> math.cos(pi) >>> sin(pi)
-1 1.2246467991473533e-16

Here you can see that a computer program never calculates exactly, since sin(pi) would have to
be exactly 0.

A succession of letters and punctuation marks is called string and you can define it by using
single or double quotes. With the print command, you can write strings and other values to an
output window. The comma is used as a separator.

>>> print "The result is", 2

Produces in the output window: The result is 2

As in mathematics, you can assign values to variable names. To do this, use an identifier of one
or more letters. Some characters are not allowed such as blank spaces, umlauts, accents and
most other special characters. One benefit of using variables is to achieve a previously
calculated result faster. Quite conveniently, the already known variables are listed in the right
section of the console window.

>>> g =2

>>>ph=3

>>>sum=a+b

>>> print "The sum of", a, "and", b, "is", sum

Produces in the output window: : The Sum von 2 and 3 is 5
Page 13

A one-dimensional collection of arbitrary data is called a list. Lists are a highly convenient and
flexible data type in all programming languages. In Python you simply write list items in square
brackets and you can also display them in the output window by calling print.

>>> |i = [1, "chicken", 3.14]
>>> print li

In the output window: [1, "chicken", 3.14]

Lists and many other objects have associated functions which are called methods. For example,
you can add a new element to the end of the list with the method append().

>>> li.append("egg")
>>> print li

In the output window: [1, ‘chicken’, 3.14, 'egg']

You can also define your own functions. For this purpose, you will use the keyword def. You
can return values using return. After you define it, you can call your function as you would with
any other built-in function:

>>> def sum(a, b):
>>> returna+b
>>> sum(2, 3)

5

GIVING THE TURTLE COMMANDS

The console is very useful for quickly trying out a few
commands or functions. For example, if you want to
familiarize yourself with turtle graphics, first import the
module gturtle and then create a window with a turtle in
it using the command makeTurtle().

>>> from gturtle import *
>>> makeTurtle()

Afterwards, you have all the commands of turtle
graphics at your disposal. For example:

forward(100) short: fd(100) Move 100 steps (pixels) forward

back(50) short: bk(50) Move 50 steps backwards

left(90) short 1t(90) Rotate 90° to the left

right(90) short: rt(90) Rotate 90° to the right

clearScreen() short: cs() Delete all traces and place the turtle in the middle
Example:

>>> fd(100)
>>> dot(20)
>>> rt(90)

>>> fd(100)
>>> dot(20)
>>> home()

Page 14

With the keyword repeat you can execute one or more
statements repeatedly. If you want to repeat a series of
commands as a command block, you have to indent them
by the same amount.

>>> repeat 4:
fd(100)
rt(90)

As shown above, you can combine several statements
under their own name by defining your own function.
The main advantage of functions is that you can call
them by their name as often as you would like, instead
of writing down their code in its entirety each time.

>>> def drawSquare():
repeat 4:
fd(10 0)
rt(90)

>>> drawSquare()
>>> rt(180)
>>> drawSquare()

It might be fun to try some more turtle commands on your own. You can find an overview of
the commands in the chapter Turtle Graphics under dokumentation. In that chapter you will
also systematically learn how to write entire programs.

Page 15

1.3 INSTRUCTIONS FOR TEACHERS

The teaching material has an internal methodological structure that transitions "from simple
to complex". Later chapters apply the basic knowledge and concepts that are covered in the
preceding chapters. In total the material covers around 2-3 years of basic lessons. Depending
on the grade of the class and the number of lessons available, only selected parts of the
material can be taught, and missing terms and concepts have to made up. Since turtle graphics
are a great way to be introduced to the material, most basics are taught in this chapter.

Based on our teaching experience, we suggest the following minimal program variants.

1. Turtle graphics and student projects (as an introduction to computer science in secondary
education S1 and S2, 1-2 hours per week for a year)

2. Selected topics in turtle graphics and the chapter on robotics (as an introduction to
computer science or for computer science workshops, if Lego EV3 or NXT-robots are
available, at least 10-20 lessons)

3. Selected topics in turtle graphics and game programming (1-2 hours per week for a year at
higher schools)

4. Selected topics in turtle graphics, coordinate graphics and applications in school subjects
(as an introduction to computer science with interdisciplinary applications, 1-2 lessons per
week for a year)

5. The first topics of turtle graphics (as an introduction to programming in ICT courses, 4-10
lessons)

We decided to use English identifiers and comments in the programs. This not only helps to
facilitate the translation into other languages, but also corresponds with the trend towards the
internationalization of program code.

As an aid for teachers there is a keyword list including important concepts in computer
science for each topic.

Solutions to the exercises:

If you are working at an educational institution you can get the solutions of the exercises by
writing an e-mail to help@tigerjython.com. The request must include the following verifiable
information: name, address, educational institute, and e-mail address. By requesting the
solutions, you agree that you will use them strictly for personal use and that you will not pass
them on to anyone else.

Copyrights:

This work is not copyrighted and may be reproduced freely for personal use and for use in a
classroom. For non-commercial purposes, texts and programs may be used without reference
to their source.

Page 16

1.4 RASPBERRY PI

@ INTRODUCTION

You can use Tigerlython on the Raspberry Pi in
order to learn the Python programming language or
in order to access its sound system and GPIO port.
Although Tigerlython starts slightly slower than the
pre-installed Python with IDLE, you will have a more
sophisticated graphical development environment
with many library routines already integrated (turtle
graphics, robotics, game development, etc.) at your
selection.

M INSTALLATION

The easiest way to get started is downloading the operating system installer NOOS from
http://www.raspberrypi.org/downloads copying the content to a SD card (a minimum of 8
GB), and choosing the operating system Raspbian (a Linux Debian variant) when starting up.
Since the distribution already includes a JRE, you will only need to copy tigerjython2.jar into a
directory, for example /home/pi/tigerjython, and give the file execution rights with the file
manager (under File properties).

To start Tigerlython, type the following command into a terminal (console):
java -jar /home/pi/tigerjython/tigerjython2.jar

In order to use the GPIO module, Tigerlython requires administrator rights. That is why you
should always start TigerJython with a preceding sudo:

sudo java -jar /home/pi/tigerjython/tigerjython2.jar

Instead of typing this command each and every time, you can specify in the file manager that
files with the file type .jar are always executed using this command. You can also create a shell
script. To make it even easier, you can make a desktop link proceeding as follows:

O Right click and copy the icon IDLE and then paste it onto the desktop, creating a new link
icon.

O In order to edit the associated link script, right click on this icon and choose Leafpad. You
can now adjust the entries accordingly and even specify a TigerJython logo (download).
Here is an example:

Datei Bearbeiten Suchen Optionen Hilfe

|[Desktop Entry]

Name=Tiger

Exec=sudo java -jar /home/pi/tigerjython/tigerjython2.jar
Icon=/usr/share/pixmaps/tjlogol.png

Terminal=false

Type=Application

Categories=Application;Development;

StartupNotify=true

After saving, you can start Tigerlython by clicking on the new icon. You will need a little bit of
Page 17

https://www.raspberrypi.org/downloads

patience until the IDE has started on the Raspberry Pi (about one minute). Fortunately, as you
will notice, running Python programs is surprisingly fast. We recommend to use a fast SD card
(class 10) and the Raspberry Pi 2 Model B.

DIGITAL INPUT/OUTPUT USING THE GPIO PORT

Raspberry Pi provides you with 17 digital input/output channels that can be tapped on a 26-pin
connector (new version 40-pin also supports). Each channel can be defined as an output or an
input with either an internal pull-up resistor, a pull-down resistor, or without a resistor. There
are also 5V, 3.3V, and ground pins available on the connectors. The input voltage must
never exceed 3.3V, so you should not connect external 5V-logic outputs directly to the
inputs.

In TigerJython, you will find the class GPIO in the module RPi_GPIO, using which you can easily
address the I0 ports. The module uses the library Pi4) by Robert Savage, but corresponds to
the module RPi.GPIO. All the necessary files are included in the distribution of TigerJython.

By default, the pins of the GPIO ports are used with the pin numbers 1..26. Each pin can be
defined with GPIO.setup() as input or output channel. With GPIO.output(channel, state) can
you set an output value. With GPIO.input(channel) can you read und return the current input
value. You find the detailed documentation under the menu option Help > APLU Documentation.

In order to test it, you simply connect an
LED to a series resistance between pin 6
(ground) and pin 12, whereby you have to 33V ~
try out the polarity of the LED (it is not
destroyed due to an incorrect polarity). If
you have a key switch available, you can
connect it between pin 6 (ground) and pin
26.

In your program you first define channel
12 as an output and make the LED blink
10 times per second: "

.
220 Ohm

fromRPi _GPIO inmport GPIO

GPI O. setup(12, GPI O. OUT)

19

whi |l e True:
GPI O. out put (12, 1)
GPI O. del ay(100)
GPI O. out put (12, 0) o
GPI O. del ay(100)

PUSHBUTTON

For the demonstration of an input port you connect a key switch at pin 26. Typically you will
need a few flags, so you can turn on the blinking by pressing the button and turn it off by
pressing it again.

from RPi _GPI O inmport GPIO

pin nunbers
switch = 26
led = 12

print "Press button turn blinking on/off"

GPl O. setup(l ed, GPI O. OUT)
GPl O. setup(switch, GPIO. IN, GPl QO PUD UP)

Page 18

butt onPressed = Fal se
bl i nki ng = Fal se
| edOn = Fal se

whi |l e True:
v = GPlI O input(swtch)
if not buttonPressed and v == GPI O. LOW
butt onPressed = True
bl'i nking = not blinking

if buttonPressed and v == GPI O. HI GH:
butt onPressed = Fal se

if blinking:
if |edOn:
|l edOn = Fal se
GPI O. out put (1 ed, GPI O.LOW
el se:
|l edOn = True
GPI O. out put (1 ed, GPI O. HI GH)
el se:
|l edOn = Fal se
GPI O. out put (I ed, GPI O. LOW
GPI O. del ay(100)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

In the loop you first get the current state of the key switch (you "poll" it). When pressed, it
connects GND to the input on pin 26, therefore input(26) returns GPIO LOW or 0. When you
release the button, it causes the internal pull-up resistor to set the input to logic HIGH (3.3V),
without needing to create the voltage from the outside.

The use of the key switch as an on/off switch is a little tricky, because despite the constant
polling you have to convert the turning on/off into an event that only occurs when the switch
goes down. For this you use a flag buttonPressed, which you set to True upon the first key
pressing. After that you do not walk through the respective part of the code again, until you
have released the switch and pressed it again.

Since the loop is also responsible for the flashing, you use a flag blinking, that represents the
on/off status. Finally, you have to remember with the flag /edOn, whether in a specific
iteration of the loop the LED should be turned on or off.

Because you are not sure if the LED is lit up at the moment of switching off, you switch it off in
the last else. It is a small imperfection that after that, the program will still always run through
that code.

An electronic engineer knows that when a key is pressed it does not usually make immediate
contact (it "bounces"). However, since the loop is only repeated after 100 ms due to the
delay(100), we can assume that the "bouncing" will have ended.

USING EVENTS

It is much easier to use the event model. The pressing and releasing the button is here
regarded as an event that calls automatically a function onButtonPressed(). There, you only
need the flag blinking reverse.

Page 19

from RPi _GPI O inmport GPIO

def onButtonPressed(channel, state):
gl obal blinking
bl i nki ng = not blinking

pin nunmbers
switch = 26
led = 12

print "Press button to turn blinking on/off"

GPI O. set up(l ed, GPI O. OUT)

GPI O. setup(switch, GPIO. IN, GPIO PUD_UP) # pull-up resistor

GPI O. add_event _detect(switch, GPIO FALLING # event on falling edge
GPI O. add_event _cal | back(swi tch, onButtonPressed) # register call back

bl i nking = Fal se
while True:
i f blinking:
GPI O. out put (1 ed, 1)
GPI O. del ay(100)
GPI O. out put (1 ed, 0)
GPI O. del ay(100)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

To use events, you must specify with the method add_event_detect(), whether you want to
respond to the transition from low to high or high to low or both. After that you register with
add_event_callback() a function to be called when the event occurs.

Page 20

i chapter two
hay

TURTLE GRAPHICS

Learning
Objectives

You can write a simple program and draw figures on the screen with the turtle.
You can change the color of the lines and areas, and also adjust the line width.
You know how the turtle can repeat statements several times.

You know how to run parts of the program only under certain conditions.

You can define your own commands with parameters.

You know what variables are and you can use them in your programs.

You know what recursion is and you can write simple recursive programs.

You can create turtle objects and use multiple turtles simultaneously.

L S N . . - S

"A turtle is located at a certain place and it also has a certain
viewing direction. Therefore, a turtle is like a person... children can
identify with the turtle and can transfer their knowledge of their
bodies into the learning of geometry."

Seymour Papert

Page 21

2.1 MOVING THE TURTLE

M INTRODUCTION

Programming means giving a machine commands in order to control it. The first such machine
that you will control is a small turtle on the screen, which we simply call turtle. What can this
turtle do and what do you have to know in order to control it?

Turtle commands are written in English and are always followed by a pair of parentheses, which
may contain further details about the respective command. Even if no further information is
required, an empty pair of parentheses must follow. The case of the letters (either upper case or
lower case) must always stay consistent.

The turtle can move within its window and draw a trail, but before it can get going, you must
first instruct the computer to create such a turtle. You can do this with the command
makeTurtle(). In order to then move the turtle, you can use three commands: forward(distance),
left(angle), and right(angle).

PROGRAMMING CONCEPTS: Edit source, run program, sequence

B YOUR FIRST PROGRAM

This is how your first program with the turtle looks.
Click on Mark program code, copy it and paste it into
the Tigerlython-Editor. Execute it by clicking on the
green start button. The turtle will draw a right triangle.
The turtle commands are all stored in a file (a so-called
module) named gturtle. With the import command you
tell the computer that it should make certain commands
in a module available. The command makeTurtle()
creates a window with a turtle that you can control. The
following lines of the code consist of commands (also
called statements) for the turtle itself.

fromgturtle inport *
makeTurtl e()

forward(141)
| ef t (135)
f orward(100)
I ef t (90)
f orwar d(100)

H MEMO

At the beginning of each turtle program you must first load the turtle module, and then create
a new turtle:

fromgturtle inport *
makeTurtl e()

Page 22

Afterwards, you can give any amount of commands to the turtle. The three commands that the
turtle surely understands are:

forward(s) Move forward by distance s (in pixels).
left(w) Rotate left by angle w (in degrees).
right(w) Rotate right by angle w (in degrees).

B YOUR OWN TURTLE IMAGE

You can also specify your own file while calling .
makeTurtle(), which is then used as the turtle picture.
This way, you can give the program your own personal
touch. Here you can use the file beetle.gif from the

directory sprites of the TigerJython distribution. Please . ﬁ .
note that you must put the file name in quotation
marks.

With the following code, the turtle will draw a cross with
filled circles at the end points. .

fromgturtle inmport *
makeTurtl e("sprites/beetle.gif")

f or war d(100)
dot (20)
back(100)

ri ght (90)

f orward(100)
dot (20)
back(100)

ri ght (90)

f orward(100)
dot (20)
back(100)

ri ght (90)

f or war d(100)
dot (20)
back(100)

ri ght (90)

B MEMO

If you want to use a different image for the turtle, as seen in the above example, you must
first create an icon with an image editor. Normally, turtle images have a size of 32x32 pixels
and a transparent background and are typically in GIF or PNG format. The image file should be
stored in the subfolder sprites of the same directory in which your program is located.

In the above program you are using the new command back(), with which the turtle moves
backwards, as well as dot(), with which the turtle draws a filled circle, the radius of which you
can specify (in pixels).

Page 23

B EXERCISES

1. Draw two nested squares with the turtle.

2. Using the command dot(), try to draw the following
figure:

3. The House of Saint Nick is a drawing game for kids. The goal is
to draw the house using exactly 8 lines, without passing
through the same route twice. Draw the House of Saint Nick
using the turtle.

4*, Create your own turtle icon with an image editor and
draw the adjacent picture with it. The side length of the
squares is 100. It does not matter where the turtle
begins or ends. H‘

K&

Page 24

2.2 USING COLORS

@ INTRODUCTION

The turtle draws its trail using a colored pen, for which it knows some additional instructions. As
long as the pen is down, the turtle draws a trail. Using the statement penUp(), it moves its pen
up and stops drawing. With penDown(), the pen is brought back down to the drawing area, so
that a trail is drawn again.

Using setPenColor(color) you can select the color of the pen. It is important that you put the
name of the color inside quotation marks. As always in programming, the turtle knows only
English color names. The following list is not complete, but here are some examples: yellow,
gold, orange, red, maroon, violet, magenta, purple, navy, blue, skyblue, cyan, turquoise,
lightgreen, green, darkgreen, chocolate, brown, black, gray, white.

PROGRAMMING CONCEPTS: Drawing with colors

COLOR AND PEN WIDTH

This program makes the turtle draw a candle with a
wide red line. You can set the line width in pixels using
the command setLineWidth().

You can draw the yellow flame with the command
dot(). There is one part of the program where the turtle
moves without drawing a line, because the pen was
lifted with the command penUp(). After penDown() is
called, the turtle draws again.

hideTurtle() makes the turtle invisible.

fromgturtle inmport *
makeTurtl e()

set Li neW dt h(60)

set PenCol or ("red")

f orward(100)

penUp()

f orwar d(50)
penDown()

set PenCol or ("yel | ow")
dot (40)

set Li neW dt h(5)

set PenCol or (" bl ack")
back(15)

hi deTurtl e()

Highlight program code (ctri+C copy, Ctrl+V paste)

B MEMO
Page 25

The drawing pen of the turtle can change color with use of the statement setPenColor(color).
With penUp() the turtle stops drawing, and with penDown() it continues to draw again. You
can control the width of the line using setLineWidth(width).

The turtle knows the so-called X11 colors. There are a few dozen names of colors which you
can find on the Internet http://cng.seas.rochester.edu/CNG/docs/x11color.html . You
can select all of these colors with the setPenColor(color) statement.

B FILLED AREAS

You can fill almost any area with colors using the turtle.
With the command startPath(), you tell the turtle that
you intend to fill an area. The turtle remembers its
current position as the starting point of a sequence of
lines. You then move around the area with the turtle
and finally call the command fillPath(), which connects
the start point to the end point and fills in the resulting
area with color. You can adjust the fill color with
setFillColor(color).

Lines starting with the hash symbol (#) are called
comments, which are ignored during the execution of
the program. You can add these to make notes for
yourself or others.

For example, you could specify under which program name the file is stored, or add text that
explains your code.

fromgturtle inport *
makeTurtl e()

set PenCol or (" sandybr own")
set Fill Col or ("sandybrown")
start Pat h()

f orward(100)

ri ght (45)

forward(72)

right (90)

forward(72)

right (45)

f orward(100)

fillPath()

hi deTurtl e()

Highlight program code (ctri+C copy, Ctrl+V paste)

B MEMO

If you want to fill an area defined by a sequence of lines, you begin drawing with the command
startPath(). Using fillPath(), the start point and the end point are connected and the
enclosed area is filled.

You can write comments by starting a code line with the # symbol.

B EXERCISES

Page 26

Draw a regular hexagon with the turtle and make each side a
different color.

Draw a traffic light. You can draw the black rectangle with a pencil

width of 80 and the circles with dot(40).

The turtle should draw the adjacent image.

Page 27

2.3 REPETITION

M INTRODUCTION

Computers are particularly good at repeating the same instructions (including turtle commands)
over and over again. In order to draw a square, you do not need to enter the commands
forward(100) and left(90) four times in a row. It is rather sufficient to tell the turtle to simply
repeat the two statements four times.

With the instruction repeat, you tell the turtle that some commands should repeat a designated
number of times. In order for the computer to know that these commands belong together

(forming a program block), they must be equally indented. Typically, we use three spaces for
indentation.

PROGRAMMING CONCEPTS: Simple repeat loop, repeat loop instead of code duplication

REPEAT - STRUCTURE
In order to draw a square, the turtle has to move
straight ahead four times and make a total of four 90°
turns. If you were to write out each command
separately, the program would become quite long.
With the instruction repeat 4: you tell the turtle to
repeat the indented lines four times. Make sure not to
forget the colon!
fromgturtle inport *
makeTurt !l e()
repeat 4:
forward(100)
| ef t (90)
Highlight program code (ctri+C copy, Ctrl+V paste)
MEMO

With repeat n: you tell the computer that it should repeat one or more instructions n times
before it executes further instructions. Everything that is to be repeated must be placed below
repeat, and must also be indented.

repeat nunber:
I nstructions, that
shoul d be
repeat ed

Page 28

B REPEATING SOUNDS

A typical example of a repetition is the Dah-Dih-Dah-Dih
sound of fire trucks. Using the turtle you can easily
create such a tone sequence, and simultaneousely for
fun, you can let the turtle draw a zigzag curve. You can
generate a pure tone with playTone(), where you

specify its pitch as a frequency (in Hertz) and its /\/\//\/\/\

duration (in milliseconds).

fromgturtle inport *
makeTurtl e()

set Pos(-200, 0)
ri ght (45)

repeat 5:
pl ayTone(392, 400)
f orwar d(50)
right (90)
pl ayTone(523, 400)
forward(50)
| eft (90)

Highlight program code (ctri+C copy, Ctrl+V paste)

B MEMO

With setPos(x, y) you can directly put the turtle into a designated position in the window
without actually making a trace. The two numbers, x and y, are the coordinates relative to the
zero point, which is located at the middle of the window. (The coordinate range depends on the
size of the window.)

You can also specify the pitch of playTone() using a letter according to the musical scale, for
example with ¢, d, etc., or in the one-line octave with ¢', d', etc. (or with two or three
apostrophes). You have to put quotation marks around the pitch. If you want, you can also
indicate a musical instrument to be used (available are: piano, guitar, harp, trumpet,
xylophone, organ, violin, panflute, bird, seashore). Try it once with:

Lower Ton: playTone("g'", 400, instrument = "trumpet")
Higher Ton: playTone("c'"", 400, instrument = "trumpet")

M NESTED REPEATS

A square can be made quite easily with a four-fold repetition. Now let's draw 20 squares, with the
squares slightly rotating against each other.

Page 29

You first have to nest the two repeat statements into
each other. In the inner program block, the turtle
draws a square and then turns by 18 degrees to the
right. The outer repeat statement repeats this 20

times. Please make sure to correctly indent the %
statements that should be repeated. w

If you hide the turtle with hideTurtle(), it will finish
drawing quicker.

fromgturtle inport *
makeTurt !l e()

hideTurtle()
repeat 20:
repeat 4:
f orward(80)
I eft (90)
right(18)

Highlight program code (ctri+C copy, Ctrl+V paste)

H MEMO

The repeat commands can be nested. It is very important to have the correct indentations in
the statements which are to be repeated.

B EXERCISES

1. Draw a staircase with seven steps.

2. Draw a star using the back() command.

~
™~

N/

3. You can draw a “real” star with rotation angles
140° and 80°.

Page 30

4. Draw the following figure using two nested repeat
statements. The inner repeat block will draw a
square.

5. Draw a pearl necklace.

6. Draw a bird.

Page 31

2.4 FUNCTIONS

M INTRODUCTION

In a larger picture, you may want to use figures such as triangles and squares repeatedly.
However, the turtle itself does not know what a triangle or a square is. Therefore you have to
explain to the turtle how to draw the figures each time with a complete program code. Is this
possible in an easier way?

It is! You can teach the turtle new commands, for example how to draw a square or a triangle.
Then you simply have to tell the turtle that it should execute such a command, namely draw a
square or a triangle. In order to define a new command, you can choose any given identifier, for
example square, and then write def square(): After that, you then write down all of the
instructions belonging to the new command. In order for the computer to know what is part of
the new command, the instructions must be indented.

PROGRAMMING CONCEPTS: Modular programming, function definition, function call

M DEFINING YOUR OWN COMMAND

In this program you will use def to define the new
command square(). Afterwards, the turtle will know
how to draw a square, however, it will not have drawn

one yet.

Using the command square() the turtle draws a square
at its current position with a side length of 100. In our
example there is a red, a blue, and a green square.

fromgturtle inport *

def square():
repeat 4:
forward(100)
| eft (90)

mekeTurtl e()

set PenCol or ("red")
square()

right(120)

set PenCol or (" bl ue")
square()

right(120)

set PenCol or ("green")
square()

Highlight program code (ctri+C copy, Ctri+V paste)

Page 32

H MEMO

You can define a new command using def identifier(): Choose a name that reflects the
activity of the command. All instructions that belong to the new command must be indented

def identifier():
instuctions

Do not forget to put brackets and the colon after the identifier! In Python you also call new
commands functions. When you use the function square() one could also say that the function
is "called".

We should get used to placing the function definitions in the program header, since they have
to be defined before they are called

import ‘
program head
functions (
main block

B EXERCISES

1. Define a command hexagon() with which you can draw a
hexagon, then use this command to draw the adjacent
figure.

2b*.You can draw filled squares by using the
commands startPath() and fillPath().

2a. Define a command that draws a square standing
on one of its corners, then use this command to
draw the adjacent figure.

3a. In this task, you will experience how to solve a problem step by
step using functions [more...].

Define a function arc() that tells the turtle to draw an arc and
rotate a total of 90 degrees to the right. You can set the
maximum value of the turtle's speed with speed(-1).

Page 33

3b. Add the function petal() to the program, which will draw two
arcs. At the end, the turtle should be back in the original starting
direction.

3c. Add another command to the program so that the petal() is
drawn as a filled red leaf (without a visible border line).

3d. Extend the program with the function flower(),
which draws a five-petalled flower. To make the
turtle draw the flower even faster, use the
function hideTurtle() to make the turtle invisible.

3e*. Add a stem to the flower.

X
X

Page 34

2.5 PARAMETER

B EINFUHRUNG

Beim Befehl forward() gibst du in Klammern an, um welche Strecke die Turtle vorwarts gehen
soll. Dieser Wert in den Klammern gibt an, wie weit vorwarts gegangen wird. Er prazisiert den
Befehl und heisst ein Parameter: Hier ist es eine Zahl, die bei jeder Verwendung von forward()
anders sein kann. Im vorhergehenden Kapitel hast du einen eigenen Befehl square() definiert.
Im Unterschied zu forward() ist die Seitenldange dieses Quadrats aber immer 100 Pixel. Dabei
ware es doch in vielen Féllen praktisch, die Seitenldnge des Quadrats anpassen zu kénnen. Wie
geht das?

PROGRAMMIERKONZEPTE: Parameter, Parameteriibergabe

BEFEHLE MIT PARAMETER

Auch in diesem Programm definieren wir ein Quadrat.
An Stelle der Ileeren Parameterklammer bei der
Definition der Funktion square(), setzen wir den
Parameternamen sidelength ein und verwenden diesen
beim Aufruf von forward(sidelength).

Du kannst dadurch square mehrmals verwenden und bei
jeder Verwendung eine Zahl fir seite angeben.

Mit square(80) zeichnet die Turtle ein Quadrat mit der
Seitenldnge von 80 Pixeln, mit square(50) eines mit
der Seitenldange von 50 Pixeln.

fromgturtle inport *

def square(sidel ength):
repeat 4:
forward(sidel ength)
| eft (90)

mekeTurtl e()

set PenCol or ("red")
squar e(80)

| ef t (180)

set PenCol or ("green")
squar e(50)

Programmcode markieren (Ctri+C kopieren, Ctrl+V einfiigen)

MEMO

Parameter sind Platzhalter fiir Werte, die jedes Mal anders sein kdénnen. Du gibst den
Parameter bei der Definition eines Befehls hinter den Befehlsnamen in einem Klammerpaar an.

def befehl sname(paraneter):
Anwei sungen, die
par anet er verwenden

Der Parametername ist frei wahlbar, sollte aber seine Bedeutung wiederspiegeln. Bei der

Page 35

Verwendung des Befehls gibst du wieder in Klammern den Wert an, den der Parameter haben
soll.

bef ehl snane(123)

Hier wird der Parameter im ganzen Befehl durch 123 ersetzt.

B MEHRERE PARAMETER

Befehle kdnnen mehrere Parameter besitzen. Beim
Quadrat kannst du zum Beispiel mit def
square(sidelength, color) als Parameter seite und
farbe wahlen.

Du kannst dann quadrat viel flexibler verwenden.Mit
square(100, "red") =zeichnet die Turtle ein rotes
Quadrat mit der Seitenldange von 100 Pixeln, mit
square(80, "green") ein grines mit der Seitenlange
von 80 Pixeln.

fromgturtle inmport *

def square(sidel ength, color):
set PenCol or (col or)
repeat 4:
forward(sidel ength)
| eft (90)

makeTurtl e()

squar e(100, "red")

|l eft (120)

square(80, "green")
I eft(120)

square(60, "violet")

B MEMO

Befehle kénnen mehrere Parameter besitzen. Diese werden in der Parameterklammer getrennt
mit Komma eingegeben.

def befehl sname(paranmeterl, paraneter2....):
Anwei sungen, die paraneterl
und paraneter2 verwenden

Die Reihenfolge der Parameter in der Parameterklammer bei der Definition des Befehls muss
mit der Reihenfolge der Werte beim Aufruf des Befehls Ubereinstimmen.

B AUFGABEN

1. Definiere einen Befehl triangle(color), mit welchem die
Turtle farbige Dreiecke zeichnen kann. Zeichne 4 Dreiecke
in den Farben red, green, blue und violet

Page 36

5%,

Definiere einen Befehl colorCircle(radius, color), mit
welchem die Turtle einen farbigen Kreis zeichnet. Du
kannst dabei den Befehl rightArc(radius, angle)
verwenden. Zeichne die nebenstehende Figur. D

Das folgende Programm zeichnet leider 3 gleich grosse Fiinfecke, aber nicht wie gewiinscht
verschieden grosse. Warum nicht? Korrigiere es.

fromgturtle inmport *

def pentagon(sidel ength, color):
set PenCol or (col or)
repeat 5:
forwar d(90)
left(72)

makeTurtl e()

pent agon(100, "red")

|l eft(120)

pent agon(80, "green")
I eft(120)

pent agon(60, "violet")

Du sagst der Turtle mit dem Befehl segment(), sich um eine bestimmte Strecke s vorwarts
zu bewegen und sich um einen bestimmten Winkel w nach rechts zu drehen:

def segnment(s, w):
forward(s)
right(w

Schreibe ein Programm, das diesen Befehl 92 mal mit s = 300 und w = 151 ausfihrt. Mit
setPos(x, y) kannst du die Turtle zu Beginn geeignet im Fenster positionieren.

Die Turtle soll zwei, drei oder vier segment-Bewegungen ausflihren. Schau dir die schdonen
Grafiken in folgenden Féllen an:
Anzahl Segmente Werte Anzahl Wiederholungen
2 forward(77) 37
right(140.86)
forward(310)
right(112)
3 forward(15.4) 46
right(140.86)
forward(62)
right(112)
forwad(57.2)
right(130)
4 forward(31) 68
right(141)
forward(112)
right(87.19)
forward(115.2)
right(130)
forward(186)
right(121.43)

Page 37

2.6 VARIABLES

M INTRODUCTION

In the previous chapter, you drew squares with side lengths that were firmly implemented in the
program. There may also be times when you want to enter the side length with an input dialog.
In order to do this, the program needs to store the entered number as a variable. You can see
the variable as a container, the content of which you can access with a name. So, in short, a
variable has a name and a value. You can freely choose the name of a variable, but they
cannot be keywords or names with special characters. Moreover the name cannot start with a
number.

With the notation a = 2 you create the container that you
can access with the name a and put the number 2 inside. In
the future we will say that you are defining a variable a
and assigning a value to it.

You can only put one object into the container. Later in
your program, when you want to store another number 3
under the name a, write a = 3 [more...].

a = 3: new assignment

So then what happens when you write @a = a + 5? You take the number that is currently in the
container, accessed with the name a, and therefore the number 3 is added to the number 5. The
result adds up to 8 and it is again saved under the name a.

8=3+23

d— d—

Therefore, the equal sign does not mean the same thing in computer programming as it does in
mathematics. It does not define an equation, but rather a variable definition or an assignment
[more...].

PROGRAMMING CONCEPTS: Variable definition, assignment

M READING AND MODIFYING VARIABLE VALUES

You can assign a value between 10 and 100 to the input [t
variable x with the help of the dialog box. You change

this value in the following looping structure, which
results in drawing a spiral.

e Enter a number between 5 and 100
|

fromagturtle inmport *
mekeTurtl e()

Page 38

X = inputlnt("Enter a nunmber between 5 and 100")
repeat 10:

forwar d(x)

I eft (120)

X = x + 20

H MEMO

With variables you can store values that you are able to read and change in the course of the
program. Every variable has a name and a value. You can define a variable and assign a value
to it using an equal sign [more...].

DISTINGUISHING VARIABLES AND PARAMETERS

You should be aware of the differences between a variable and a parameter. Parameters
transport data into a function and are only valid within that function, whereas variables are
possible anywhere. When calling a function, you give each of its parameters values that can be
used as variables within the function's scope.

To make the difference clear, use the parameter

sidelength in the function square() in your program.

When you input a number with inputInt(), it stores it

as the variable s. When you call square(), you then

pass the variable value of s on to the parameter

sidelength.

9 Enter the side length
|
def square(sidel ength): PR —
repeat 4: Lok || Cancel
f orwar d(si del engt h)
ri ght (90)

fromgturtle inmport *

makeTurtl e()

S = inputlnt("Enter the side length")
squar e(s)

H MEMO

You have to distinguish between the variable s and the parameter sidelength. In the definition
of a function parameters are placeholders and can be regarded as variables that are only
known inside of the function each time it is called. If you call the function with a variable, the

variable's value is used in the function. Thus, square(length) draws a square with a side length
of length [more...].

THE SAME NAME FOR DIFFERENT THINGS

As you already know, parameters and variables should be
named after what they relate to, but they can be chosen
arbitrarily. Because of this, it is common to choose the same
name for parameters and variables. No naming conflicts
arise. However, you must remember the distinction in order
to understand the program.

©

Page 39

fromgturtle inmport *

def square(sidel ength):
repeat 4:
f orwar d(si del engt h)
ri ght (90)

makeTurtl e()
sidel ength = inputint("Enter the side | ength")
squar e(si del engt h)

MEMO

Although you can use the same name for a specific parameter and variable, you should be
able to conceptualize them separately.

EXERCISES

1. After entering the number of corners into the dialog box,
the turtle should draw a regular n-gon. For example,
when you input the number 8, an 8-gon (octagon) should
be drawn. The program should calculate the appropriate
rotation angle. Put yourself in the position of the turtle
and think how far you have to rotate yourself in order to
draw the next side. Remember how we drew an
equilateral triangle. .

2. After entering an angle in the dialog box, the turtle draws
30 lines, each with a side length of 100, and after each of
which it rotates left by the given angle. Experiment with
different angles and draw some cool pictures. You can
speed up the drawing by with hideTurtle().

3. Tell the turtle to draw 10 squares. First define a command
square with the parameter sidelength. The side length of
the first square is 8, and each following square has a side
length increasing by 10

4. Enter the side length of the largest square into the dialog
box. The turtle will then draw 20 squares. After each
previous square, the side length should be smaller by a
factor of 0.9 and the turtle should rotate 10° to the left

Page 40

2.7 SELECTION

M INTRODUCTION

What you do in your daily life often depends on certain conditions. So let's say you decide on
how you will get to school today depending on the weather. You say: "In case it rains today, I'll
take the tram, otherwise I'll Il ride my bike". Similar to this, flow of a program can also depend
on certain conditions. Among the basic structures of any programming language are such
program branches that depend on specific conditions. The instructions after if are only executed
when the condition is true, otherwise the statements after else are executed.

PROGRAMMING CONCEPTS: Condition, program branching, selection, if-else structure

REVIEWING INPUTS
After you enter the side length in the dialog box, the
square will only be drawn if it fits the window entirely.
We now examine the value of s. If s is less than 300 a
square with the side length s is drawn, otherwise a
message appears in the lower part of the Tigerjython
window. In a programming language, this test is done R ==
_ _ prog 9 guag T =
using the if statement.
9 Enter the side length
|
[ok || cance
fromgturtle inmport *
def square(sidel ength):
repeat 4:
f orwar d(si del engt h)
ri ght (90)
mekeTurtl e()
s = inputlnt("Enter the side |ength")
if s < 300:
squar e(s)
el se:
print "The side length is too big"
Highlight program code (ctri+C copy, Ctri+V paste)
MEMO

The instructions after if are only executed if the condition is true, otherwise the statements
after else are executed. You can also leave out the else block. Try it!

Please be aware of the colons after the if condition and after else, as well as a correct

indentation of both program blocks.

Page 41

B MULTIPLE SELECTION

Now we would like to draw colored squares. You can
enter the desired color by putting a number into the
dialog box. In an if structure, the number is checked
and then the appropriate fill color is set. We first test if
the value is 1, then if it is 2 (with elif), and finally 3.
For any other number entered, we use else to set the
color to black.

nput T
9_ Enter a number: 1:red Z:green 3oyellow

With the command fill(10, 10) the closed area around 3

the given point is filled with the specified fill color. |

Since after drawing the square, the turtle is back in the

center of the window (0, 0), by using (10, 10) we select

a point that is definitely inside of the square.

ok || cancel

fromgturtle inmport *

def square():
repeat 4:
forward(100)
ri ght (90)

mekeTurtl e()
n = inputlnt("Enter a nunber: 1:red 2:green 3:yellow")

if n==

setFill Color("red")
elif n ==

setFill Col or ("green")
elif n == 3:

setFill Color("yellow")
el se:

setFill Col or ("bl ack")
square()

fill(10, 10)

Highlight program code (ctri+C copy, Ctri+V paste)

B MEMO

Several conditions can be checked consecutively. In a case where the condition at if is not
fulfilled, the condition at elif is checked. elif is an abbreviation of else if. In a case where none
of the elif conditions are fulfilled, any statements after else are executed.

It is very important to remember that in Python, a double equal sign is used in the test for
equality. It may take time getting used to it, but it is necessary because the single equal sign
is used for assignments.

Please be aware of the notations used for comparison operators: >, >= , <, <=, ==, I=,

With the command fill(x, y) you can fill closed figures with the fill color. However, the point (x,
y) must be located inside of the figure.

M COLOR CHOICE, BOOLEAN VARIABLES

In order to fill a figure afterwards using the fill() statement, its interior of the figure cannot
already be occupied by another figure. You already know the startPath()/fillPath()combination
with which you can correctly fill new figures that lay on top of existing figures.

Page 42

In this program you call askColor(), which brings up a
nice dialog box with which you can choose the color of
the star.

L
Ll

0 -

n Beispieltext Beispieltext

oK Abbrechen Zurucksetzen

The star that you draw uses the function star(), which in addition to the size of the star also has
a parameter filled whose value can be true or false and determines whether the star should be
filled or not.

fromgturtle inmport *
mekeTurtl e()

def star(size, filled):

if filled:
startPat h()

repeat 9:
forward(size)
| eft (175)
forward(size)
| eft (225)

if filled:
fillPath()

clear("black")
repeat 5:
col or = askCol or (" Col or selection", "yellow")
if color == None:
br eak
set PenCol or (col or)
set Fil |l Col or(col or)
set RandomPos (400, 400)
back(100)
star (100, True)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

The function askColor() has parameters for the text in the title bar and the color that is
selected as the default value. When you click the OK button the function returns the selected
color and when you click the cancel button instead, the function returns the special value
none. You can test this value with an jf statement and you can abort the repeat loop with
break.

A variable or a parameter which can take the values true or false is called a boolean variable
or a boolean parameter [more...]. You can directly test its value, for instance with if filled: It
is thus not necessary (and not very elegant) to write if filled == True.

Page 43

B EXERCISES

In the dialog box you ask the user how big the side length of a square should be. If it is less
than 50, a red square is drawn with this side length. Otherwise a green square is drawn.

2. Make the turtle draw a staircase with 10 steps using repeat 10. Make the first 5 levels blue

and the rest of the levels red (Figure a).

(a) (b)

Tell the turtle to draw a spiral, first using green, then red, and finally black (Figure b).

Page 44

2.8 WHILE LOOPS

M INTRODUCTION

You have already gotten to know the command repeat, with which you can repeat a program
block several times. However, it is important to know that you can only use repeat this way in
TigerlJython and not in other Python flavours. On the other hand, you can use the while structure
everywhere.

The while loop is initiated with the keyword while, followed by a looping condition. The
instructions in the loop block are repeated as long as the condition is fulfilled. The program then
continues on with the next statement listed after the loop block.

PROGRAMMING CONCEPTS: Iteration, while structure, combined conditions, loop termination

B SPIDER WEB

The turtle should draw a rectangular spiral with the help
of a while loop. We will use a variable a, with an initial ,-3-,-?'
value 5which is then increased by 2 with each
iteration of the loop. As long as the condition a < 200
is true, the statements in the loop block will be

executed. é

To make it a bit more fun, you can switch out the turtle
icon for a spider.

fromgturtle inport *
makeTurtl e("sprites/spider.png")

a=>5

while a < 200:
forward(a)
ri ght (90)
a=a+ 2

Highlight program code (ctri+C copy, Ctri+V paste)

H MEMO

A while loop is used to repeat a program block. In order for the program block to be executed,
the condition must be true. Because of this, one might also call it a "running condition". If the
change in value is missing in the loop block, the running condition always stays true and the
program remains endlessly "hanging" in the loop.

In our learning environment, you can cancel the hanging program with the stop button or by
closing the turtle window. In general, infinite loops without a the option to cancel are
dangerous, and in an extreme case you will have to reboot your computer.

Page 45

@ COMBINING CONDITIONS WITH OR

The turtle should draw the adjacent figure using the
while loop. As you can see, it is drawn with alternating
red and green triangles.

You can use the following trick to change the colors:
Test the loop variable to see whether it is 0, 2 or 4 and
then choose the pen color red.

Using the command fillToPoint(0. 0) you can fill a
figure with color while drawing. In this case, it is as
though a rubber band was attached to the point (0, 0),
the other end of which the turtle drags along. All points
the rubber band reaches along the way are colored
consecutively.

fromagturtle inmport *

def triangle():

repeat 3:
forward(100)
ri ght (120)
makeTurtl e()
i =0
while i < 6:
if i ==0o0r i ==2or i ==
set PenCol or ("red")
el se:

set PenCol or (" green")

fillToPoint(0, 0)

triangle()

ri ght (60)

i =i +1
B MEMO

You must pay attention to the correct indentation for each loop block when using several
program structures. As you can see, you can combine two or more conditions using or. A
condition linked this way is true if either of the conditions are satisfied, and it is also true if
both conditions are met. Using the command fillToPoint(x, y) you can fill figures with the pen
color while drawing, as opposed to the command fill(), with which you can fill already drawn
closed figures.

@ COMBINING CONDITIONS WITH AND

The turtle should draw 10 connected houses using a
while loop. The houses are numbered from 1 to 10. The

houses with the numbers 4-7 are large, and all of the
other houses are small. In the while loop, the house M
number nr is used to determine the size of the houses.

The houses are large if nr is greater than 3 and less than
8.

We use the command fillToHorizontal(0) to add color. As a result, the area between the drawn
figure and the horizontal line y = 0 is filled consecutively.
Page 46

fromgturtle inmport *

mekeTurtl e()

set Pos(-200, 30)

ri ght (30)

fill ToHori zontal (0)
set PenCol or ("si enna")

nr =1
while nr <= 10:
if nr >3 and nr < 8:
f orwar d(60)
ri ght (120)
f orward(60)
| ef t (120)
el se:
f orward(30)
right(120)
f orwar d(30)
| ef t (120)

nr += 1

B MEMO

You can link two conditions with and. Such a linked statement is only true if both conditions
are met. Using the command fillToHorizontal(y) you can fill figures with the pen color while
drawing. This way, the area between the drawn figure and the horizontal line at y is filled.

nr += 1 means that nris increased by 1. It is just an abbreviation for the assignment nr = nr
+ 1.

EXITING LOOPS WITH BREAK

A loop whose condition is always true will loop forever.
However, you can force a loop to exit at any time using
the keyword break.

Your program will draw rotated squares with increasing
side lengths until the side length is 120.

fromagturtle inmport *

def square(sidel ength):
repeat 4:
forward(sidel ength)
| eft (90)

makeTurtl e()
hi deTurtl e()

i =0
while 1 ==
if i > 120:

Page 47

br eak
square(i)

ri ght (6)

i += 2
print "i =", i

Highlight program code (ctri+C copy, Ctri+V paste)

H MEMO

Instead of using while 1 == 1: you can use while True:, since True is always true. (On the
other hand, False is always false.)

The loop is run in increments of two. Instead of using i =i + 2 you should use the abbreviated
notion i += 2 (i is incremented by 2).

With the command print-you can write something into the TigerJython console at the bottom
of the editor. With text you should use quotation marks and numbers should be separated by a
comma. A space will automatically be inserted between the text and the number. Do you
understand why the outputisi = 122?

The keyword continue is rarely used. It skips the remaining part of the body of the loop.

B INPUT VALIDATION

If you ask the user to enter a number restricted to a certain range, you cannot trust him that he
adheres to your restriction. A "robust" program checks the input and intercepts an incorrect
entry with a feedback. This input validation is most easily performed in a while loop which is
repeated until the input value is accepted. In your program the user enters the number 1, 2, or 3
to select one the colors red, green, or yellow of the filled circle.

fromgturtle inmport *
makeTurtl e()

n =20
while n <1 or n > 3:
n = inputlnt("Enter 1, 2 or 3")
if n==
set PenCol or ("red")
elif n == 2:
set PenCol or ("green")
el se:
set PenCol or ("yel | ow")
dot (200)

B EXERCISES

1. The turtle moves forward on a line with length 5 and
turns 70° to the right. Then it increases the line
length by 0.5 and repeats these steps as long as the
line length is smaller than 150.

Try it also with the rotation angle of 89 °!

Page 48

5%*.

As you probably noticed, the rotation angle at a tip of
the 5 edged star is 144°. Change this rotation angle
by just a little bit, for example to 143°, and increase
the number of repetitions. You will then get a new
figure.

The turtle draws a diagonal pattern with filled red
circles. All circles are located in the Turtle window,
which means that the distance from the center is less
than 400.

Use the command dot(25) for creating the circles.

The turtle is located at the position (250, 200). With
steps of length 10, the turtle moves on a straight line
to the home position until the distance is less than 1.

Use the commands towards() and heading(degrees)
(see documentation).

In order to stop the turtle more precisely at home,
you decrease the distance by a factor 10 to 100.
Unfortunately it may happen that the turtle does not
stop anymore. Can you explain this behavior?

Page 49

2.10 EVENT CONTROL

M INTRODUCTION

So far we have only seen a programs with a single strand of events, where one statement after
another is executed, with possible ramifications and repetitions. However, when you click a
mouse button, for instance, while your program is being executed, you cannot be sure where
your program is located at the time. In order to capture the clicks in the program we have to
introduce a new programming concept called event control. The principle is as follows:

Define a function with any name, for example onMouseHit() that is never explicitly called in the
program. Then ask that your computer calls this function whenever the mouse button is
clicked. So, what you are telling the program is: Whenever the mouse button is clicked, execute

onMouseHit().

PROGRAMMING CONCEPTS: Event-driven programming, mouse event

MOUSE EVENTS

It is very easy to implement the new concept in Python. In the first event-driven program, the
turtle should draw a fun figure in the main part. After this, you can decorate it by coloring

certain areas with a mouse click.

Write the function onMouseHit(x, y), which delivers the x- and y-coordinate of the mouse click,
and then give it a flood fill by using fill(x, y) (the filling of a closed region).

Most importantly you have to tell the system that it
should call the function onMouseHit() whenever the
mouse button is pressed. In order to do this you can use
the parameter mouseHit when you call makeTurtle()
and assign it the name of your function.

Use hideTurtle() so that the drawing is created faster.

fromgturtle inport *

def onMuseHit(x, y):
fill(x, y)

mekeTurt| e(mouseHit = onMouseHit)

hi deTurtl e()

addsSt at usBar (30)

setStatusText("Click to fill a region!™")

repeat 12:
repeat 6:
f or war d(80)
ri ght (60)
I eft (30)

Page 50

MEMO

Technically, the concept of event-driven programming is implemented by writing a function to
be called whenever the event occurs. You inform the system which function this is by passing

the name of your function to makeTurtle(). Here you are using the notation parameter_name
= parameter_value.

You can customize your preferences for the fill color with setFillColor().

You can write important information for the user in a status bar below the turtle window by
using addStatusBar(n). The number n states the line height of the text bar (in pixels).

DRAWING WITH A MOUSE CLICK

The turtle should draw a star with rays at the position

of the mouse click. For this you write the function

onMouseHit(x, y) where you instruct the turtle how to ey T
draw the star. In order for onMouseHit() to be called H'.#'
when the mouse is clicked you pass the parameter #_;-"#' H'“-H.Hh
name mouseHit in makeTurtle() the function name "“'H-_]

onMouseHit. #._ ey o_,f"'

fromgturtle inport *

def onMouseHit(x, y):
set Pos(x, V)
repeat 6:

dot (40)
forward(60)
back(60)

ri ght (60)

mekeTurt!| e(mouseHit = onMouseHit)
speed(-1)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

The program has a flaw: If you click again while the turtle is still drawing a star, it will not
finish that star but will immediately begin drawing the new star. However, it also continues to
execute the commands of the old star, and so the new star is drawn incorrectly.

This wrong behavior is apparently due to the fact that every time you click, the function
onMouseHit() it is called and executed, even if the previous execution is not done yet. In order

to prevent this from happening, you can use the parameter named mouseHitX instead of
mouseHit.

Page 51

B TURTLE CHASING THE MOUSE

Now vyou want the turtle to follow the mouse
everywhere it goes. You cannot use the actual mouse
click, but instead you should consider the movement
of the mouse as an event. makeTurtle() knows the
parameter mouseMoved to which you can pass a
function that is called at every relocation of the mouse.

The function onMouseMoved(x, y) receives the
current mouse coordinates x and y.

fromgturtle inport *

def onMouseMoved(x, Y):
set Headi ng(t owards(x, Yy))
forward(10)

mekeTurt| e(mouseMoved = onMouseMoved)
speed(-1)

Highlight program code (ctri+C copy, Ctri+V paste)

H MEMO

Besides mouseHit and mouseHitX there are other parameters of makeTurtle() at your disposal
with which you can detect mouse events. Instead of x, y they use event, from which you can
determine the coordinates of the mouse event.

mousePressed Mouse button is pressed

mouseReleased Mouse button is released

mouseClicked Mouse button is pressed and released
mouseDragged Mouse is moved while the button is pressed
mouseMoved Mouse is moved

mouseEntered Mouse enters the turtle window
mouseExited Mouse exits the turtle window

You can also use multiple parameters simultaneously, for example the two functions
onMousePressed() and onMouseDragged():

mekeTurt | e(mousePressed = onMousePressed, mouseDragged = onMouseDragged)

You can find out which mouse button was pressed with isLeftMouseButton() or
isRightMouseButton().

There is an important difference between these events and mouseHit: the movement of the
turtle is not visible during the execution of the function. Therefore, you should either set the
turtle on high speed with speed(-1), hide it with hideTurtle(), or execute the code for its
movement in the main part of the program.

B KEY EVENTS

Page 52

Each time a keyboard key is hit, an event is "fired". To

handle it, you register a callback function in makeTurtle
by using the named parameter keyPressed. The callback
receives an integer code that identifies the key you
pressed. (You may find out the key codes by performing
some simple tests.) In your program the turtles moves
repeatedly 10 steps in forward direction. By hitting the
cursor keys you can change its orientation in the four
To prevent the turtle to leave the

cardinal directions.

playground, the wrap mode is enabled.

fromgturtle inmport *

LEFT = 37
RI GHT = 39
UP = 38

DOWN = 40

if key == LEFT:
set Headi ng(- 90)
elif key == RIGHT:
set Headi ng(90)
elif key == UP:
set Headi ng(0)
elif key == DOWN:
set Headi ng(180

makeTurt | e(keyPressed

wrap()

whil e True:
forward(10)

def onKeyPressed(key):

= onKeyPressed)

Highlight program code (ctrl+C kopieren, Ctrl+V einfiigen)

B EXERCISES

1. Draw the adjacent star with a looping structure

mouse clicks so that it suits your taste.

2. You can use the turtle to create a program where you can draw in
freehand. To do this, lower the pen using the press event and

move it using the drag event.

Page 53

and fill it with

3. By pressing the left mouse button you draw any figure you would
like. You can then color an area by clicking the right mouse
button.

EXTRA MATERIAL

M YOUR PERSONAL MOUSE IMAGE

You are able to change the image of the mouse cursor
to whatever you would like, thus giving your program a
special look. To do this, use the command setCursor()
and give it one of the values from the table below. You
can even use your own image if you use
setCustomCursor()and pass it the path to your image.
A standard mouse icon is 32x32 pixels in size and has a
transparent background. It should be saved in gif or
png format. Both pencil.gif and cutemouse.gif are
already available in the distribution of TigerJython in
the folder sprites.

You can now decorate the tracking program shown above with cuteturtle or your own mouse
figure. Make sure that the turtle always moves to the mouse by using moveTo().

fromgturtle inmport *

def onMouseMoved(x, VY):
moveTo(X, V)

mekeTurt| e(mouseMoved = onMouseMoved)
set Cust omCur sor ("sprites/cutemuse. gif")
speed(-1)

B MEMO

By using speed(-1) you prevent the turtle from animating so that drawing with moveTo() gets
faster. Possible parameters of setCursor():

Parameter Icon
Cursor.DEFAULT_CURSOR Default icon
Cursor.CROSSHAIR_CURSOR Crosshair
Cursor.MOVE_CURSOR Moving cursor (Cross arrows)
Cursor.TEXT_CURSOR Text cursor (vertical line)
Cursor.WAIT_CURSOR Waiting cursor

The sprites directory in the path indication of setCustomCursor() is in the same directory as
your program.

Page 54

2.10 EVENT CONTROL

M INTRODUCTION

So far we have only seen a programs with a single strand of events, where one statement after
another is executed, with possible ramifications and repetitions. However, when you click a
mouse button, for instance, while your program is being executed, you cannot be sure where
your program is located at the time. In order to capture the clicks in the program we have to
introduce a new programming concept called event control. The principle is as follows:

Define a function with any name, for example onMouseHit() that is never explicitly called in the
program. Then ask that your computer calls this function whenever the mouse button is
clicked. So, what you are telling the program is: Whenever the mouse button is clicked, execute

onMouseHit().

PROGRAMMING CONCEPTS: Event-driven programming, mouse event

MOUSE EVENTS

It is very easy to implement the new concept in Python. In the first event-driven program, the
turtle should draw a fun figure in the main part. After this, you can decorate it by coloring

certain areas with a mouse click.

Write the function onMouseHit(x, y), which delivers the x- and y-coordinate of the mouse click,
and then give it a flood fill by using fill(x, y) (the filling of a closed region).

Most importantly you have to tell the system that it
should call the function onMouseHit() whenever the
mouse button is pressed. In order to do this you can use
the parameter mouseHit when you call makeTurtle()
and assign it the name of your function.

Use hideTurtle() so that the drawing is created faster.

fromgturtle inport *

def onMuseHit(x, y):
fill(x, y)

mekeTurt| e(mouseHit = onMouseHit)

hi deTurtl e()

addsSt at usBar (30)

setStatusText("Click to fill a region!™")

repeat 12:
repeat 6:
f or war d(80)
ri ght (60)
I eft (30)

Page 55

MEMO

Technically, the concept of event-driven programming is implemented by writing a function to
be called whenever the event occurs. You inform the system which function this is by passing

the name of your function to makeTurtle(). Here you are using the notation parameter_name
= parameter_value.

You can customize your preferences for the fill color with setFillColor().

You can write important information for the user in a status bar below the turtle window by
using addStatusBar(n). The number n states the line height of the text bar (in pixels).

DRAWING WITH A MOUSE CLICK

The turtle should draw a star with rays at the position

of the mouse click. For this you write the function

onMouseHit(x, y) where you instruct the turtle how to ey T
draw the star. In order for onMouseHit() to be called H'.#'
when the mouse is clicked you pass the parameter #_;-"#' H'“-H.Hh
name mouseHit in makeTurtle() the function name "“'H-_]

onMouseHit. #._ ey o_,f"'

fromgturtle inport *

def onMouseHit(x, y):
set Pos(x, V)
repeat 6:

dot (40)
forward(60)
back(60)

ri ght (60)

mekeTurt!| e(mouseHit = onMouseHit)
speed(-1)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

The program has a flaw: If you click again while the turtle is still drawing a star, it will not
finish that star but will immediately begin drawing the new star. However, it also continues to
execute the commands of the old star, and so the new star is drawn incorrectly.

This wrong behavior is apparently due to the fact that every time you click, the function
onMouseHit() it is called and executed, even if the previous execution is not done yet. In order

to prevent this from happening, you can use the parameter named mouseHitX instead of
mouseHit.

Page 56

B TURTLE CHASING THE MOUSE

Now you want the turtle to follow the mouse
everywhere it goes. You cannot use the actual mouse
click, but instead you should consider the movement
of the mouse as an event. makeTurtle() knows the
parameter mouseMoved to which you can pass a
function that is called at every relocation of the mouse.

The function onMouseMoved(x, y) receives the
current mouse coordinates x and y.

fromgturtle inport *

def onMouseMoved(x, Y):
set Headi ng(t owards(x, Yy))
forward(10)

mekeTurt| e(mouseMoved = onMouseMoved)
speed(-1)

Highlight program code (ctri+C copy, Ctri+V paste)

H MEMO

Besides mouseHit and mouseHitX there are other parameters of makeTurtle() at your disposal
with which you can detect mouse events. Instead of x, y they use event, from which you can
determine the coordinates of the mouse event.

mousePressed Mouse button is pressed

mouseReleased Mouse button is released

mouseClicked Mouse button is pressed and released
mouseDragged Mouse is moved while the button is pressed
mouseMoved Mouse is moved

mouseEntered Mouse enters the turtle window
mouseExited Mouse exits the turtle window

You can also use multiple parameters simultaneously, for example the two functions
onMousePressed() and onMouseDragged():

mekeTurt | e(mousePressed = onMousePressed, mouseDragged = onMouseDragged)

You can find out which mouse button was pressed with isLeftMouseButton() or
isRightMouseButton().

There is an important difference between these events and mouseHit: the movement of the
turtle is not visible during the execution of the function. Therefore, you should either set the
turtle on high speed with speed(-1), hide it with hideTurtle(), or execute the code for its
movement in the main part of the program.

B KEY EVENTS

Page 57

Each time a keyboard key is hit, an event is "fired". To

handle it, you register a callback function in makeTurtle
by using the named parameter keyPressed. The callback
receives an integer code that identifies the key you
pressed. (You may find out the key codes by performing
some simple tests.) In your program the turtles moves
repeatedly 10 steps in forward direction. By hitting the
cursor keys you can change its orientation in the four
To prevent the turtle to leave the

cardinal directions.

playground, the wrap mode is enabled.

fromgturtle inmport *

LEFT = 37
RI GHT = 39
UP = 38

DOWN = 40

if key == LEFT:
set Headi ng(- 90)
elif key == RIGHT:
set Headi ng(90)
elif key == UP:
set Headi ng(0)
elif key == DOWN:
set Headi ng(180

makeTurt | e(keyPressed

wrap()

whil e True:
forward(10)

def onKeyPressed(key):

= onKeyPressed)

Highlight program code (ctrl+C kopieren, Ctrl+V einfiigen)

B EXERCISES

1. Draw the adjacent star with a looping structure

mouse clicks so that it suits your taste.

2. You can use the turtle to create a program where you can draw in
freehand. To do this, lower the pen using the press event and

move it using the drag event.

Page 58

and fill it with

3. By pressing the left mouse button you draw any figure you would
like. You can then color an area by clicking the right mouse
button.

EXTRA MATERIAL

M YOUR PERSONAL MOUSE IMAGE

You are able to change the image of the mouse cursor
to whatever you would like, thus giving your program a
special look. To do this, use the command setCursor()
and give it one of the values from the table below. You
can even use your own image if you use
setCustomCursor()and pass it the path to your image.
A standard mouse icon is 32x32 pixels in size and has a
transparent background. It should be saved in gif or
png format. Both pencil.gif and cutemouse.gif are
already available in the distribution of TigerJython in
the folder sprites.

You can now decorate the tracking program shown above with cuteturtle or your own mouse
figure. Make sure that the turtle always moves to the mouse by using moveTo().

fromgturtle inmport *

def onMouseMoved(x, VY):
moveTo(X, V)

mekeTurt| e(mouseMoved = onMouseMoved)
set Cust onmCur sor ("sprites/cutemuse. gif")
speed(-1)

B MEMO

By using speed(-1) you prevent the turtle from animating so that drawing with moveTo() gets
faster. Possible parameters of setCursor():

Parameter Icon
Cursor.DEFAULT_CURSOR Default icon
Cursor.CROSSHAIR_CURSOR Crosshair
Cursor.MOVE_CURSOR Moving cursor (Cross arrows)
Cursor.TEXT_CURSOR Text cursor (vertical line)
Cursor.WAIT_CURSOR Waiting cursor

The sprites directory in the path indication of setCustomCursor() is in the same directory as
your program.

Page 59

2.11 TURTLE OBIJECTS

M INTRODUCTION

In nature, a turtle is an individual with its own specific identity. In an exhibition at the zoo you
could give each turtle its own name, for example Pepe or Maya. However, turtles also have
things in common: they are reptiles belonging to the animal class of tortoises. These notions of
classes and individuals have been so successful that they were introduced into computer science
as a fundamental concept, called object-oriented programming (OOP). It will be easy for you
to learn the basic principles of OOP using turtle graphics.

PROGRAMMING CONCEPTS: Class, object, object-oriented programming, constructor, clones

M CREATING A TURTLE OBJECT

The turtle was previously used as an anonymous object which we did not use a name for. If you
want to use multiple turtles at the same time, you must give every turtle an identity by naming
it. You can then use the name as a variable name.

With the statement maya = Turtle() you create a turtle named maya.
With the statement pepe = Turtle() you create a turtle named pepe.

You can control the named turtles with the commands

you already know, but you always have to say which ‘
turtle you mean. Put the turtle name first, followed by a

point, and finally the command, for example

maya.forward(100).

In the first example maya draws a ladder. You do not
need the line makeTurtle() anymore since you are
creating the turtle yourself.

fromgturtle inport *

maya = Turtle()

maya. set Col or ("red")
maya. set PenCol or (" green")
maya. set Pos(0, -200)

repeat 7:
repeat 4:
maya. f or war d(50)
maya. ri ght (90)
maya. f orwar d(50)

H MEMO

Similar objects are grouped into classes. An object of a class is made (we also say
"instantiated") by using the class name with a set of parentheses. We call this the
constructor of the class. In the future we will call functions that belong to a particular class
methods.

Page 60

CREATING MORE TURTLE OBJECTS

Now you know all too well that you can use multiple turtles in the same program in the way
previously described. If you want to create maya and pepe, then write
maya = Turtle() und pepe = Turtle()

These two turtles each end up in their own turtle
window. You can put them into the same turtle ._
enclosure by generating the enclosure as an object of
the class TurtleFrame:

tf = TurtleFrame()]
This object variable should be passed to the Turtle # | | | | |
constructor while creating the turtles. At the same time

that maya builds the same ladder as before, pepe builds
a horizontal black staircase.

fromgturtle inport *
tf = Turtl eFranme()

maya = Turtle(tf)

maya. set Col or ("red")
maya. set PenCol or ("red")
maya. set Pos(0, -200)

pepe = Turtle(tf)

pepe. set Col or (" bl ack")
pepe. set PenCol or (" bl ack")
pepe. set Pos(200, 0)

pepe. |l eft (90)

repeat 7:

repeat 4:
maya. f or war d(50)
maya. ri ght (90)
pepe. f or war d(50)
pepe. | eft (90)

maya. f or war d(50)

pepe. f or war d(50)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

If you want to put multiple turtles into the same window you need to create a TurtleFrame and
specify it as a constructor parameter for the turtle. The turtles do not run into each other but
rather move (so to speak) over one another, whereby the turtle moving last always ends up on
top of all the others.

Page 61

B TURTLE PARAMETERS

Turtle objects can also be used as function parameters. Ll
Because the same code is used to draw a single ladder ﬁ
for both turtles, it is easiest to define a function step(). —
As a (formal) parameter you can use any name you
would like, for example, just t. You then call the y
function twice, once passing it maya, and the other ‘ﬁ| | | | | | |
time passing it pepe.

fromgturtle inport *

def step(t):
repeat 4:
t. forward(50)
t.right(90)
t.forward(50)

tf = Turtl eFranme()

maya = Turtle(tf, "sprites/beetle.qgif")
maya. set PenCol or (" green")

maya. set Pos(0, -150)

pepe = Turtle(tf, "sprites/cuteturtle.gif")
pepe. set Pos(200, 0)

pepe. |l eft (90)

repeat 7:
st ep(maya)
st ep(pepe)

Highlight program code (ctri+C copy, Ctri+V paste)

H MEMO

You can use your own image for each turtle if you specify the path to the image file while
creating them. In the previous example, you used two image files beetle.gif and cuteturtle.gif
which are located in the distribution of TigerJython.

Bl MICE PROBLEM WITH A CLONED TURTLE

During the famous mice (or beetle) problem [more...] n beetles start at the corners of a regular
n-gon and chase each other at a constant speed. The position of the beetles is fixed at equal
steps of time and each one is rotated in the direction of the beetle in the next polygon corner.
Afterwards, all of the beetles move forward at a steady increment.

You can nicely solve this problem by first drawing the polygon with the nameless (global) turtle
and then by putting a cloned turtle at each corner. Here you choose a square and create the
turtle clones t1, t2, t3, and t4 with clone(). A clone is a new turtle object with identical
properties.

Page 62

After that, you adjust their viewing direction in an
endless loop with setHeading() and move them
forward by 5. The drawing becomes especially nice if
you draw out the connecting lines between each chasing
turtle.

The easiest way to do this is to define the function
drawlLine(a, b), with which the turtle a will draw a
trail to turtle b and then go back again by using
moveTo().

fromgturtle inport *
s = 360

mekeTurtl e()
set Pos(-s/2, -s/2)

def drawLi ne(a, b):

ax = a.getX()
ay = a.getY()
ah = a. heading()

a.noveTo(b. get X(), b.getY())
a. set Pos(ax, ay)
a. headi ng(ah)

generate Turtle clone
t1l = clone()
t1.speed(-1)
f orward(s)
ri ght (90)

t2 = clone()
t 2. speed(-1)
f orward(s)
ri ght (90)

t3 = clone()
t 3. speed(-1)
forward(s)
ri ght (90)

t4 = clone()
t4. speed(-1)
forward(s)
ri ght (90)

hi deTurtl e()

repeat:
t1l. set Headi ng(t1l.towards(t2))
t 2. set Headi ng(t2.towards(t3))
t 3. set Headi ng(t3.towards(t4))
t4. set Headi ng(t4.towards(t1))

drawLi ne(tl1, t2)
drawLi ne(t2, t3)
drawLi ne(t3, t4)
drawLi ne(t4, t1l)

t1l. forward(5)
t2. forward(5)
t3. forward(5)
t4. forward(5)

Page 63

B MEMO

By using clone() you are creating a new turtle from the global turtle, so it will have the same
position, the same viewing direction, and the same color (if you are using a custom turtle icon,
it will have the same image) [more...] .

The function drawlLine() can be simplified if you save the position and orientation of the turtle
with pushState(). The state can then be retrieved again with popState():

def drawLine(a, b):
a. pushState()
a. moveTo(b. get X(), b.getY())
a.popState()

The emerging chasing curves can be calculated mathematically (see here).

B EXERCISES

1. Three turtles should alternately, point by point, draw a five-pointed star. The turtles should
be colored cyan (the standard color), red, and green. The turtle's color can be specified as
an additional parameter of the constructor.

L 2 l :

2. A green mother turtle constantly draws a circle with a
green pen color. At first, the red child turtle is far away
from the mother turtle and then moves with the red pen
towards the mother.

(The child turtle named child can determine the direction
of the mother using direction = child.towards(mother) ..

(=

Laura draws (not filled) squares. After each square is drawn, a second
turtle jumps in and colors it green.

Use different turtle images for the two turtles. The images available in
tigerjython2.jar are beetle.gif, beetlel.gif, beetle2.gif, and spider.png.
You can also use your own images. If you do, you have to save it in
the subdirectory sprites, which is located in the same directory as your
program.

Page 64

4. Create chasing graphics for 6 turtles
that start their chase at the corners
of a regular 6-gon, similar to the
example "beetle problems".

EXTRA MATERIAL

CREATING TURTLES WITH A MOUSE CLICK

With every mouse click your program will create a new

turtle that draws a star, at the location of the mouse - ’ *
cursor, independently of other existing turtles. In this

example you can experience the full scope and the %

beauty of object-oriented programming as well as event
control. -,

To process the mouse click, you define the function

drawsStar(). In order for the function to be called by -
your system when you press the left mouse button, you ~ -

must use the parameter mouseHit in the constructor of

the turtle frame and give it the name of this function.

fromgturtle inport *

def drawStar(x, y):
t = Turtle(tf)
t.setPos(x, vy)
t.fill ToPoint(x, vy)
for i in range(6):
t.forward(40)
t.right(140)
t.forward(40)
t.left(80)

tf = Turtl eFrame(nmuseHit = drawStar)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

Objects that have the same capabilities and similar properties are defined as classes in OOP.
You can create individual objects with the constructor (instances).

In order to process a mouse click, you have to write a function with a name of your choice
(including two parameters, x and y) and then pass this name to the parameter mouseHit in the
constructor of the TurtleFrame. x and y provide the coordinates of the mouse click.

Page 65

2.12 PRINTING

M INTRODUCTION

To achieve higher precision you can draw graphics on a printer since printers usually have a
much higher resolution, for example 1200x1200 dpi, where a typical screen resolution is around
100 dpi. The printing of GPanel graphics works in a way where graphic operations are printed
onto paper instead of being displayed on the screen. For this, you can define a function with any
name that contains all of the instructions for creating the image. When it is called directly, the
image appears on the screen. To print, call printerPlot() with the function name.

A printer dialog opens where you can select the printer and set its properties. You can then also
print on virtual printers to create a graphic file in a high resolution format (for example TIFF or

EPS).
i T & N
{Zs| Print &J
Printer
Mame: |I'u1icmsnﬂ ¥P5 Document Writer v] [Froperdies. .. |
Status: Ready
Type: Microsoft XPS Document Writer
Where: XPSPort:
Comment: [7] Print to file
Prirt range Copies
i@ Al Mumber of copies: 1 s
() Pages from: 1 to: 9999
i 1l Ball Bal Collate
Selection l’g _2'; __E;'E—' =
| ok || cancel
k-]

PROGRAMMING CONCEPTS: High resolution graphics

A NON-FIRE-BREATHING DRAGON

To show a fun example of high-resolution printing, let
the turtle draw a complicated picture called the
dragon curve. Although you could also make this
curve by folding a strip of paper, it is much easier
with computer graphics. However, the
implementation of the folding instructions in an
algorithm is not entirely trivial. Since we are dealing
with printing here, we simply use a pre-defined
function to draw the curve, figure(s, n, flag).

At least you can see that the curve is defined recursively and calls itself twice, although with a
lower order n-1. Additionally, the function uses a parameter flag that can be 1 or -1 and that

determines the drawing direction.

Page 66

To print the image, draw it in the function dolt(). This function cannot have parameters. When
you call dolt() the drawing appears on the screen, but when you pass the name dolt to the
printerPlot() command the drawing is printed (without showing the turtle).

fromgturtle inmport *
inport math

nbGenerations = 12

def dolt():
rt (90)
figure(300, nbGenerations, 1)

def figure(s, n, flag):
if n==0:
fd(s);
el se:
al pha = 45
if flag ==
al pha = -al pha
flag = -flag
It (al pha)
figure(s / math.sqgrt(2), n - 1, -flag)
rt(2 * al pha)
figure(s / math.sqrt(2), n - 1, flag)
I t(al pha)

makeTurtl e()

ht ()

set Pos(-100, 100) # screen
dol t ()

set Pos(100, 0) # printer
printerPl ot(dolt)

B MEMO

You have to position the drawing on the sheet properly by using setPos(). Depending on the
size of the turtle window and the printer being used, this position can change. When calling
printerPlot() you can also specify a scaling factor k in printerPlot(dolIt, k). The image enlarges
when k > 1 and shrinks when k < 1.

B EXERCISES

1. Joshua Goldstein suggests using pairs of move/turn commands to create nice pictures. A
step consists of the commands forward(s) and right(a)

Draw and print the following Goldstein figures:
a. 31 steps where s = 300, a = 151°

b. 142 steps where s = 400, a = 159.72°

You must provide the positioning yourself!

2. A step can also consist of two move/turn pairs.
Draw and print the following Goldstein figure:

37 steps wheres = 77, a = 140.86° and s = 310, a = 112°

3. Draw and print the Goldstein figure with three move/turn pairs:
47 steps wheres = 15.4, a = 140.86 °and s = 62, a = 112° and s= 57.2, a = 130°

Page 67

Documentation Turtle Graphics

Module import: from gturtle import *

Function

Action

makeTurtle()

creates a (global) turtle in a new window and defines all global commands

makeTurtle(color)

same, but creates a turtle with a specified color

makeTurtle("sprites/turtle.gif")

same, but creates a turtle with given sprite image

t = Turtle()

creates a turtle object t

tf = TurtleFrame()

creates a graphics windows where several turtles may live together

tf = TurtleFrame(title)

dasselbe, aber mit gegebenen Titel

t = Turtle(if)

creates a turtle in the given turtle frame

clone()

creates a turtle clone (same color, position, viewing direction)

isDisposed()

returns True, if the window is closed

putSleep()

pauses program execution until wakeUp() is called

wakeUp()

resumes paused program execution

enableRepaint(False)

disables automatic screen rendering

repaint()

renders the screen manually (after disabling automatic rendering)

savePlayground(fileName, format)

copies the playground into a image file (format: "png" or "gif"). Returns True, if
successful; otherwise False

Movements

back(distance), bk(distance)

moves the turtle backwards for given distance (in turtle coordinates)

forward(distance), fd(distance)

moves the turtle forwards for given distance (in turtle coordinates)

hideTurtle(), ht()

hides the turtle (speeds-up the drawing)

home()

puts the turtle into the middle of the window with upward direction

left(angle), lt(angle)

turns the turtle to the left (in degrees)

penDown(), pd()

activates the pen (trace becomes visible)

penErase(), pe()

sets the pen color to the background color

leftArc(radius, angle)

moves the turtle on a left oriented arc with with given radius and sector angle

leftCircle(radius)

moves the turtle on a left oriented circle with given radius (in turtle coordinates)

penUp(), pu()

deactivates the pen (trace becomes invisible)

penWidth(width)

selects the pen width (in pixels)

right(angle), rt(angle)

turnes the turtle to the right (in degrees)

rightArc(radius, angle)

moves the turtle on a right oriented arc with with given radius and sector angle

rightCircle(radius)

moves the turtle on a right oriented circle with given radius (in turtle coordinates)

setCustomCursor(cursorimage)

selects image file used as mouse cursor

setCustomCursor(cursorimage, Point(x,

y))

selects image file use as mouse cursor and defines the hotspot relative to the picture

setLineWidth(width)

sets the pen width (in pixels)

showTurtle(), st()

shows the turtle

speed(speed) sets the speed of the turtle movement

delay(time) stops the program for the given amount of time (in milliseconds)

wrap() turtle positions outside the window are mapped inside the window (torus symmetry)
clip() turtles outside the window are invisible

getPlaygroundWidth()

returns the width m of the turtle Playground (turtle coordinates -m/2...m/2)

getPlaygroundHeight()

returns the height n of the turtle Playground (turtle coordinates -n/2...n/2)

Page 68

Positioning

direction(x, y)

returns the angle to turn to the position (x, y) zurick

direction(coords)

same, but coordinates given as list, tuple or complex

direction(turtle)

returns the angle to turn to the position of another turtle

distance(x, y)

returns the distance of the turtle to point(x, y)

distance(coords)

same, but coordinates given as list, tuple or complex

distance(turtle)

returns the distance to another turtle

getPos() returns the current position (list)
getX() returns the current x-coordinate
getY() returns the current y-coordinate
heading() returns the current viewing direction (in degrees, clockwise to the north)

heading(degrees)

sets the viewing direction (in degrees, zero to the north, positive clockwise)

moveTo(X, y)

moves the turtle to the given coordinates by drawing the trace

moveTo(coords)

same, but coordinates given as list, tuple or complex

setHeading(degrees), setH(degrees)

sets the viewing direction (in degrees, zero to the north, positive clockwise)

setRandomHeading()

sets the viewing direction to a random value 0 ... 360°

setPos(x, y)

moves the turtle to the given coordinates without drawing the trace

setPos(coords) same, but coordinates given as list, tuple or complex
setX(x) sets the turtle to given x-coordinate
setY(y) sets the turtle to given y-coordinate

setRandomPos(width, height)

sets the turtle position to a random value in the given rectangle

setScreenPos(x, y)

sets the turtle position to the given screen coordinates

setScreenPos(Point(x, y))

sets the turtel position to the given point

towards(x, y)

returns the direction (in degrees) to the given coordinates

towards(coords)

same, but coordinates given as list, tuple or complex

towards(turtle)

returns the direction to another turtle

toTurtlePos(x, y)

returns a list of the turtle coordinates of the given pixel coordinates

toTurtlePos(Point(x, y))

returns a list of the turtle coordinates of the given point

pushState()

saves the current turtle state on a stack (first-in-last-out)

popState()

sets the turtle state to the last element of the stack and removes the state from the stack

clearStates()

removes all elements from the state stack

Colors

askColor(title, defaultColor)

opens a color selection dialog and returns the selected color

clear()

erases the traces and hides all turtles, but let them where they are

clear(color)

erases the traces, hides all turtles and paint the background with the given color

clean()

erases everything and puts all turtles to the home position

clean(color)

erases everything, puts all turtles to the home position and paint the background with the
color

dot(diameter)

paints a filled circle with given radius using the current pen color

openDot(diameter)

paints a non-filled circle with given radius using the current pen color

fill() fills a closed area around the current turtlle position with the current fill color
fill(x , y) fills a closed area around the given position with the current fill color
fill(coords) same, but coordinates given as list, tuple or complex

fillToPoint() fills continuously from the current turtle position

fillToPoint(x , y)

fills continuoiusly from the given point(also list, tuple, complex)

fillToHorizontal(y)

fills continuously die area between the horizontal line and the turtle position

Page 69

fillToVertical(x)

fills continuously die area between the veritcall line and the turtle position

fillOff() terminates the fill mode
getColor() returns the turtle color
getColorStr() returns the turtle color as X11 color string

getFillColor()

returns the fill color

getFillColorStr()

returns the fill color as X11 color string

getPixelColor() returns the color of the pixel (background or trace) at the current turtle position
getPixelColorStr() returns the color as X11 color string of the pixel at the current turtle position
getRandomX11Color() returns a random X11 color string

makeColor() returns a color reference of given value. Value examples: ("7FFED4"), ("Aqua-Marine"),

(Ox7FFED4), (8388564), (0.5, 1.0, 0.83), (128, 255, 212), ("rainbow", n) with n = 0..1,
light spectrum

setColor(color)

sets the turtle color

setPenColor(color)

sets the turtle's pen color

setPenWidth(width)

sets the turtle's pen width

setFillColor(color)

sets the turtle's fill color

startPath() starts to register the turtle movement for a following fll operation
fillPath() closes the fill operation at current turtle position and fills the path with the current flll color
stampTurtle() creates an image of the turtle at the current position

stampTurtle(color)

creates an image of the turtle with given color at current position

Callbacks

makeTurtle(mouseNNN = onMouseNNN)
use a comma separator to register
more than one

registers the callback function onMouseNNN(x, y) that is called when a mouse event
happens. Values for NNN: Pressed, Released, Clicked, Dragged, Moved, Entered, Exited,
SingleClicked, DoubleClicked, Hit: Invocation in separate thread, HitX: same, but events
are ignored until the previous callback returns

isLeftMouseButton(),
isRightMouseButton()

returns True, if the event is caused by the left/right mouse button

makeTurtle(keyNNN = onKeyNNN)

registers the callback onKeyNNN(keyCode) that is called when a keyboard key is hit.
Values for NNN: Pressed, Hit: Invocation in separate thread, HitX: same, but events are
ignored until the previous callback returns. keyCode is a unique integer value that
identifies the key

getKeyModifiers()

returns an integer code for special keyboard keys (shift, ctrl, etc., also combined)

makeTurtle(closeClicked
onCloseClicked)

registers the callback onCloseClicked() that is called when the title bar close button is hit.
The window must be closed manually by calling dispose()

makeTurtle(turtleHit = onTurtleHit)

registers the callback function onTurtleHit(x, y) that is called when the turtle image is
clicked

t = Turtle(turtleHit = onTurtleHit)

registers the callback function onTurtleHit(t, x, y) that is called when the image of turtle t is
clicked

Text, Images and Sound

addStatusBar(20)

adds a status bar 20 pixels height

beep()

emits a short tone

play Tone(freq)

plays tone mit given frequency (in Hz) and duration 1000 ms (blocking function)

play Tone(freq, blocking=False)

same, but not-blocking function, used to play several tones at the same time

plays tone with given frequency and given duration (in ms)

playTone([f1, 2, ...])

plays several tones in a sequence with given frequency and duration 1000 ms

(
(
play Tone(freq, duration)
(
(

playTone([(f1, d1), (f2, d2), ...])

plays serveral tones in a sequence with given frequency and given duration

playTone([("c",700), ("e",1500), ...])

plays serveral tones in a sequence with given (Helmholtz) pitch naming and duration.
Supported are: great octave, one-line to three-line octave (range C, C# up to h™

Page 70

playTone([("c",700), ("e",1500), ...],
instrument = "piano")

same, but selects instrument type. Supported are: piano, guitar, harp, trumpet, xylophone,
organ, violin, panflute, bird, seashore, ... (see MIDI specifications)

playTone([("c",700), ("e",1500), ...],
instrument = "piano", volume=10)

same, but selects sound volume (0..100)

label(text)

displays the given text starting at the current turtle position

printerPlot(draw)

prints the traces that are drawn in function draw

setFont(Font font)

defines the font used by label()

setFontSize(size)

defines the font size used by label()

getTextHeight() returns the height of texts with current font (in pixels)
getTextAscent() returns the ascender height of texts with current font (in pixels)
getTextDescent() returns the descender height of texts with current font (in pixels)
getTextWidth(text) returns the width of given text with current font (in pixels)
setStatusText(text) shows the given text in the status bar. Any exiting text is erased.
setTitel(title) shows the given title in the window title bar

img = getlmage(path)

retrieve the image from the jar resource, from local drive or from a webserver

drawlmage(img)

draws the given image into background with the image center at the current turtle position
and rotated to the current turtle viewing direction.

drawlmage(path)

loads an image (in png, gif or jpg format) from the local file system or from an URL and
draws it at the current turtle position with the current viewing direction. For path =
sprites/nnn an image from the TigerJython distribution is loaded

Dialogs

msgDIg(message)

opens a modal dialolg with an OK button and given message

msgDIg(message, title = text)

same with title text

inputint(prompt)

opens a modal dialog with OK/Cancel buttons. OK returns integer (the dialog is shown
again, if no integer is entered). Cancel or Close terminate the program

inputint(prompt, False)

same, but Cancel/Close do not terminate, but returns None

inputFloat(prompt)

opens a modal dialog with OK/Cancel buttons. OK returns float (the dialog is shown again,
if no float is entered). Cancel or Close terminate the program

inputFloat(prompt, False)

same, but Cancel/Close do not terminate, but returns None

inputString(prompt)

opens a modal dialog with OK/Cancel buttons. OK returns string. Cancel or Close
terminate the program

inputString(prompt, False)

same, but Cancel/Close do not terminate, but returns None

input(prompt)

opens a modal dialog with OK/Cancel buttons. OK returns integer, float or string. Cancel
or Close terminate the program

input(prompt, False)

same, but Cancel/Close do not terminate, but returns None

askYesNo(prompt)

opens a modal dialog with Yes/No buttons. Yes returns True, No returns False. Cancel or
Close terminate the program

askYesNo(prompt, False)

same, but Close does not terminate, but returns None

Page 71

chapter three

2D GRAPHICS & PICTURES

Learning
Objectives

You can create simple 2D graphics with geometric shapes.

You know how to use keyboard and mouse inputs in the graphics window.

You can display simple function graphs y = f(x) in the graphics window.

You know that a digital image consists of colored pixels that are stored as numbers.

You can load a digital image, alter it in specific ways, represent it on the screen, and save
it.

You can write keyboard- and mouse-controlled programs.

You know how to generate random numbers and can apply this to random experiments.
You can use input fields, buttons, and menus in your programs.

"A picture is worth a thousand words."

Old Proverb

Page 72

3.1 COORDINATES

M INTRODUCTION

You have already made your first experience drawing with the turtle on the computer. However,
the turtle has its limits and so now you will get to know more flexible options of creating
graphics output.

PROGRAMMING CONCEPTS: Coordinate graphics, Cartesian coordinate system

M OPENING THE GRAPHIC WINDOW

The library (respectively the window for the graphics output) is called GPanel. This library is
already installed in TigerJython but you must still specify that you want to use the GPanel and
therefore start your program with an import. Then you can use makeGPanel() to create a new
graphics window:

from gpanel inport *
mekeGPanel (-3, 7, -4, 6)

So far, the program does not do anything very exciting as it only shows a blank window that you
can then close again. Your GPanel window is always square and uses an x-y-coordinate system,
as you should know from mathematics:

-3 0,0 7

]

In this example you specify the x- and y-coordinate range with the four numbers -3, 7, -4, and
6. -3 is the x-coordinate on the left edge, 7 is the x-coordinate on the right edge, -4 is the
y-coordinate on the bottom edge and 6 is the y-coordinate on the top edge.

H MEMO

You can create a window with makeGPanel(). You can define the desired area of the
coordinate system with four numbers: makeGPanel(xmin, xmax, ymin, ymax)

You can also specify a window title as the first parameter:
makeGPanel(title, xmin, xmax, ymin, ymax)

Page 73

DRAWING LINES

Once the window is open, you can begin drawing in it
just as you like. There are a number of useful functions
that can help. For example, with line() you can draw a
line, and with setColor() you can alter the color. You
can then, for example, draw a colorful triangle.

For each line, you first specify the x- and y-coordinates
of the start point, then the x- and y-coordinates of the
end point. The vertices should have the following
coordinates: (1, -1) (5, -1) (3, 3). Of course you can
only see the triangle if you choose the coordinate
system appropriately. Undistorted drawings will only
appear if the coordinate system is the same length in
both the x- and y-direction.

from gpanel inport *
mekeGPanel ("My wi ndow', 0, 6, -2, 4)

i neW dt h(3)

set Col or ("red")
line(1l, -1, 5, -1)
set Col or (" green")
line(5, -1, 3, 3)
set Col or (" bl ue")
line(3, 3, 1, -1)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

You can specify the width of the line in pixels using the function lineWidth().

CIRCLES AND RECTANGLES

GPanel can draw not only lines, but also circles,
ellipses, rectangles, triangles, and arcs. It can even
write out texts. You can draw a filled circle with the
command fillCircle(radius). But before you draw a
circle, you need to position the graphics cursor using
move(x, y) in order to define the center point.

fillRectangle(length, width) draws a rectangle with its
center at the position of the graphics cursor. In our
example, we draw several squares and circles using a
while loop.

Page 74

from gpanel inport *
mekeGPanel (0, 20, 0, 20)

set Col or ("red")

X =2

y =2

while y < 20:
move(x, VY)

fillCircle(l)
move(x, 20 - vy)
fill Rectangle(2, 2)
X =X + 2

y =y +2

Highlight program code (ctri+C copy, Ctrl+V paste)

H MEMO

You can draw many different figures with GPanel. Here are the most important commands:

point(x, y)

line(x1, y1, x2, y2)
rectangle(width, height)
fillRectangle(width, height)
rectangle(x1, y1, x2, y2)
fillRectangle(x1, y1, x2, y2)
fillTriangle(x1, y1, ..., y3)
circle(r)

fillCircle(r)

ellipse(a, b)

fillEllipse(a, b)

arc(r, a, b)

text("t")

move(Xx, Y)

A point

A line

A rectangle (width, height)
A filled rectangle

A rectangle (vertices)

A filled rectangle

A triangle (vertices)

A circle with radius r

A filled circle

An ellipse with axes a, b
A filled ellipse

An arc

Writes the text t

Determines position

For circles, arcs, ellipses, text, and rectangles that are simply defined by length and width,
you must first determine their position by setting the graphics cursor using move().

GPanel knows the so-called X11 colors. There are a few dozen color names that you can find
on the Internet here: http://cng.seas.rochester.edu/CNG/docs/x11color.html. You can
choose all of these colors using setColor(color).

Page 75

B EXERCISES

1. Draw a similar figure:

2. What does a rainbow actually look like? Let the computer draw you a rainbow. Use the
function circle(r) so that only the upper part of the circle is visible.

Page 76

3.2 FOR LOOPS

M INTRODUCTION

You often have to count during repetition. For that, you need a variable in the repetition block
that changes by a certain value in every iteration of the loop. It is easier to do this using a for
structure than it is with a while structure. You must first understand the range() function. In the
simplest case, range() has a single parameter (also called stop value) and provides a sequence
of natural numbers that starts with 0 and ends with the last nhumber before the stop value.

You can try this out with a few examples. If, for example, you execute a program with the single
statement print range(10), the numbers [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] are written in the output
window. Try it out with a few different parameters. As you can see, in our example, the stop
value 10 is not included in the list; it rather indicates how many list elements there are.

PROGRAMMING CONCEPTS: Iteration, for structure, nesting of for loops

Il FAMILY OF LINES

You can draw a cool curve with 20 lines using this for

structure.

from gpanel inport * i
ff
makeGPanel (0, 20, 0, 20) ';;"'}
. | b
for i in range(21): #‘;‘
line(i, 0, 20, i) ?;:;ﬁ

it
Highlight program code (ctri+C copy, Ctrl+V paste) ,{ﬁf'n":-"'.'"i
oA

B MEMO

The statement for i in range(n) runs through the numbers from 0 to n-1, so in other words, a
total of n numbers. The places of consolidation of the lines form a quadratic Bézier curve.

B RANGE() WITH TWO PARAMETERS

The range function can also have two parameters. In this case, the first parameter is the start
value of the list and the second is the stop value, which is, however, not included in the list.

Page 77

If, for example, you write print range(2, 9), the
numbers [2, 3, 4, 5, 6, 7, 8] are written in the output
window. Try it out using a few other parameters.

Using the following program, you draw lines in two
colors with the start points on the x-axis from the
coordinates -20 to 20. The endpoint of all lines is the
point (0, 40).

S

i
i

from gpanel inport *

mekeGPanel (-20, 20, 0, 40)

for i in range(-20, 21):
if i <O:
set Col or ("red")
el se:

set Col or ("green")
line(i, 0, 0, 40)

MEMO

The loop for i in range(start, stop) with integer start and stop values begins at i = start and
ends at i = stop - 1, where the loop counter j is increased by 1 each time it runs through the
loop. Thereby you need to make start smaller than stop, otherwise the loop will never run.

RANGE() WITH THREE PARAMETERS

You can even call the range function with three
parameters. In this case, the first parameter is the
start value of the list, the second is the stop value, and
the third is the change in value from one element to the
next. This will help you to adjust the step size, which
was previously always 1, to any situation.

If, for example, you write print range(2, 15, 3), the
numbers [2, 5, 8, 11, 14] are written in the output
window.

In the adjacent graphic you draw a pyramid standing on
its peak with filled rectangles. The smallest rectangle

6|
I
I
I
|
1
.
I
|
]
.
]
|
I
I
I
[]
|
has a width of 2, and the biggest has a width of 40. -

from gpanel inport *
makeGPanel (0, 40, 0, 40)

set Col or ("red")

y =1

for i in range(2, 41, 2):
move(20, y)

Page 78

fill Rectangle(i, 1.5)
y =y +2

Highlight program code (ctri+C copy, Ctri+V paste)

B MEMO

The loop for i in range(start, stop, step) begins with / = start and ends at a value that is
less than stop. i is increased by step each time the program runs through the loop. You can
also choose negative numbers for the values start, stop and step.

I step is negative, i is reduced by step at every iteration; the last value is greater than stop.

B NESTED FOR LOOPS (Moiré)

Closely drawn lines positioned above one another can
produce an optical effect called the Moiré pattern. In a
square, you draw lines from 10 points on the bottom
edge to each of 10 points on the upper edge. Then you
do the same from the left to the right edge.

from gpanel inport *
mekeGPanel (0, 10, 0, 10)
for i in range(0, 11):

for k in range (0, 11):
line(i, 0, k, 10)

del ay(100)
for i in range(0, 11):
for k in range (0, 11):
line(O, i, 10, k)
del ay(100)

Highlight program code (ctri+C copy, Ctri+V paste)

H MEMO

The program might not be very easy to understand, but it is important. At best, you can
assume that the loop variable i of the outer loop has a constant value (initially 0) . The inner
loop runs with this value for the values k = 0 up to and including 10. Then j is set to 1 and the
inner loops run again with this value /, etc.

When using the command delay(millisec), the program waits for the given number of
milliseconds so that you can observe how the pattern emerges gradually.

B EXERCISES

1. You will get an even nicer graphic than the one seen in Example 1 if you use colors. Draw a
Page 79

second family of lines with a different color (Figure a).

(a) (b)

N

]

[t

-

T
O

S

Ty

Mg
1

The blue family of lines (Figure b) is drawn with /ine(i, 0, 0, 20 - i). Can you also program the

purple one?

2. Draw a family of circles.

You can draw the colored family of circles with the following procedure: First draw a filled
circle with the radius y, then choose the color black and draw another circle with the same

radius:

set Col or ("cyan")
fillCircle(y)
set Col or (" bl ack")

circle(y)

In Example 3 we drew a pyramid standing upside
down. Draw a "real" pyramid with three colors. In
order to do so, you can use a for loop that counts

down.

Page 80

3.3 STRUCTURED PROGRAMMING

M INTRODUCTION

The concept of variables is very important to programming. Therefore, you need to give a special
effort in order to understand it as thoroughly as possible. You already know that a variable is a
memory slot that is addressed with a name and that holds a value. You also know that
parameters can be understood as “volatile” memory slots which, when their function is called,
receive a value that the function can then access during its execution.

PROGRAMMING CONCEPTS: Constants, procedural programming, reusability

A MOSAIC OF 10X10 STONES

You have the task of creating a beautiful colored mosaic
out of square stones. You get different colored mosaic
stones with the side length 10, and you should put
them together exactly side by side on a canvas with the
size 400x400. You feel a bit lazy, so you are going to
leave the task up to the computer. You tell it to place
the stones with random colors line by line. Use
delay(1) to create a short pause after each stone is
laid so that you can watch the computer making the
mosaic.

from gpanel inport *
makeGPanel (0, 400, 0, 400)

for y in range(0, 400, 10):
for x in range(0, 400, 10):
set Col or (get RandomX11Col or ())
nove(x + 5, y + 5)
fillRectangle(10, 10)
del ay(1)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

Whenever a grid needs to be run through, two nested for loops are best suited. Think about
why precisely the stones are placed line by line from bottom to top. You need a shift at move()
because the stones are anchored/established in the middle.

The method getRandomX11Color() gives back (as a word) one of the colors from the X11
color palette, which you can then pass on to setColor(). You can first call the function
getRandomX11Color(), and then the function setColor().

Page 81

B MAGIC NUMBERS

Two weeks later, you receive a delivery of stones that
are five times larger with a side length of 50. The
computer should lay them on the same canvas again.
What do you need to do to adjust the program? You
check out the previous code, but of course you no
longer understand what each particular line means.

You think: anywhere there is a 10, the number should
be changed to 50. So you do this, but soon realize you
were wrong. Unfortunately the mosaic no longer covers
the entire canvas.

Now you have to go back through the code line by line in order to find the error. If this is
necessary to adapt the program to a new situation (reuse), then your program was correct but
just poorly written. You should get into the habit of having a good programming style, so that
you can easily adjust programs to (fit) new situations.

How can you proceed? Instead of writing the stone size as a fixed number in the code, define a
variable size, that can be used in place of the fixed number wherever the stone size plays a role.
In order to structure the program even better, you should also write a separate function
drawStone() for the placement of the stone.

from gpanel inport *

def drawStone(x, y):
set Col or (get RandonX11Col or ())
move(x + sizel2, y + sizel?2)
fillRectangl e(size, size)

makeGPanel (0, 400, 0, 400)
size = 50
for x in range(0, 400, size):

for y in range(0, 400, size):
dr awSt one(x, Y)

Highlight program code (ctri+C copy, Ctri+V paste)

H MEMO

The use of fixed numerical values throughout the program results in poorly reusable programs.
You should instead define variables and use them in place of numbers. To indicate that these
should never change, sometimes you write these variables in capital letters and call them
constants.

A variable that is defined in the main block can also be read in each function. Therefore, we
also call it a global variable.

For longer self-contained actions, the code should be put into separate functions. This has
several advantages: the first is that you can recognize the function name and what it should
do, the second is that you can call them several times without having to rewrite the code, and
the third is that the program becomes clear and comprehensible. This type of programming is
called structured programming (or procedural programming) and it is an important trait
of a good programming style.

Page 82

B EXERCISES

1. As you can find out using the Pythagorean theorem, the command:

fillTriangle(x - math.sqrt(3)/2 *r, y - r/2,

draws an equilateral triangle with the center point at (x, y) and the radius r. Verify this in a
GPanel with the coordinate system -1..1 for both axes, which draws a triangle with its center
at the origin.

2. Use the code from exercise 1 and define a function star(x, y, r), which draws a star using two
equilateral triangles with the center point (x, y) and the size r. Try it out and draw a few

stars.

3

" Enhance the function star() with a parameter that sets the color of the star. Draw a star

X + math.sqrt(3)/2 *r, y - r/2,

mosaic on a grey background with 50x50 stars. Keep the size of the stars consistent.
Also, make sure that none of the stars are drawn with the background color.

K W¥ ¥K
ST
Rk
e
.-

x
T
*

»
2

Page 83

3.4 FUNCTIONS WITH A RETURN VALUE

M INTRODUCTION

You already know how to define a function with or without parameters and how to call it. From
mathematics you probably know that there, functions are understood as something slightly
different. In mathematics, a function y = f(x) has an independent variable x. For each value of x,
the function returns a value of the dependent variable y. One example is the quadratic function:

-

v=x". x=0,1, 2, 3results in the square numbers 0, 1, 4, 9.

You can also define functions in Python that calculate a value and then "return" it as a variable.

PROGRAMMING CONCEPTS: Return value of a function, discretization

THE KEYWORD RETURN

You can define a function squarenumber(x) that
calculates a square number x * x for a given parameter
X, just as in mathematics. The return occurs by using
the keyword return. You can then draw the graph of
the function in a GPanel. For the graphics you best use
draw(x, y), which draws a line segment from the last
position of the graphics cursor to (x, y) and then
places it there. After the GPanel window appears, the
graphics cursor is at (0, 0). You must first set it to the
starting point of the image using move(), otherwise
you will get an incorrect starting line.

from gpanel inport *
mekeGPanel (-25, 25, -25, 25)

def squarenunber (x):
y = x * X
return y

for x in range(-5, 6):
y = squar enunber (x)
if x == -

move(X, Y)
el se:
draw(x, vy)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

With return, a function can return a value to the caller and stop further processing. Just as in
mathematics, a function cannot return multiple values [more...].

However, as you have seen, in contrast to mathematics, there are also functions in computer
science that do not return a value but can still have an effect. Functions are even able to do

both, cause something and return something [more...].
Page 84

This graphical representation of the quadratic function is not very nice yet. In addition to the
missing coordinate system, the graph's angular progression is also quite unpleasant. This is
due to the fact that you only calculate the function at a few integer points that you connect
with straight lines. This exposes an essential weakness of computer science compared to
mathematics: Although the function delivers a y value for every value of the x-axis (for every
real number), in computer science we can only calculate it at a finite number of points. We say
that the continuous x-axis is dissolved into discrete points.

DECIMAL NUMBERS (FLOATS)

At least we can make the representation a bit nicer
if we choose to calculate points that are close to
each other on the x-axis. For example, you can run
through the range of -5 to 5 in hundredth steps. To
make it even better, you can draw a coordinate
grid.

Unfortunately, you can only run for loops with
integer values in Python. If you need a better
resolution, you can use a while loop. This way, we
can add 0.01 to the x coordinate at every step.
Now Python does no longer consider x as an
integer, but as a decimal number (float).

from gpanel inport *
makeGPanel (-6, 6, -3, 33)
set Col or ("gray")
drawGrid(-5, 5, 0, 30)

def squarenunber (x):
y = x * X

return vy

set Col or (" bl ue")

l'i neW dt h(2)
X = -5
while x < 5:
y = squar enunber (x)
if x == -
nove(Xx, VY)
el se:
draw(x, vy)

Xx = x + 0.01

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

In Python, decimal numbers are called float. Unlike in mathematics, decimal numbers in
computer science always have a certain (finite) number of digits. In Python there are about 14
digits (in other programming languages such numbers are called double). One example in
computer programming is that you can never exactly specify the number n (which is of course
an infinite decimal fraction), because you would only get a precision of around 14 digits with a
float.

If you need a coordinate grid, you can do the following:

Page 85

O Expand/Enlarge the coordinate range left and right, and up and down by 10% (instead of
-5 to 5 use -6 to 6, instead of 0 to 30 use -3 to 33)

O Call drawGrid() with 4 parameter values, matching the coordinate range that you are
actually using. This results in 10 coordinate fields.

B EXERCISES

1. Define the function mean(a, b) that returns the arithmetic mean of the two parameters. Test
it out with the console.

2. Examine the behavior of the function y = cos(x). How is it different from y = sin(x)?

3. Display the graph of the function y = sin(5x) in a GPanel, for a range between 0 and 2n with
a resolution of 0.01 (you can get n using math.pi). Pick a value other than 5 within the sine
function. What is the connection between this number and the graph?

4. Define the function f(x) = 1 / sin(x) and represent it in a GPanel for the range -5...5 (for both

axes) with a solution of 0.001. Also draw the coordinate axes with a different color. Do you
find anything interesting about this?

Page 86

3.5 GLOBAL VARIABLES, ANIMATIONS

M INTRODUCTION

Computer graphics are frequently used to represent time-varying content. For example, you can
simulate a process from physics or biology, or create a computer game. We generally call such a
program an animation. In order to show a temporal sequence, new images are drawn one after
another, always after an equal step in time, called an animation step.

PROGRAMMING CONCEPTS: Global variables, side effects, double buffering

Bl CHANGING GLOBAL VARIABLES

You want to illustrate a ball that moves on a circle. You
will get a circular motion with a radius of 1 by
calculating the x-coordinate using the cosine function
with an increasing parameter t (corresponding to
advancing time), and the y-coordinate with the sine
function, thus x = cos(t) and y = sin(t). If you want a
different radius, you have to multiply both values with
the radius.

With the function step(), the situation for each
animation step is drawn. Once the ball has made a full
circle, the color should change.

It is common to introduce an endless animation loop in the main program that repeatedly calls
step(). By incorporating a delay, you can change the speed of the animation. When using step(),
the global variable t should increase at each step and reset to 0 once it has reached 2P, and
the color should change.

inport math
from gpanel inport *

def step():
gl obal t
X r * math.cos(t)
y r * math.sin(t)
t t + 0.1
if t > 6.28:
t =0
set Col or (get RandonX11Col or ())
move(Xx, Y)
fillCircle(10)

makeGPanel (-500, 500, -500, 500)
bgCol or (" dar kgreen")

t
r

0
200

whil e True:

step()
del ay(10)

Highlight program code (ctri+C copy, Ctri+V paste)
Page 87

H MEMO

Python prohibits changing the value of global variables in functions. We can bypass this by
providing the variable with the keyword global in the function.

The identifier global poses risks: any function can not only change a variable designated as
global, but can also create it, as the following example shows:

def set():
gl obal a
a =2
def get():
print "a =", a
set ()
get ()

Since set() generates a variable a which is visible throughout the entire program, we also say
that the function set() has side effects. Also note how nicely several things, one after
another, can be written into the console using comma separation in a print statement. In the
output the comma is replaced by a space.

B THE TRICK WITH THE EVEN TICK

The animation loops should run in time ticks that are as even as possible, i.e. with the desired
animation period, otherwise the movement will be jerky. With step() each new animation state
is set up. Depending on the situation, this can take different amounts of time to complete, as the
program may not always run the same parts of the code, and also because the computer may be
busy with other tasks in the background, which may delay the execution of the Python code. To
compensate for the step() of varying length, the following trick is used, which you could also
have figured out yourself: before calling step(), you keep track of the current time using the
variable startTime. After returning from step() you wait in a waiting loop until the difference
between the new time and the start time reaches the animation period.

The program moves a soccer ball from goal to goal. For
this, you use an image football.gif hat is located in the
directory sprites of the TigerJython distribution. You can
also take your own picture by copying the file into an
appropriate directory on your computer and passing the
file path as a parameter in image() (absolute or relative
to the directory where your program is located).

from gpanel inport *
inport tine

def step():
gl obal x
gl obal v
clear()
i neW dt h(5)
nmove(25, 300)
rectangl e(50, 100)
move(575, 300)
rectangl e(50, 100)

Page 88

X =X +V
i mge(" _sprites/football.gif", x, 275)
if x > 500 or x < 50:

vV = -v

makeGPanel (0, 600, 0, 600)
bgCol or ("forestgreen")
enabl eRepai nt (Fal se)

x = 300
v = 10

whil e True:
startTime = tinme.clock()
step()
repai nt ()
while (time.clock() - startTinme) < 0.020:
del ay(1)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

Using time.clock() you can get the current time as a decimal number. The given value is
dependent on the computer (processor time, or the time since the first call of clock()). But
since you only need the time difference, it does not matter. Save the time before calling step()
and wait at the end of the animation loop with a delay(1), until the difference between the
current time and the start time reaches the animation period (in seconds). Remember this
trick, for you will use it for many processes that ought to run as periodically as possible.

Every graphics command is immediately visible in the GPanel window. Deleting with clear()

while animating will briefly show an empty graphics window, which can lead to a flickering
effect. To avoid this, double buffering should be used in animations.

You can achieve this using the command enableRepaint(False), causing the graphics
command to be executed only in a background buffer (off screen buffer) and effects are no
longer visible. So clear() only deletes the background buffer and does not erase the graphics
window anymore. You must trigger the display of the graphics buffers on the screen (called
rendering) yourself at the right moment by calling repaint().

In this program you also need to globally distinguish the variables x and v in the function
step() since they are changed in the function.

EXERCISES

1. If you do not move the x- and y-coordinates with ordinary cosine or sine functions as you did
in your first program, but rather at different rates, it will create interesting curve patterns
called Lissajoux figures. Draw such figures with a resolution of 1/1000 in the range of t = 0
to 2n and with

x = cos(4.5 * t) und y = sin(6.3 * t)

2. Instead of using fixed numbers, use the variables omega_x and omega_y to draw the figure
for the following values:

omega_x omega_y
3 5
3 7
5 7

Page 89

Do you see a connection between the figure and the values of omega_x and omega_y?

. Draw the Lissajoux figure with omega_x = 2 and omega_y = 7, in the range of t = 0 to 2n,
and with a resolution of 1/100 in a GPanel with the coordinates -2 to 2 (both axes). Instead of
connecting the points with lines, draw a circle with a radius 0.2 at any point. You get a
“slinky-like” figure. As you can see in the picture, you can make monochrome circles or you
can fill them with color using getRandomX11Color(). Play around with it!

Page 90

3.6 KEYBOARD CONTROLS

M INTRODUCTION

Programs become especially interactive when the user can control the program execution by
using keys on the keyboard. Although keystrokes are actually events that always occur
independently of the program, they can be captured also through querying functions.

PROGRAMMING CONCEPTS: Boolean data type, game state, animation

Il KEYBOARD CONTROLS

The command getKeyCodeWait() will stop the
program until you press a key. Then, the function
provides you with the corresponding key code as a
return value. With the exception of certain special keys,
each key has its own numerical code.

You can figure out the key codes using a simple test Press any key.
program. The numerical codes are written in the
console window.

from gpanel import *
makeGPanel(0, 10, 0, 10)

text (1,5, "Press any key.")
while True:
key = getKeyCodeWait()
print key,

o
w
1
=]
-1
X
w
-1
Hes
=
w
[N E)
w
o

Highlight program code (ctri+C copy, Ctri+V paste)

B MEMO
You can use the command getKeyCodeWait() for keyboard inputs. The computer waits until
you press a key and then returns the key code.

However, you have to remember that the GPanel window must be active. In other words, it
must be in focus. If the window loses focus, you have to click somewhere inside it in order to
activate it again. Only the currently active window receives keyboard events.

Il CONTROLLING FIGURES
You can move graphic objects using the keyboard. The program controls the green circle with the

cursor keys, moving it left, right, up, or down. In a so-called event loop the program waits for a
key press and then processes the obtained key code in a nested if-else structure.

Page 91

Since the drawing of the circle is used over and over
again, it makes sense that you would pack the code into
its own function drawCircle() that can be called
multiple times, in compliance with the structured
programming paradigm.

Bewene den Kreis mit Cursortasten.

from gpanel import *

KEY_LEFT =37
KEY_RIGHT = 39
KEY_UP = 38
KEY_DOWN = 40

def drawCircle():

move(X, y)

setColor("green")
fillCircle(5)

setColo r("black")
circle(5)

makeGPanel(0 , 100, 0, 100)

text("Move the circle with the arrow keys.")
x =50

y =50

step = 2

drawCircle ()

while True:
key = getKeyCodeWait()
if key == KEY_LEFT:

X -= step

dr awCircle()

elif key == KEY_RIGHT:
X += step

dra wCircle()

elif key == KEY_UP:

y += step

dra wCircle()

elif key == KEY_DOWN:
y -= step

dra wCircle()

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

To make the program more readable, you can introduce constants for the keyboard codes of
the arrow keys. So that they are especially noticeable, constants should be placed in the
program header and written in capital letters.

Page 92

M NON-BLOCKING KEYBOARD QUERIES

As you are probably aware, the keyboard is often used to
control the game play in computer games. In this case
you can of course not use the blocking function
getKeyCodeWait() because it would pause the game.
Rather, you need a function that will deliver the
information if a key has been pressed, but that also
immediately returns.

In case you indeed pressed a key, you process this
event, otherwise the game will continue on normally.

Speed: &

You want the speed of a ball moving back and forth to get slower with the letter key 's' (for slow)
and get faster with 'f' (for fast), but only up to a certain maximum value. You need to again
focus your attention on the event loop, which is where everything essential happens. In it,
kbhit() periodically queries, whether a key was hit or not. If this is the case, kbhit() returns
True and you can get the key code by using getKeyCode().

*

from gpanel import

import time

KEY_S = 83
KEY_F = 70

makeGPanel(0, 600, 0, 600)
title("Key 'f': faster, 's": slower")

enableRepaint(False)

x =300

y =300
v =10
vmax = 50

isAhead = True

while True:
startTime = time.clock ()
if kbhit():
key = getKeyCode()
if key == KEY_F:
if v<vmax:

delay(1)

while (time.clock() - st

v+=1
elif key==KEY_S:
if v>0:
v-=1
c lear()
setColor("black")
text(10, 10, "Speed: "+ str(v))
if isAhead:
X=X+ v
else :
X=X-V
move(x, Y)
setColor("red")
fillCircle(20)
repain t()
if x>600 or x<0:
isAhead = not isAhea d

artTime) < 0.010:

Highlight program code (ctri+C copy, Ctri+V paste)

Page 93

H MEMO

Since it is an animation, we again need to use an animation timer in order to obtain a run
through the event loop that is as periodic as possible. The next game state is created in the
loop and it is then displayed in the window screen with repaint().

kbhit() returns a truth value, which we refer to as a boolean. If a key was pressed since the
last call, it returns True, otherwise False.

In order to move the ball to the right (forward), its x-coordinate must increase by v (the
measure for speed) with each pass of the event loop. To move to the left, the coordinate v
must decrease. We summarize a forward and backward movement as a game state which we
save in the variable isAhead.

You can add a word to a second word in Python using the + character, for example "Hans" +
"Peter" results in the word "HansPeter". However, if you want to add a number to a word, you
first have to convert the number using the str() function.

B EXERCISES

1. Using the cursor keys UP, DOWN, LEFT and RIGHT
draw a snake line of small red circles, which lie
closely next to each other.

2. As an extension, define the following buttons for color selection: after you press the letter
key g, the circles should turn green, b should make them blue, and r red.

3. Extend the above program with the ball moving back and forth so that the UP and DOWN
cursor keys make the ball move up and down.

Page 94

3.7 MOUSE EVENTS

@ INTRODUCTION

So far, your understanding of the computer is that it executes instruction after instruction. It can
also change the course of a program due to certain conditions or run through loops. The
corresponding program structures are called sequence, selection, and iteration. As early as
1966 Bohm and Jacopini proved in a famous article that any calculation procedures (algorithms)
can be realized using these three programming structures.

This is, however, only true as long as you do not incorporate any external influences. For
example, you can cancel a program at any moment by clicking with the mouse on "Close" (close
button). Such processes need a new programming concept: event control (event handling). You
have already learned the basic principles in the chapter Turtle Graphics/Event Control. It consists
in procedures of the type:

"Whenever the event e occurs, the function f is executed"”.

The implementation is simple and known since the early days of computer technology in the
fifties of the last century. We define a function f (then called interrupt routine) which is never
even called by our own program. It sleeps, so to speak, until a certain event E occurs, an
external influence, upon which it is then automatically called by the system. Today we call such a
function callback and we say that the callback f is “fired” by the event E. Often, callbacks
are called with parameter values that contain important information about the event, for
example, which mouse button was pressed or where the mouse is located.

PROGRAMMING CONCEPTS: Event-driven program, callback, registering callbacks

Il REACTING TO A MOUSE EVENT

You can also use mouse events in the GPanel, just like in turtle graphics. In the first example, a
green circle is drawn at the current mouse position when the left or right mouse button is
pressed. Do the following:

First, in a function with an arbitrarily chosen name,
define what should happen when a mouse button is
pressed. Here you choose a name, for example
onMousePressed(), that expresses what the function
does as well as possible. When called by the system, the %
callback receives the current coordinates of the mouse
cursor. Next you need to tell the system that it should
call your callback when the mouse button is pressed.
This process is called callback registration. To
register your callback you will need a named parameter
of makeGPanel() that is called mousePressed.

from gpanel inmport *

def onMousePressed(x, y):
move(x, Y)
fillCircle(0.02)

makeGPanel (nousePressed = onMbusePressed)
set Col or ("green")

Page 95

H MEMO

A callback is not called by your own program, but rather automatically when the event is
triggered. The registration of the callback is performed through a named parameter. You can
detect the pressing of a mouse button with two different callbacks: a click event or a press
event. The click event will not be triggered until after the key is released, but the press event
triggers immediately once you press the button.

DETECTING MOUSE MOVEMENT

The mouse movement can also be recognized as an

event, which is triggered in rapid succession when the ’
mouse is moved. The parameter is called
mouseMoved. Your program draws a red filled circle

with a black outline at every call of the callback,
whereby you can draw fun tubelike pictures.

from gpanel inport *

def onMouseMoved(x, y):
move(x, Y)
setColor("red")
fillCircle(.04)
set Col or (" bl ack™")
circle(.04)

makeGPanel (nouseMoved = onMouseMoved)

H MEMO

The onMouseMoved(x, y) callback is registered through a named parameter mouseMoved.

FREE HAND DRAWING WITH A PRESSED MOUSE BUTTON

Now you are already capable of writing a simple
drawing program, with which you can draw a figure
free-handedly using the mouse. All you need is the drag
event which is triggered in rapid succession when you
move the mouse with the button pressed down. The
program logic is simple: move the graphics cursor to the
current location when the press event occurs and then
draw a line using draw() in the drag event callback.

Page 96

from gpanel inmport *

def onMousePressed(x, y):
move(x, VY)

def onMouseDragged(x, Yy):
draw(x, y)

makeGPanel (nousePressed onMbusePressed,
mouseDr agged = onMouseDr agged)

MEMO

You can register multiple callback with named parameters simultaneously. The order of the
parameters does not matter.

THE LEFT AND RIGHT MOUSE BUTTON

As you have probably noticed, the mouse events are
triggered by both the left and right mouse buttons. If
you want to differentiate the two buttons, use the
functions isLeftMouseButton() and
isRightMouseButton(). These return True when the
left or the right button is involved, respectively.

When you press on the right mouse button the
program opens a color palette. You can then select the
fill color of the circle with the left mouse button.

from gpanel inmport *

def onMousePressed(x, y):
if isLeftMouseButton():
pi xCol or = get Pi xel Col or (x,)

if pixColor == makeCol or ("white"):
return

clear()

set Col or (pi xCol or)

move(5, 5)

fillCircle(2)

i f isRight MuseButton():
for i in range(5):
nove(9, 2 * i + 1)
if i ==
set Col or ("deep pink")
if i == 1:
set Col or (" green")
if i == 2:
set Col or ("yel | ow")
if i == 3:
set Col or ("deep sky blue")
if i == 4
set Col or("dark violet")
fill Rectangle(2, 2)

makeGPanel (0, 10, 0, 10, mousePressed = onMousePressed)
move(5, 5)
fillCircle(2)

Page 97

H MEMO

The registered mouse callbacks are triggered with the left and the right mouse buttons. You can
find out which button was used by calling isLeftMouseButton() or isRightMouseButton().

Il RUBBER BAND LINES

If you want to draw lines with a drawing program, you
can mark the starting point by pressing the mouse
button. While dragging the mouse, you make a
temporary line similar to that of a rubber band that is
fastened at the starting point. Only release the mouse
button when you are satisfied with the position of the
line, and then it will actually be drawn.

So here you need three callbacks: onMousePresssed,
onMouseDragged and onMouseReleased. /

But there is a particular problem: to move the rubber band over the drawing area it must be
repeatedly erased from its old location and drawn again to the new location, without changing the
already existing drawing. If you deleted the lines by overwriting them with the background color,
gaps would result in the existing drawing at the intersection points.

To solve this problem, you must save the existing drawing in the press callback (one also calls
this "rescue"). The deletion of the temporary rubber band then happens by restoring this “old”
drawing. You can save the drawing with storeGraphics() and restore it with recallGraphics().

from gpanel inport *

def onMousePressed(x, y):
gl obal x1, y1, x2, y2
storeG aphics()

X1l = X
yl =y
x2 = x1
y2 =yl

setColor("red")

def onMouseDr agged(x, y):
gl obal x2, y2
recal | Graphics()
X2 = X
y2 =y
line(x1l, yl, x2, y2)

def onMouseRel eased(x, Yy):
set Col or ("white")
if not (x1 == x2 and yl1 == y2):
line(x1, y1, x2, y2)

<
[
1
o O oo

<
N
|

makeGPanel (mousePressed = onMousePressed,
mouseDr agged = onMouseDr agged,
mouseRel eased = onMiuseRel eased)

title("Press And Drag To Draw Lines")

bgCol or (" bl ue™)

Page 98

set Col or ("white")
l'ineW dt h(2)

Highlight program code (ctri+C copy, Ctrl+V paste)

B MEMO

Remember the principles of drawing rubber band lines:
In a press event the end point of the line is initialized and the graphic is saved.

In a drag event the saved/stored graphic is restored, the temporary line with the new end
point is saved, and the new end point is saved.

In a release event the line is definitely drawn, but only if the mouse was really moved.

B EXERCISES

1. Draw a green filled circle. The fill color should change to
red when you move the mouse onto the circle. It should
turn back to green when the mouse moves off.

You can specify a window with
makeGPanel(-10, 10, -10, 10,
mouseMoved = onMouseMoved)

2. Your program should draw a line segment after every
mouse click.

3. Upon the movement with a pressed mouse button, your
program should draw a tube-like figure. While moving, the
tube should swell up from an initial thickness of 0.01 to
0.1, and then return back to its original thickness.

4. Write a program where you can draw green rectangles
onto a black background. In this case, you should be able
to place a temporary "rubber band rectangle" by pressing

Page 99

and dragging the mouse, before it is definitely placed
upon releasing the mouse. Use the rectangle functions
that are called with the coordinates of two opposite corner
points of the rectangle (rectangle(x1, y1, x2, y2)).

ADDITIONAL MATERIAL
REGISTERING CALLBACKS WITH DECORATORS

Instead of using named parameters of makeGPanel() to register a callback, an arbitrary named
function with two parameters x and y can be "decorated" by a preceding line, so that TigerJython
automatically registers the function as callback that is called when the event happens. The
additional line has to be prefixed by the "at" sign @. The following decorators are available:

@onMousePressed mouse button is pressed
@onMouseReleased mouse button is released
@onMouseClicked mouse button is pressed and released
@onMouseDragged mouse is moved while a button is pressed
@onMouseMoved mouse is moved while no button is pressed
@onMouseEntered mouse enters the graphics window
@onMouseExited mouse leaves the graphics window

So the program shown above which draws a circle when the mouse button is pressed, can be
written using a decorator:

from gpanel inport *

@nMousePressed

def dolt(x, y):
move(x, Y)
fillCircle(0.02)

makeGPanel ()
set Col or ("green")

Highlight program code (ctri+C copy, Ctrl+V paste)

Page 100

3.8 THREAD GRAPHICS

M INTRODUCTION

You have likely played with thread graphics already in
preschool. For this, you hammered nails or inserted needles
into a timber or carton board to create a particular figure,
according to a crafting guide. Most of these were arranged at
equal intervals and you linked them together with threads.
When you placed a sufficient amount of threads, interesting
curves appeared where the thread consolidated. In
mathematics, this is called envelope (also envelope curve)
because the threads are tangent to this curve.

From Taubner, Walz: Fadengrafik

Instead of creating the thread graphic yourself, you can also instruct a machine to do it. This
would require the machine to not only understand the instructions but then to also translate
these instructions into an action, for example using a robot arm to pull the strings or record the
strings on a screen. Such an instruction manual for a machine is also called an algorithm. You
can first formulate the algorithm as a “craft” instruction understandable in colloquial language.
Since it is desirable that the machine produces the exact same pattern on each pass, the
algorithm must be formulated so precisely that the machine knows exactly what to do at every
step. Programming languages were invented for this and that is why you learn to program, since
in the natural languages there is no such unambiguity.

PROGRAMMING CONCEPTS: Algorithm, data structure, model, program elegance, list, index

B POINTS AS LISTS

Instead of working with boards, nails, and threads, you
can transfer the procedure to your computer. Thereby
you make an portrayal of nature, you model the
board as a screen window, the nails as points on the
screen, and the threads as lines.

In transferring the algorithm into a programming
language, it is important to establish the closest
relationship possible to reality. Nails, and geometric
points respectively, represent tangible objects to you,
and so they should be in the program as well.

In geometry, you can write P(x, y) for a point, where x and y are the coordinates. In the
program, we can pack the two numbers x and y into a data structure, called a list. We write p =
[x, y]. The geometric point P(0, 8) is thus modeled by the list p = [0, 8] .

You can access the individual components of a list with an index with a count starting at 0. You
have to write the index in a set of square brackets, so p[0] for the x-coordinate, and p[1] for
the y-coordinate. The nice thing is that all of the graphic functions of the GPanel are "list
conscious" because they also work with point lists instead of x-y-coordinates. Your program
models the pulling of threads from nail A around 19 nails at the coordinates on the x-axis to nail
B, and back again. You can even incorporate a delay() which causes the stringing to take a
longer time that is graspable by humans.

Page 101

from gpanel inport *
DELAY = 100

def step(x):
pl = [x, 0]
draw(pl)
del ay(DELAY)
dr aw(pB)
del ay(DELAY)
p2 =[x + 1, 0]
dr aw(p2)
del ay(DELAY)
dr aw(pA)
del ay(DELAY)

mekeGPanel (- 10, 10, -10, 10)
pA = [0, 8]
pB = [0, -8]
move(pA)
for x in range(-9, 9, 2):
st ep(x)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

The data must also be structured conveniently in the implementation of an algorithm. Our
geometric points are modeled as a list with two elements (x- and y-coordinates). The choice of
the data structure significantly affects the program. Niklaus Wirth, a famous computer
science professor at the ETH Zirich, aptly said: program = algorithm + data structure
[Ref.]

Lists can store multiple values, named list elements. They are defined with square brackets.
You can read the individual elements with a list index and assign new values.

All of the graphics commands of GPanel also work with points modeled as lists of x- and
y-coordinates.

PROGRAMMING IS AN ART

You probably realize that you can create the previous
thread graphic much easier if you draw the lines
independently of how the thread would actually be drawn
by hand. You just need to connect the points A and B with
routes.

from gpanel inport *

makeGPanel (-10, 10, -10, 10)
pA = [0, 8]
pB = [0, '8]

for x in range(-9, 10, 1):

pX = [x, 0]
line(pA, pX)
line(pB, pX)

Highlight program code (ctri+C copy, Ctri+V paste)

Page 102

H MEMO

An algorithm can be implemented in various ways that differ in length of code and duration of
the execution of the program. We also speak of more elegant and less elegant programs. Just
remember that it is not enough for a program to produce a correct result, but it should also be
written elegantly. Consider programming an art!

ELEGANT THREAD GRAPHIC ALGORITHMS

You often need dividing points of a line segment for
thread graphics. For this there is a simple function in
GPanel called getDividingPoint(pA, pB, r), which you
pass the two endpoints pA and pB of the line and the
division factor r. It returns you the dividing point as a
list [more...].

You are now modeling a thread graphic with nails on the
sides AB and AC with an especially elegant program.

from gpanel inport *

makeGPanel (0, 100, 0, 100)

°
>
I

[10, 10]
pB = [90, 20]
[30, 90]

o
@]
I

l'ine(pA, pB)
line(pA, pO

r =0
while r <= 1:
pX1 = getDi vi di ngPoi nt (pA, pB, r)
pX2 = getDi vi di ngPoi nt (pA, pC, 1 - r)
line(pX1l, pX2)
r += 0.05
del ay(300)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

Library functions such as getDividingPoint() can greatly simplify a program. For certain
well-defined tasks, you should use existing library functions that you know from vyour
programming experience here, taken from documentations, or from what you can find on the
Web.

Mathematically, the resulting curve is a quadratic Bézier curve. You can draw it with the
function quadraticBezier(pB, pA, pC), where pB and pC are the endpoints, and pA is the control
point of the curve.

Page 103

MOUSE CONTROLLED THREAD GRAPHICS

Modeling natural processes with the computer is not
just a game, it also has versatile applications. You can
test different situations in @ much shorter time and with
much less effort with a computer until you have found
one that you want to implement into practice. Your
program is particularly attractive if you can make
changes with the mouse that have an immediate effect.
With Python, this can be incorporated with little extra
effort, by using callbacks.

In your program, you can move the vertex A by moving
the mouse, and a new thread graphic will be made
immediately.

In order to create the graphics, you use the function updateGraphics() which is called by the
mouse callbacks. Every time you delete the entire graphics window and then recreate it with
point A at the current location of the mouse cursor.

from gpanel inport *

def updateGraphics():

clear ()

l'i ne(pA, pB)
l'ine(pA, pOC
r =0

while r <= 1:
pX1l = getDi vi di ngPoi nt (pA, pB, r)
pX2 = getDividi ngPoint (pA, pC, 1 - r)
i ne(pXl, pX2)
r += 0.05

def nyCall back(e):
pA[0] = toW ndowX(e. getX())
pA[1] = toW ndowY(e.getY())
updat eGraphi cs()

mekeGPanel (0, 100, 0, 100,
mousePressed myCal | back,
mouseDragged = nyCal | back)

pA = [10, 10]
pB = [90, 20]
pC = [30, 90]
updat eGr aphi cs()

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

You can also deal with two different events, here the press event and the drag event, using
the same callback.

Page 104

B EXERCISES

1. Create the adjacent thread graphic

2. Work from the thread graphic from exercise 1, so that
you can draw the top of the triangle with a mouse drag
and the graphic is repeatedly drawn anew.

EXTRA MATERIAL

B BEZIER CURVES

These curves were invented in the sixties of the last
century by Pierre Bézier, then an engineer of the car
company Renault, so one could produce aesthetically
pleasing curves for the design of industrial products.

You can create a cubic Bézier curve as a thread graphic
using the De Casteljau algorithm.

The algorithm reads as follows:

B
- Q]
. R, B
Q /R, > - Q
P, P,

= Specify 4 points PO, P1, P2, P3. (PO and P3 will be the end points of the curve, P1 and P2
so-called control points)
Connect POP1, P1P2, P2P3

The routes POP1, P1P2, P2P3 are arranged into equidistant division points. For a given
division ratio, this results in the dividing points Q1, Q2, Q3
= Connect Q1Q2, Q2Q3

= Split the routes Q1Q2, Q2Q3 in the same division/factor ratio. This results in the division
points R2 and R3

Page 105

= Connect R2R3

You can easily implement the algorithm into a program if you implement the points as lists and
call the function getDividingPoint() several times.

from gpanel inport *

mekeGPanel (0, 100, 0, 100)

ptl = [10, 10]
pcl = [20, 90]
pc2 = [70, 70]
pt2 = [90, 20]

set Col or ("green")
line(ptl, pcl)

line(pt2, pc2)
l'ine(pcl, pc2)

while r <= 1:

ql = getDividingPoint(ptl, pcl, r)
g2 = getDividingPoint(pcl, pc2, r)
g3 = getDi vi di ngPoi nt (pc2, pt2, r)
line(ql, q2)
line(qg2, q3)

r2 = getDividingPoint(ql, g2, r)
r3 = getDividingPoint(g2, q3, r)
line(r2, r3)

r += 0.05

set Col or (" bl ack™)
#cubi cBezier(ptl, pcl, pc2, pt2)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

A cubic Bézier curve is defined by 4 points. You can draw one in GPanel with the function
cubicBezier(). The current drawing color and line thickness will be used.

INTERACTIVE CURVE DESIGN

Combining your knowledge, you can already write a
quite professional program with which you can create a
Bézier curve and interactively change it with the mouse.
The program even notices when you are near one of the
4 points with the cursor and colors it. With a press
event you can then grab the point and move it around.

The four points must be run through multiple times in
the program. It is therefore advisable that you also put
them in a list with the name points, so that you can
process them with a for structure.

It is also important that you know which of the points you have just grabbed. You store this
information in the variable active: if none of the points are grabbed it has the value -1,
otherwise its value corresponds to the index of the corresponding point.

Page 106

from gpanel inport *

def updateGraphics():
erase all
clear()

draw points
i neW dt h(1)
for i in range(4):
nove(points[i])
if active == i:
set Col or ("green")
fillCircle(2)
set Col or (" bl ack")
circle(2)

draw tangents
set Col or ("red")
line(points[0], points[1])
line(points[3], points[2])

draw Bezier curve

set Col or (" bl ue")

i neW dt h(3)

cubi cBezi er (poi nts[0], points[1], points[2], points[3])

def onMouseDragged(e):
if active == -1:
return
poi nts[active] [0]
poi nts[active] [1]
updat eGraphi cs()

t oW ndowX(e. get X())
t oW ndowY(e. get Y())

def onMuseRel eased(e):
active = -1
updat eGr aphi cs()

def onMouseMoved(e):
gl obal active
X = t oW ndowX(e. get X())
y = t oW ndowY(e.getY())
active = near(x, Yy)
updat eGaphi cs()

def near(x, y):
for i in range(4):
rsquare = (x - points[i][0]) * (x - points[i][O]) +
(y - points[i][1]) * (y - points[i][1])
if rsquare < 4:

return i

return -1
ptl = [20, 20]
pcl = [10, 80]
pc2 = [90, 80]
pt2 = [80, 20]
points = [ptl, pcl, pc2, pt2]
active = -1

mekeGPanel (0, 100, 0, 100,
mouseDragged = onMbuseDr agged,
nmouseRel eased = onMouseRel eased,
mouseMoved = onMouseMoved)

updat eGr aphi cs()

Highlight program code (ctri+C copy, Ctri+V paste)

Page 107

B MEMO

There are also complicated data structures such as lists whose elements are again lists. For

example, you can address the x-coordinate of P1 using the points[1][0], thus with double
brackets.

Today, Bézier curves are important design tools in the CAD domain [Ref.]

B EXERCISES

1. The heart consists of two cubic Bézier curves with the
same start and end points, plus symmetrical control
points. On a piece of paper, draw a sketch of where
these points should be placed and then create the
drawing. The filling is made with the function fill(point,
old_color, new_color), where point stands for an inner
point of a bordered area.

Page 108

3.9 Lists

M INTRODUCTION

Sometimes you have to store values that belong together, but their exact number is not known
during the creation of the program. Because of this, you will need a data structure where you can
store multiple values. The structure should be flexible enough to take the order of the added
values into account. It is obvious in this case to use a sequence of simple containers, which you
have already heard about, namely a list. Here you will find out in detail how to work with lists.

A list with 5 elements

list

A list consists of individual elements arranged one after the other. In contrast to an unstructured
set of elements, there is a first and a last element, and all the other elements have a
predecessor and a successor.

Lists (and similar containers) are enormously important for programming. The operations
possible with lists are very descriptive. The most important are:

Adding elements (at the end, at the beginning, somewhere in between)
Reading elements

Changing elements

Removing elements

Iterating all elements

Sorting elements

Searching for elements

Yy v vy vyevw

In Python you can store any data in lists, not only numbers. The individual elements can even
have a different type and you can, for example, store humbers and letters in the same list.

PROGRAMMING CONCEPTS: Container, list, predecessor, successor, reference variable

B GRADE LIST

You can interpret a list as a variable. It thus has a name and a value, namely its elements. You
create it with a pair of square brackets, e.g. list = [1, 2, 3] generates a list with the elements 1,
2 and 3. A list can also be empty. You can define an empty list with /ist = [].

Grade books, where you enter the grades for a particular school subject, are a typical use of lists,
let's say biology grades. At the beginning of the semester you have an empty list, which is
expressed in Python as bioGrades = []. Writing in grades is then equivalent to adding list items.
In Python you use the command append(), so for a score of 5 it looks like this:
bioGrades.append(5).

You can view the list at any time with a print command, just simply write print bioGrades.
If you want to calculate your grade point average, you have to run through the list. You can do
this easily and elegantly with a for loop, because

for grade in bioGrades:

copies every list value in order to the variable grade, and you can then use this in the loop body.

Page 109

bi oGrades = []

bi oGr ades. append(5. 5)

print bioGrades

bi 0Gr ades. append(5)

print bioGrades

bi oGr ades. append(5. 5)

print bi oG ades

bi 0Grades. append(6)

print bi oG ades

sum = 0

for note in bioGrades:
sum += note

print "Average: " + str(sum/ |en(bioGrades))

Highlight program code (ctri+C copy, Ctrl+V paste)

MEMO

Using the method append() you can add new elements to the end of the list.

The built-in function len() returns the current length of the list. Note the interesting trick with
the variable sum, with which you can create the sum to then calculate the average. You can
also obtain the sum directly with the built-in function sum(bioGrades).

LIST WITH A FIXED NUMBER OF ELEMENTS

It is often already known how long a container list has to be, and that all elements have the same
data type, when creating the program. In many programming languages you call such a data
structure an array. The individual elements are usually accessed via their index. In Python there
is no such data type and instead you use a list.

The program defines a polygon as a list with 4 vertices
(these are again defined as lists with 2 coordinates). In S
order to access them with indices from the start, create _\ \‘*-._
a list with 4 zeros polygon = [0, 0, 0, 0]. You can also \ \
use the shorthand notation polygon = [0] * 4. LY

After that, you copy in the 4 vertices, which replaces the \ A

zeros by point lists. With a for loop you display the \ E
polygon.

from gpanel inmport *

pA = [0, -3]
pB =[5, -3]
pC = [0, 7]
pD = [-5, 7]

makeGPanel (-10, 10, -10, 10)
line(-10, 0, 10, 0)
line(0, -10, 0, 10)

polygon = [0] * 4 # list with 4 elenents, initialized with O

pol ygon[0] = pA
pol ygon[1] = pB
pol ygon[2] = pC
pol ygon[3] = pD

Page 110

for i in range(4):
k =i +1
if k == 4:

k =0

l'ine(polygon[i], polygon[k])

Highlight program code (ctri+C copy, Ctrl+V paste)

MEMO

If you already know the length of the list when creating the program, generate a list with the
initialization values 0 and then refer to the elements using the index.

INSERTING AND DELETING ELEMENTS

The program shows how a word processor works. The entered characters are inserted into a list
of letters. It is clear that you do not know how many letters you will enter in the beginning, so a
list is the ideal data structure. In addition, you see a text cursor which can be set to any position
in the text with a mouse click.

When you type using a character key the letter is
inserted to the right of the cursor and the list grows.
When you use the backspace key the character to the
left of the cursor is deleted and the list shrinks.

In order to represent everything nicely, you write the
characters as text with a text color and background

color in a GPanel. For this you run through the list with a
list index i. Fythen 1z cloall

Listlenpth=15

from gpanel inport *

BS = 8
SPACE = 32
DEL = 127

def showl nfo(key):
text = "List length =" + str(len(letterList))
if key = "":
text += ". Last key code = " + str(ord(key))
set St at usText (text)

def updat eGraphics():
clear()
for i in range(len(letterList)):
text(i, 2, letterList[i], Font("Courier", Font.PLAIN, 24),
"blue", "light gray")
line(cursorPos - 0.2, 1.7, cursorPos - 0.2, 2.7)

def onMousePressed(x, y):

set Cur sor (x)
updat eGr aphi cs()

def set Cursor(x):
gl obal cursorPos

Page 111

pos = int(x + 0.7)
if pos <= len(letterList):
cursor Pos = pos

makeGPanel (-1, 30, 0, 12, nousePressed = onMusePressed)

letterList =[]

cursorPos = 0

addSt at usBar (30)

set StatusText ("Enter Text. Backspace to delete. Muse to set cursor.")
I'i neW dt h(3)

whi l e True:
del ay(10)
key = getKey()
if key == "":
conti nue
keyCode = ord(key)
if keyCode == BS: # backspace
if cursorPos > 0:
cursorPos -=1
| etterList.pop(cursorPos)
elif keyCode >= SPACE and keyCode != DEL:
letterList.insert(cursorPos, key)
cursorPos += 1
updat eGr aphi cs()
showl nf o(key)

Highlight program code (ctri+C copy, Ctrl+V paste)

MEMO

You have already learned that you can access individual elements of a list using a list index that
starts at zero. For this, you use the square brackets, i.e. letterList[i]. The index must always
lay in the range of 0 and list length - 1. When you use a for in range() structure the stop
value is just the length of the list.

You should never access an element that does not exist with the index. Errors with
invalid index lists are one of the most common errors in programming. If you do not pay
attention, you get programs that sometimes work and sometimes die.

To test which key was pressed you can use getKey(). This function returns immediately after
the call and delivers either the character of the last key pressed or the value 65535 (the largest
representable integer with 16 bit) if no key has been pressed.

ALREADY A PROFESSIONAL PROGRAM
You are already able to visualize a graph with your knowledge [more...]

The task (also called "program specification") is the following:

You can create filled circles in the graphics window with a right mouse click, which are
considered to be nodes of a graph, where the nodes are interconnected with named lines, called
edges. Go on a node with the mouse; with a left mouse press and subsequent dragging you
can move it around while the graph is updated constantly. If you right click on an existing node, it
will be removed.

Page 112

It is wise that you solve complex tasks by first looking
at a subtask that has not yet met all of the final
program specifications. For example, first write a
program with which you can create nodes with each
click. They should already be connected with all other
existing nodes, but you cannot move them yet.

It seems obvious to model the graph with a list graph
in which you store the node points.

The nodes themselves are points with two coordinates P(x, y) that you model with a point list
pointlist [x, y]. It is therefore a list, that then again contains lists as elements (but with a fixed
length of 2). You accomplish joining the nodes with double for loop, but you must make sure
that the nodes are only connected once.

from gpanel inport *

def drawGraph():
clear()
for pt in graph:
move(pt)
fillCircle(2)

for i in range(len(graph)):
for k in range(i, len(graph)):
line(graph[i], graph[k])

def onMousePressed(x, y):

pt =[x, V]
graph. append(pt)
drawGr aph()

graph = []
makeGPanel (0, 100, 0, 100, mousePressed = onMusePressed)

Highlight program code (ctri+C copy, Ctrl+V paste)

Next you are going to incorporate the dragging and
deletion of nodes. For this, you will need the right mouse
button. As you drag it is important to know which node is
being pulled. You can remember it by its index iNode in
the graph list. If no node is being pulled, iNode = -1. In
the function near(x, y), using the Pythagorean theorem,
you calculate the distance between point P(x,y) and all
other points. Once one of the squared distances is less
than 10, you abort the calculation and return the index of
the node. Here you see that you can leave a function using
return even in the middle of the procedure.

Everything else is fun programming work that you could
also achieve yourself based on your current knowledge.

from gpanel inport *

def drawGraph():
clear ()

Page 113

for i in range(len(graph)):
move(graph[i])
if i == iNode:
setColor("red")
el se:
set Col or ("green")
fillCircle(2)

set Col or (" bl ue")
for i in range(len(graph)):
for k in range(i, |en(graph)):
l'ine(graph[i], graph[k])

def onMousePressed(x, y):
gl obal i Node
if isLeftMuseButton():
i Node = near(x, Yy)
i f isRightMouseButton():
i ndex = near(x, YY)

if index !'= -1:
graph. pop(i ndex)
i Node = -1
el se:
pt =[x, vyl
graph. append(pt)
drawGr aph()

def onMouseDr agged(x, y):
if isLeftMuseButton():
if i Node == -1:
return
graph[i Node] = [x, VY]
dr awGr aph()

def onMouseRel eased(x, Yy):
gl obal i Node
if isLeftMuseButton():

i Node = -1
dr awGr aph()
def near(x, y):
for i in range(len(graph)):
p = graphl[il]
d = (p[0] - x) * (p[O] - x) + (p[1] - y) * (p[1] - V)
if d < 10:
return i
return -1
graph = []
i Node = -1

makeGPanel (0, 100, 0, 100,
mousePressed = onMousePressed,
mouseDr agged = onMouseDragged,
mouseRel eased = onMouseRel eased)
addSt at usBar (20)
set Stat usText (" Ri ght nouse button to set nodes, left button to drag")

B MEMO

The program is fully event-driven. The main block only defines two global variables and
initializes the graphics window. For each action the entire graphics window is cleared and
rebuilt with the current situation of the graph.

The most important operations with lists:

Page 114

li=1[1, 2, 3, 4] Defines a list with the numbers 1, 2, 3, 4

li=1[1,"a", [7, 5]1] Defines a list with different data types

lifi] Accesses list elements with index i

li[start:end] Sublist with elements from start to end, without end
li[start:end:step] Sublist with elements from start to end, with the given step
li[start:] Sublist with all elements starting at start

li[:end] Sublist from the first element up to end, but without end
li.append(element) Appends element at the end

li.insert(i, element) Inserts element at position /i (element j slides to the right)
li.extend(li2) Appends all elements of li2 (concatenation)
li.index(element) Finds the first occurrence and returns its index

li.pop(i) Removes and returns the element with index i

pop() Removes and returns the last element

i1+ li2 Returns the concatenation of lil and li2 in a new list

il +=1li2 Replaces lil by the concatenation of lil and li2

li * 4 New list with elements of |i repeated four times

[0] * 4 Makes a new list with length of 4 (all elements number 0)
len(li) Returns the number of list elements

del li[i] Removes the element with index i

del li[start:end] Removes all elements from start to end, but without end
del li[:] Removes the element with index i

li.reverse() Reverses the list (last element becomes the first)
li.sort() Sorts the list (comparison with standard methods)

xinli Returns True, if x is (included) in the list

x notin li Returns True, if x is not in the list

The notation with square brackets is called a slice operation. start and end are indices of the
list. The slice operation works similarly to the parameters of range().

B EXERCISES

Page 115

1. Input any number of grades with inputFloat("prompt"”, False). If you press the Cancel button,
the average will be written out in the console. Note that you must use the parameter value
False so that the program does not end if you click Cancel. The special value None is returned
at the termination, which as usual, you can test with Jf.

2. Extend the editor program above using the slice notation so that every right mouse click cuts
away the beginning of the sentence, up to and including the first blank space.

3. Each time you click, a new image of a football
(football.gif) should appear at the location of the
mouse cursor. All of the footballs are constantly
moving back and forth on the screen. Familiarize
yourself with the football example in the chapter
animations. You can optimize the program by loading
the football image once with img =
getImage("sprites/football.gif") and passing img to
the function image().

EXTRA MATERIAL:

MUTABLE AND IMMUTABLE DATA TYPES

In Python all data types are stored as objects, including the numeric types (integer, float, long,
complex). As you know, you can access an object by its name. It is also said that the name
refers to or is bound to the object. Therefore, such a variable is also called a reference
variable.

A particular object can be referred to by more than one name. AN additional name is also called
an alias. The following example shows how to deal with this.

A triangle is defined by the three vertex lists a, b, c. You
can create an alias with the statement a_alias = a, so
that @ and a_alias both refer to the same list. If you
alter the vertex list with the name a, the changes are
obviously also visible in a_alias, since a and a_alias
refer to the same list.

from gpanel inport *

makeGPanel (-10, 10, -10, 10)

a =[0, 0]
a_alias = a
b = [0, 5]
c =[5, 0]

fillTriangle(a, b, c)

Page 116

a[0] =1
set Col or ("green")
fillTriangle(a_alias, b, c)

Highlight program code (ctri+C copy, Ctrl+V paste)

Since numbers are also objects, you would expect the
same behavior if you used numbers as vertex
coordinate. However, the following example shows a
different behavior. If you change xA, the value of
XxA_alias does not change.

from gpanel inport *

makeGPanel (-10, 10, -10, 10)

xA =0
yA =0
XA alias = xA
yA_ alias = yA
xB =0
yB =5
xC =5
yC =20

fillTriangle(xA, VYA, xB, yB, xC, yC)

XA =1

set Col or ("green")

fillTriangle(xA_alias, yA alias, xB, yB, xC, yC)

Highlight program code (ctri+C copy, Ctrl+V paste)

What is the explanation for that? The reason is that numbers are immutable objects and the
statement xA = 1 generates a new number. xA_alias is therefore still 0.

The difference between immutable and mutable data types can also be seen when passing
parameters to functions. When an immutable object is passed, it cannot be changed inside the
function. When a mutable object is delivered, the function can change the object. Such a change
is called a secondary or side effect. In order to have a good programming style, you should
use side effects sparingly because they can cause some annoying misconduct that is difficult to
trace.

Page 117

In the following example, the function translate()
changes the passed vertex lists.

from gpanel inport *

def translate(pA, pB, pO):
PA[O] = pA[O0]
PA[1] PA[1]
pB[O] = pB[O0]
pB[1] = pB[1]
pC{ 0] = pC[O0]
pCl1] = pC[1]

+ + 4+ + + +
N GN GTN O

makeGPanel (-10, 10, -10, 10)

a =1[0, 0]
b =110, 5]
c =[5, 0]

fillTriangle(a, b, c)
translate(a, b, c)
set Col or ("green")
fillTriangle(a, b, c)

Highlight program code (ctri+C copy, Ctrl+V paste)

MEMO

In Python all data are stored as objects, but some objects are considered to be immutable.
These objects are: numerical data types, string, byte, and tuple.

All other data types are mutable. When you assign a new value to a variable of an immutable
data type, a new object is created.

If mutable objects are passed to a function, the function can change the objects, while
immutable objects are protected from such changes.

Page 118

3.10 RANDOMNESS

l INTRODUCTION

Chance plays an important role in your daily life. We can think of it as events that are not
predictable. If you are asked to choose from the colors red, green, and blue, no one can predict
which one you will choose and therefore the color is random. Chance plays a big role in games as
well: If you roll a dice, the number of pips you get, between 1 and 6, is random.

Although the world is ruled by chance it is not chaotic, since even in chance there are regularities
that allow for certain predictions. However, these only apply "on average", or in other words, if
you are in the same situation many times. In order to investigate the laws of chance, you must
make random experiments where you define the specific initial conditions, but where the
process is controlled by random numbers.

The computer is exceptionally well suited for random experiments because it is easy to perform a
large number of experiments. For this, the computer must generate a series of random numbers
that are independent of each other. You most often use integers with a certain predetermined
range, e.g. between 1 and 6, or a decimal nhumber between 0 and 1. An algorithm that computes
a set of random numbers is called a random number generator. It is important that the
numbers occur with the same frequency as you would expect from a non-marked dice. We call
such numbers uniformly distributed .

PROGRAMMING CONCEPTS: Random numbers, random experiments, frequency, probability

@ RANDOM PAINTING

You blot 20 colored ellipses with random sizes, random
positions, and random colors onto a canvas. Whether
you want to see this as a painting, or even as an
artwork is up to you. Anyway, the resulting figures are
fun. To determine the position and size of the ellipses,
you can use the method random() from the random
module, and a new random number will be delivered
between 0 and 1 on every call. In order to obtain the
random colors, you need three random numbers
between 0 and 255 that define the proportions of red,
green, and blue color.

from gpanel inport *
i mport random

def randontCol or():
r random r andi nt (0, 255)
g random r andi nt (0, 255)
b random r andi nt (0, 255)
return makeCol or(r, g, b)

makeGPanel ()
bgCol or (randonCol or ())

for i in range(20):
set Col or (randonmCol or ())

Page 119

nove(random randon(), random random())
a = randomrandom() / 2

b = random random() / 2

fillEllipse(a, b)

Highlight program code (ctri+C copy, Ctrl+V paste)

MEMO

random.random() returns uniformly distributed random numbers as floats between 0
(included) and 1 (excluded). You have to import the random module in order to access it.
Colors are defined by their red, green, and blue parts (RGB). The values are integers between
0 and 255.

Using randint(start, end) you get a random integer between start and end (both included).
The function makeColor() returns a colored object from 3 color values for red, green, and blue.

FREQUENCY OF DICE NUMBERS

One random experiment is to . 50
@
roll a dice 100 times to find out . ..-‘ 45
how often the numbers 1, 2,...6 K a

occur. \‘ o 40
L P 4 35
a0
. . 25

You can run the experiment a lot faster with a
computer. Instead of the dice, use random 20
numbers from 1 to 6. You can show the frequency 15
distribution graphically in a GPanel. 10
]
1]

1] 7

from gpanel inport *
i nport random

NB_ROLLS = 100

makeGPanel (-1, 8, -0.1 * NB_ROLLS/ 2, 1.1 * NB_ROLLS / 2)
title("# Rolls: " + str(NB_ROLLS))

drawGrid(0, 7, 0, NB_ROLLS // 2, 7, 10)

set Col or ("red")

histo = [0, 0, 0, 0, 0, 0, O]
hist = [0] * 7 # short form

for i in range(NB_ROLLS):
pip = randomrandint (1, 6)
histo[pip] += 1

i neW dt h(5)
for nin range(1, 7):
line(n, 0, n, histo[n])

Highlight program code (ctri+C copy, Ctrl+V paste)

Page 120

B MEMO

The frequency of how often the individual pips occur must be saved. For this, you use the list
histo, in which you add up the events at their corresponding index. You need a list with 7
elements because the index runs from 1 to 6.

Through some experiments, you can determine how the frequency of throwing increases the
chance that the numbers NB_ROLLS are better balanced, and how they get increasingly close
to 1/6 of the number of throws. This fact can be expressed as follows: The probability to get
one of the number of pips in dice throwing is 1/6.

For the coordinate grid, call on drawGrid(xmin, xmax, ymin, ymax, xticks, yticks) with 6
parameters. The last two parameters determine the number of subdivisions. If xmax or ymax
is a float, the axis labels will also be floats, otherwise they are integers.

@ MONTE CARLO SIMULATION

The Principality of Monaco is world famous for its casino in the Monte Carlo district. The casino
has not only been an attraction for celebrities for the past 150 years, but also for mathematicians
who try to analyze the games and develop winning strategies. The computer is much better for
testing these strategies and is actually better than the real game, because you do not loose any
money with computer experiments as you do in the real games.

In the following "game", you throw points on a square area where there is a polygon. As an
illustration, you can see the points as raindrops. As usual when it rains, there are always roughly
about the same amount of drops in each unit area. So, the drops are uniformly distributed.
You let a certain number of raindrops fall and then count how many of them fall onto the area of
the polygon. It is obvious that the number will increase with an increasing surface area of the
polygon, and that on average, it will be proportional to the surface area. For example, if you let
drops fall onto a polygon with a surface area ' the size of the area of the surrounding square it
will likely collect (on average) "4 of all the raindrops. Once you have realized this, you can
conversely find out the area by counting the number of the drops. Isn't this convenient?

The program is designed to be modern and
user-friendly. With a left mouse click you can create
the vertices of the polygon. You can then click with the
right mouse button in the area that you would like to
calculate, so that the polygon will be drawn and it will
start to rain.

The result is displayed in the title bar.

from gpanel inport *
i nport random

NB_DROPS = 10000

def onMousePressed(x, y):
if isLeftMuseButton():
pt =[x, V]
move(pt)
circle(0.5)
corners. append(pt)
i f isRightMouseButton():

Page 121

wakeUp()

def go():
gl obal nbHit
set Col or ("gray")
fill Pol ygon(corners)
title("Working. Please wait...")
for i in range(NB_DROPS):
pt = [100 * random random(), 100 * random random()]
col or = get Pi xel Col orStr(pt)
if color == "black":
set Col or ("green")
poi nt (pt)
if color == "gray" or color == "red":
nbHit += 1
set Color ("red")
poi nt (pt)
title("Al'l done. #hits: " + str(nbHit) + " of " + str(NB_DROPS))

makeGPanel (0, 100, 0, 100, mousePressed = onMusePressed)

title("Select corners with left button. Start dropping with right button")
bgCol or (" bl ack")

set Col or ("white")

corners = []

nbHit = 0
put Sl eep()
go()

Highlight program code (ctri+C copy, Ctrl+V paste)

MEMO

When you click with the left mouse button you are saving the vertices of the polygon into a
list corners and drawing small circles as marks.

The actual rain simulation is performed in the function go(). It begins when you click the right
mouse button and lasts for a certain amount of time. You make the falling raindrops visible
with different colored points. If you directly call go() in the pressCallback(), as it might seem
straightforward, you will see nothing until the simulation ends. The reason is that the system
prevents refreshing the graphics in a mouse callback for system-intrinsic reasons. So if you
want to visualize a longer-lasting action in a callback, it must happen in another part of the
program. Often the main block of the program is used for this purpose. The execution is
temporarily halted with putSleep(). The press event awakens the sleeping main program with
wakeUp() and the simulation will be carried out with the call go().

In order to avoid problems in the future, you should always remember the following principle:

Callbacks must always return quickly. Therefore, no long-lasting actions should be
executed there.

To find out if a raindrop has fallen onto the gray colored polygon area, use the following trick:
You get the color of the point of impact with getPixelColorStr(). If it is the color gray (or red
if another drop has already fallen there), you increase nbHit by 1 and color the point red. You
can test the procedure by generating some simple polygons (e.g. rectangles, triangles) and
then by measuring the screen with a ruler. You will then realize that you need a lot of raindrops
in order to obtain a reasonably accurate result [more...].

Page 122

B CHAOS GAME

It might at first seem surprising that you can create regular patterns with random experiments.
This has to do with the compensation of statistical fluctuations for large numbers. In 1988 Michael
Barnsley invented the following algorithm based on Chaos theory, which builds on a random

selection of the vertices of a triangle:
. Choose a point P in the interior
. Randomly select one of the vertices

Draw the point P
Repeat steps 2, 3, 4, 5

QU wN e

Such a formulation is common colloquially, but it cannot
be directly translated into program code since step 6
requires that you should jump to step 3 again. In many
modern programming languages, including Python,
there is no jumping structure (no goto). Jumps must be
implemented with one of the Ilooping structures
[more...].

. Construct an equilateral triangle with the vertices A, B, C

Halve the line segment from P to the vertex. This results in the new point P

AN Ab

iy O 8 8

from gpanel inport *
i nport random

MAXI TERATI ONS = 100000
makeGPanel (0, 10, 0, 10)

pA = [1, 1]
pB = [9, 1]
pC = [5, 8]

triangl e(pA, pB, pC)
corners = [pA, pB, pC
pt =[2, 2]

title("Working...")
for iter in range(MAXI TERATI ONS):
i = random randint (0, 2)
pRand = corners[i]
pt = getDividingPoi nt(pRand, pt, 0.5)
poi nt (pt)
title("Working...Done")

Highlight program code (ctri+C copy, Ctrl+V paste)

MEMO

If you need a random object, you can join all of the objects in a list and pick an object out of it

at a random index.

It is quite amazing that you can create a regular figure (called Sierpinski triangle) with

randomly selected points.

Page 123

B EXERCISES

1. 5 kids meet at the playground and ask each other what
month their birthday is in. It is quite surprising that the
probability that at least two of them have the same
birthday month is relatively large.

Create a simulation with 100 random tests to determine
this probability experimentally. Illustrate this by showing
for each attempt of the experiment twelve rectangular
containers in a GPanel, each of them standing for one of the
months, and add the kids represented by balls. The result :.
of the series of tests can be written in the title bar. ® ®
2. While playing ball, 10 kids in a first team throw their ball,
all at the same time, at 10 kids in a second team and
always hit a kid. (The balls do not affect each other.) The QQ'. ”
ones that are hit are eliminated. On the average, how
many of the second team members remain untouched? |

\

bi‘bl

Create a simulation with 100 random tests to determine
this number experimentally. Now illustrate in a GPanel, for
each attempt of the experiment, both teams as filled circles
and draw the direction of the balls as lines. The result of
the series of tests can be written in the title bar.

3. You can even determine the area of any given figure with
the Monte Carlo simulation. Hold down the left mouse
button to draw a freehanded outline. By clicking the right
mouse button on a point anywhere inside of the outline, the
area is filled and the simulation is carried out.

4. Conduct the chaos game with a square. Select the vertices

pA(0, -10), pB(10, 0), pC(0, 10), pD(-10, 0) and any point pC
pt on the inside.
Divide the line segments between a randomly chosen pD pB
vertex and pt with a division factor of 0.45
(pt = getDividingPoint(corner, pt, 0.45)).
pA

Page 124

3.11 IMAGE PROCESSING

M INTRODUCTION

We understand a picture as a flat, rectangular area on which there are colored forms. In printing
and computer technology, one describes an image as a grid-like arrangement of colored dots
called pixels. The number of pixels per unit of area is called the image resolution and it is
often indicated in dots per inch (dpi).

In order to save and process an image on the computer, the color must be defined as a number.
There are several possibilities for this, which are called either color metrics or color models.
One of the most popular models used is the RGB color model, where the intensity of the three
color components red, green, and blue are represented by numbers between 0 (dark) and 255
(light) more...]. The ARGB model includes even another number between 0 and 255 that is the
measure of transparency (alpha value) [more...].

In short: A computer image consists of a rectangular array of pixels that are encoded as colors.
This is often called a bitmap.

PROGRAMMING CONCEPTS: Image digitalization, resolution, color model, bitmap, image format

COLOR MIXING IN THE RGB MODEL

TigerJython provides you with objects of the type
GBitmap, to simplify your work with bitmaps. Using bm
= GBitmap(width, height) you produce a bitmap with
the desired number of horizontal and vertical pixels.
Afterwards, you can set the color of the individual pixels
using the method setPixelColor(x, y, color) and read
them using getPixelColor(x, y). With the method
image() you can finally represent the bitmap in GPanel.
Your program will draw the famous 3 circles of additive
color mixing as you run through the bitmap with a
nested for loop.

from gpanel inport *

xRed = 200
yRed = 200
xGreen = 300
yGreen = 200
xBl ue 250
yBl ue 300

makeGPanel (Si ze(501, 501))
wi ndow(0, 501, 501, 0) # y axis downwards
bm = GBi t map(500, 500)
for x in range(500):
for y in range(500):
red = green = blue = 0
if (x - xRed) * (x - xRed) + (y - yRed) * (y - yRed) < 16000:

red = 255
if (x - xGreen) * (x - xGeen) + (y - yGreen) * (y - yGeen) < 16000:
green = 255

Page 125

if (x - xBlue) * (x - xBlue) + (y - yBlue) * (y - yBlue) < 16000:
bl ue = 255
bm set Pi xel Col or (x, y, makeCol or(red, green, blue))

i mmge(bm 0, 500)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

Colors are defined by their red, green, and blue components. makeColor(red, green, blue) puts
these color components together to a color (a color object).

For images we typically use an integer coordinate system with the origin in the upper left
corner, with the positive y-axis pointing down [more...].

MAKING A GRAYSCALE IMAGE

At some point, you may have been asked how your image processing software (such as
Photoshop, etc.) actually works. Here, you will get to know some of the simple procedures. Your
program can turn a color image into a grayscale image by determining the average of the red,
green, and blue components, and then use these to define the gray value.

from gpanel inport *
size = 300

mekeGPanel (Si ze(2 * size, size))
wi ndow(0, size, size, 0) # y axis downwards
img = getlmage("sprites/colorfrog.png")
w = ing.getWdth()
h = ing. get Hei ght ()
i mge(ing, 0, size)
for x in range(0, w):
for y in range(0, h):
col = ing.getPixel Color(x, vy)
red = col.getRed()
green = col.getGreen()
bl ue = col.getBlue()
intensity = (red + green + blue) // 3
gray = makeCol or(intensity, intensity, intensity)
i mg. set Pi xel Col or (x, y, gray)
i mage(inmg, size / 2, size)

Highlight program code (ctri+C copy, Ctri+V paste)

Page 126

B MEMO

You can determine the color values as integers from a color object using the methods
getRed(), getGreen(), getBlue().

The background has to be white, not transparent. If you want to allow transparency, you can
determine the transparency value with alpha = getAlpha() and then use it in a extra parameter
of makeColor(red, green, blue, alpha).

B REUSABILITY

In many image processing programs the user has to be able to select a portion of the image. For
this, you can create a temporary rectangle by clicking and dragging the mouse (a "rubber band
rectangle"). Once you release the mouse button, the rectangular area will be definitely chosen. It
is smart to solve this subproblem first, since its code can be used again later in many other
image processing applications. Reusability is a sign of quality in all software development.

As you saw earlier, you can regard the drawing of the rubber band lines as an animation. In this
case, however, the entire image needs to be rebuilt with each movement. A neat trick to avoid
this is the XOR drawing mode. In this mode, a new figure is combined with the one underneath
it so that the figure will be deleted again upon further repainting, without changing the
underlying image. The disadvantage to this process is that the colors change while the figure is
drawn. However, this does not usually matter in connection with rubber band rectangles.

The program framework should only call the function
doIt() after the rectangle selection, and write the
coordinates of the upper left corner ulx (upper left x),
uly (upper left y) and the lower right corner Irx (lower
right x), Iry (lower right y). You will later insert your
code for image processing in dolt().

You should be able to understand the code with your
previous experience in the chapter about mouse events
without any major problems.

from gpanel inport *
size = 300

def onMbusePressed(e):
gl obal x1, y1
gl obal x2, y2
set Col or (" bl ue")
set XORMbde(Col or.white) # set XOR paint node
x1 = x2 = e.getX()
yl = y2 = e.getY()

def onMouseDr agged(e):
gl obal x2, y2
rectangl e(x1, yl, x2, y2) # erase old
x2 = e.get X()
y2 = e.getY()
rectangl e(x1, yl, x2, y2) # draw new

def onMuseRel eased(e):
rectangl e(x1, yl, x2, y2) # erase old
set Pai nt Mode() # establish normal paint node
ul x = mn(x1, x2)

Page 127

Irx max(x1, x2)
uly mn(yl, y2)
lry = max(yl, y2)
dolt(ulx, uly, lrx, lry)

def dolt(ulx, uly, Irx, lry):

print "ulx =", ulx, "uly =", uly
print "lrx =", Irx, "lry =", lry
x1 =yl =0
x2 =y2 =0

mekeGPanel (Si ze(si ze, size),
mousePressed = onMousePressed,
mouseDr agged = onMbuseDr agged,
mouseRel eased = onMouseRel eased)
wi ndow(0, size, size, 0) # y axi s downwards

img = getl mage("sprites/colorfrog.png")
i mge(ing, 0, size)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

You can get the bitmap for a picture that you have already stored on your computer by using
getImage(), where you must specify the fully qualified name, or just a part of the path
relative to the directory in which your program is located. For images located in the
distribution, you use the directory name sprites.

In the press event, you put the system into XOR mode, so that in your drag event handling
you can first delete the old rectangle by drawing twice, and then draw the new one. You must
store the vertices in the global variables x1, y1, x2, y2. If you draw the rubber band rectangle
again with the release event before you switch to paint mode, the rectangle will disappear. If
you switched to paint mode first, the rectangle would stay.

The program will work no matter how you decide to draw the rectangle. It always returns the
correct values for ulx,uly and Irx, Iry (always ulx < Irx, uly < Iry). Be aware that you do not
need to convert the mouse coordinates to window coordinates, since both are equal if you are
using the same values for the window size with size() and the coordinate system with
window().

You still get drag events if you move the mouse out of the window. You have to be careful of
what you do with such coordinates, otherwise the program could crash unexpectedly.

RED-EYE EFFECT

Image processing plays a central role in the
post-processing of digital photos. There are numerous
post-processing programs on the Internet, but you do
not need to rely on them because you can now write
your own program that will be better suited to your
needs, with Python and a healthy degree of imagination
and perseverance. Your task below is to write a
program that can fix the red-eye effect. This occurs
when the back of the eye (fundus) reflects the flash.
Here you will use a picture of a frog, since it also has
other red spots.

from gpanel inport *
Page 128

size = 300

def onMousePressed(e):
gl obal x1, yl1
gl obal x2, y2
set Col or (" bl ue")
set XORMbde("white")
x1l = x2 = e.getX()
yl = y2 = e.getY()

def onMouseDragged(e):
gl obal x2, y2
rectangl e(x1, yl, x2, y2) # erase old
x2 = e.get X()
y2 = e.getY()
rectangl e(x1, yl, x2, y2) # draw new

def onMouseRel eased(e):
rectangl e(x1, yl, x2, y2) # erase old
set Pai nt Mode()
ulx = mn(x1, x2)
lrx = max(x1, x2)
uly = min(yl, y2)
lry = max(yl, y2)

dolt(ulx, uly, lIrx, lry)

def dolt(ulx, uly, Irx, lry):
for x in range(ulx, lrx):
for y in range(uly, lry):
col = ing. getPixel Col or(x, V)
red = col.getRed()
green = col.get G een()
bl ue = col. getBlue()
coll = makeColor(3 * red // 4, green,
i mg. set Pi xel Col or(x, y, coll)
imge(img, 0, size)

x1 =yl =0
x2 =y2 =0

mekeGPanel (Si ze(si ze, size),
mousePressed = onMousePressed,
mouseDr agged = onMbuseDr agged,
mouseRel eased = onMouseRel eased)
wi ndow(0, size, size, 0) # y axis downwards

img = getl mage("sprites/col orfrog.png")
i mge(ing, 0, size)

bl ue)

Highlight program code (ctri+C copy, Ctrl+V paste)

MEMO

The code for processing the image is latched in the function doIt() You can take everything
else unchanged from the previous program. You can adjust the degree of attenuation of the
color red. Here, the red intensity is set down to 75%. Be aware of the double slash, which
performs an integer division (the remainder is ignored). The result is again an integer, just as

it should be.

The program still shows some errors which you can easily fix. Firstly, it also discolors non-red
areas, and secondly, it crashes when you pull the rubber band rectangle out of the window.

Of course it would be really nice if the program could find the red eyes itself. However, to do

Page 129

this it would have to analyze the image and recognize its contents automatically, which is an
especially challenging problem in computer science [more...].

CUTTING AND STORING PICTURES

Cutting images is also one of the basic functions of
image processing programs. Your program can not only
copy a selected part of the image to another window
using the rubber band rectangle, but it can also store
this image as a JPEG file for future use.

from gpanel inport *
size = 300

def onMousePressed(e):
gl obal x1, y1
gl obal x2, y2
set Col or (" bl ue")
set XORMbde("white")
x1 X2 e. get X()
yl y2 e.getY()

def onMbuseDr agged(e):
gl obal x2, y2
rectangl e(x1, yl, x2, y2) # erase old
x2 = e.getX()
y2 = e.getY()
rectangl e(x1, yl, x2, y2) # draw new

def onMouseRel eased(e):
rectangl e(x1, yl1, x2, y2) # erase old
set Pai nt Mode()

ul x = mn(x1, x2)
Irx = max(x1l, x2)
uly = min(yl, y2)
Iry = max(yl, y2)

dolt(ulx, uly, Irx, lry)

def dolt(ulx, uly, Irx, lry):
width = Irx - ulx
height = lry - uly
if ulx <0 or uly <0 or Irx > size or Iry > size:
return
if width < 20 or height < 20:
return

cropped = GBitmap.crop(inmg, ulx, uly, lrx, lry)
p = GPanel (Size(wi dth, height)) # another GPane
p. wi ndow(0, width, 0, height)
p. i mge(cropped, 0, 0)
rc = save(cropped, "mypict.jpg", "jpg")
if rc
p.title("Saving OK")
el se:
p.title("Saving Failed")

Page 130

x1 =yl =0
X2 y2 0

makeGPanel (Si ze(si ze, size),
mousePressed = onMousePressed,
mouseDr agged = onMbuseDr agged,
mouseRel eased = onMouseRel eased)
wi ndow(0, size, size, 0) # y axis downwards

img = getlmge("sprites/colorfrog.png")
i mge(inmg, 0, size)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

You can view more than one GPanel window if necessary, by creating GPanel objects. To draw,
use the graphics commands which you call using the point operator.

If the selected section is too small (especially if you click with the mouse without dragging),
dolt() ends with an empty return, and likewise if the vertices are not in the image area.

To save, use the method save(), where the last parameter determines the image format. The
allowed values are: "bmp", "gif", "jpg", "png".

EXERCISES

1. Write a program that swaps the red and green components of the image colorfrog.png.

(0,
2. Write a program where you can rotate the image by /'u i
dragging the mouse. Use the function atan2(y, x) which
provides you with the angle a to the point P(x, y). You still

have to convert this to degrees using math.degrees() *Pix.v)
before you can rotate the picture with GBitmap.scale().

= math.atan2{y, x)

You can take colorfrog.png as a test image again.

3. Write a photo retouching program that can store the color of a pixel with a click of the mouse
(color picker). The following dragging should draw colored circles filled this way into the
image. Here you have to use the press, drag, and click events. You can again use
colorfrog.png as a test image. Write the 3 color components of the "picked" color in the title
bar of the window.

Page 131

M EXTRA MATERIAL: FILTERING IMAGES WITH CONVOLUTION

You surely know that in conventional image processing programs you are able to modify an
image with various filters, such as smoothing filters, sharpening filters, blurring filters, etc. Here,
the important principle of convolution is used, which you can learn about [more...]. In this
process, you change the color values of each pixel by calculating a new value from it and its
eight neighboring pixels, according to a filtering rule.

In detail, this works as follows: For the sake of simplicity, consider a greyscale image where
each pixel in the RBG coloring model possesses a gray value v between 0 and 255. The filtering
rule is defined by nine numbers that are arranged in a square:

mO00 mO01 mO02
m1l0 ml1ll mil2
m20 m21 m22

This representation is called a convolution matrix (also >
called mask). In Python we implement it line by line in a -
list

I Falungsmatrix ||

mask = [[OI _11 O]I [_11 5! 1]! [OI _11 0]]

With this data structure you can easily access the
individual values with double indices, for example m12 =
mask[1][2] = 1. These nine numbers are weighting
factors for a pixel and its eight neighbors. Now you can
calculate the new gray value vnew of a pixel at the point
x, y from the existing nine values v(x, y) as follows:

[Pinelraster des Bildes |

vhew(x, y) = m00 * v(x -1,y -1) + m01 * v(x,y-1) +m02 *v(x+1,y-1)+
m10 * v(x -1, vy) + mll * v(x, y) +ml2 *v(x+1,y) +
m20 *v(x-1,y+1) +m2l*v(x,y+1) +m22*¥v(x+1,y+1)

To illustrate, one could say that for the recalculation one places the convolution matrix above the
pixel, multiplies its values with the underlying gray values, and finally sums them all up. The
program performs these convolution operations for all of the pixels (except the boundary points)
and then saves the resulting gray values in a new bitmap, which it then displays. To do this you
move the convolution matrix row by row, from left to right and from top to bottom, over the
image with a for structure. Here you use the convolution matrix values of a sharpening filter and
the grayscale image frogbw.png of the frog.

from gpanel inport *
size = 300

makeGPanel (Si ze(2 * size, size))
wi ndow(0, size, size, 0) # y axis downwards

bm n = getlmge("sprites/frogbw png")
i mmge(bmn, 0, size)

w = bm n. get Wdt h()

h = bnl n. get Hei ght ()

bmOut = GBitmap(w, h)

#mask = [[1/9, 1/9, 1/9], [1/9, 1/9, 1/9], [1/9, 1/9, 1/9]] # snoothing

mask = [[0, -1, O], [-1, 5, -1], [0, -1, 0]] #sharpening

#mask = [[-1, -2, -1], [O, O, O], [1, 2, 1]] #horizontal edge extraction
#mask = [[-1, O, 1], [-2, O, 2], [-1, O, 1]] #vertical edge extraction

Page 132

for x in range(0, w):
for y in range(0, h):
if x>0and x <w- 1andy >0andy < h - 1:

vnew = 0
for k in range(3):
for i in range(3):

c = bmn.getPixelColor(x - 1 +i, vy - 1+ k)
v = c.getRed()
vnew += v * mask[Kk][i]

Make int in 0..255

vnew = int(vnew)

vnew = max(vnew, O0)

vnew = m n(vnew, 255)

gray = Col or(vnew, vnew, vnew)

el se:
¢ = bm n. getPixel Col or(x, vy)
v = c.getRed()
gray = Color(v, v, v)

bmQut . set Pi xel Col or (x, y, gray)

i mge(bmOut, size / 2, size)

H MEMO

In a convolution, each pixel is replaced by a weighted average of itself and its neighboring
points. The filter type is determined by the convolution matrix. You can experiment with the
following well-known convolution matrices, or you can invent your own.

Filter type Convolution matrix
M -1 0
Sharpening filter | Lo -l |
o -1 0)
11 1)
9 9 9
1 1 1]
Smoothing filter | E E E -
(11 1]
L9 9 9

(-1 -2 -1
. , o 0 0
Edge extraction (horizontal) | |
\ 2 1)
=1 0 1%
Edge extraction (vertical) | -2 0 2 |
-1 0 1)

Page 133

3.12 PRINTING IMAGES

M INTRODUCTION

You have already learned how to let the turtle draw on a high resolution printer in the chapter
Turtle Graphics. You can similarly render an image from GPanel on the printer. You can also use
a virtual printer that creates a graphic file in high resolution format (such as Tiff or EPS)
[more...]. To do this, you define a parameterless function with any name such as dolt() that will
contain all of the commands necessary to create the image. With a direct call, the image will
appear on the screen. To print it, call printerPlot(dolt). You can also specify a scaling factor k,
and if you do, call printerPlot(dolt, k) instead. If k < 1 it results in a reduction, and if k >1 it
results in an enlargement.

PROGRAMMING CONCEPTS: High resolution graphic

ROSETTES

The rose-like curves go all the way back to the 18th century
to the mathematician Guido Grandi [more...]

The generating functions are most easily expressed using
polar coordinates (p, ¢). It has a parameter n:

p = sin(nyp)

The Cartesian coordinates are obtained as usual:

X
y

p cos(®)
p sin(®)

You get a pretty rosette using n = V2. However, it looks
even nicer on a printer than it does on the screen.

from gpanel inport *
inport math

def rho(phi):
return math.sin(n * phi)

def dolt():
phi =0
whi l e phi < nbTurns * math. pi:

r rho(phi)
x = r * math.cos(phi)
y =r * math.sin(phi)

if phi ==
move(X, Y)

el se:
draw(x, vy)

phi += dphi

n = math.sqrt(2)

dphi = 0.01

nbTurns = 100

makeGPanel (-1.2, 1.2, -1.2, 1.2)

Page 134

dol t ()
printerPl ot(dolt)

Highlight program code (ctri+C copy, Ctri+V paste)

B MEMO

Depending on the choice of the parameter n, you can create different kinds of curves. Try it
with natural numbers, rational numbers (fractions), and with irrational numbers (=, e).

MAURER ROSES

The mathematician Peter Maurer introduced these
curves in 1987 in his article "A Rose is a Rose...".
They wuse rosettes as ‘"guidelines". From this
guideline you repeatedly choose points, after a
specific rotation angle d, 360 points in total.
Afterwards, you connect these points with straight
lines.

Depending on the choice of n and d, completely
different curve shapes can be created. Print them to
make them look even nicer (in this example, n = 3
and d = 47 degrees).

from gpanel inport *
i mport math

def sin(x):
return math. si n(mat h. radi ans(x))

def cos(x):
return math. cos(math. radi ans(x))

def cartesian(polar):
return [polar[0] * cos(polar[1]), polar[0O] * sin(polar[1])]

def rho(phi):
return sin(n * phi)

def dolt():
for i in range(361):
k =i *d
pt = [rho(k), K]
corners. append(pt)

nmove(cartesian(corners[0]))
for pt in corners:
draw(cartesi an(pt))

corners = []

n =3

d = 47

makeGPanel (-1.2, 1.2, -1.2, 1.2)
dol t ()

printerPl ot(dolt)

Highlight program code (ctri+C copy, Ctri+V paste)

Page 135

B MEMO

In the program you use degrees, not radians. Therefore, it is convenient to define your own
functions for sine and cosine that calculate with degrees. This also simplifies the notation,
since you will not always need to write math. beforehand.

Likewise, it is convenient to make a conversion from polar to Cartesian coordinates in the
function cartesian(), where the coordinate pairs are packaged as a list.

Save the polar coordinates of the 361 points which you select from the guideline in the list
corners. In the end, you run through them and draw lines from point to point using draw().
You can draw other known Maurer roses with the following parameters:

n d
2 39
2 31
6 71

B EXERCISES

1. Draw 50 concentric circles with the function wave(center, wavelength) with center as the
midpoint and wavelength as the radius increment. One could interpret the image as the peaks
of a circular wave. Draw the wave with a slightly displaced center and then look at the
resulting interference image on a printout. What curve known from geometry can you
recognize?

Page 136

3.13 WIDGETS

H INTRODUCTION

Programs you know usually have a graphical user interface (GUI). You will recognize a menu
bar, input fields, and buttons. GUI components, also called widgets, are regarded as objects,
which you already know from the chapter Turtle Objects. If you want to write a program with a
modern user interface, it is essential that you know and understand the basic concepts of
object-oriented programming (OOP) [more...].

The widgets are divided into different classes according to the following list:

Widget Klasse
Buttons JButton
Labels JLabel
Text fields JTextField
Menu bars JMenuBar
Menu items JMenultem
Menus with menu items JMenu

Just like you generated a turtle by calling the constructor of the class turtle, you need to create
a GUI component by calling the corresponding class constructor. The constructors often have
parameters with which you can set certain properties of the widget. For example, you can
create an input field with a length of 10 characters using tf = JTextField(10).

When calling the constructor, you also need to define a variable that you will use later to access
the object. For example, tf.getText() returns the text currently in the text field tf.

In order to make a widget visible in GPanel, you use the function addComponent() and provide
it with the object variable. The widgets are automatically placed in the order of the calls in the
upper part of the GPanel window [more...].

PROGRAMMING CONCEPTS: Graphical user interface, GUI component, GUI callback

B PI WITH THE RAINDROP SIMULATION

You have already learned how to determine an area using the Monte Carlo simulation. Imagine
that you are drawing a quarter circle with a radius of 1 into a square with a side length of 1. If
you now let n raindrops fall evenly onto the square you will easily be able to figure out how
many of them fall onto of the quarter circle on average.

Since the area of the quarter circle is

Page 137

and the area of the square is 1, the number of drops Arcati Tropfers 30000
should be s T,

(=] Fl= (11415

So, if in a computer simulation you let n drops fall and
count k, you get an approximation of Pi with

- 4*k
n

T

The GUI consists of two labels, two text boxes, and a button. Once created, you add them to
GPanel with addComponent().

It should be clear that clicking on the OK button can be considered an event. The callback is
registered via the parameter named actionListener in the constructor of JjButton. Hopefully
you remember that you should not execute lengthy code in a callback. So, you merely call
wakeUp() in the callback, whereby the program, which was halted in the while loop using
putSleep(), is awakened and then executes the simulation.

from gpanel import *
import random
from javax.swing import *

def actionCallback(e):
wakeUp ()

def createGUI () :
addComponent (1bll)
addComponent (tfl)
addComponent (btnl)
addComponent (1bl2)
addComponent (tf2)
validate ()

def init():
tf2.setText ("")
clear ()
move (0.5, 0.5)
rectangle(1l, 1)
move (0, 0)
arc(l, 0, 90)

def doIt(n):
hits = 0
for 1 in range(n):
zx = random.random ()
zy random.random ()
if zx * zx + zy * zy < 1:
hits = hits + 1
setColor ("red")
else:

setColor ("green™)
point(zx, zy)
return hits

1bll = JLabel ("Number of drops: ")
1bl2 = JLabel (" PI = ")
tfl = JTextField(6)
tf2 = JTextField(10)

btnl = JButton ("OK", actionlListener = actionCallback)

makeGPanel ("Monte Carlo Simulation", -0.1, 1.1, -0.1, 1.1)
createGUI ()

Page 138

tfl.setText ("10000™)
init ()

while True:
putSleep ()
init ()
n int(tfl.getText())
k = doIt(n)
pi= 4 * k / n
tf2.setText (str(pi))

B MEMO

Widgets are objects of the Swing class library. They are created with the constructor that has
the name of the class. When calling the constructor, you define a variable with which you can
access the object. To display the widget in the GPanel, call the function addComponent() and
pass it the widget variable.

After you have added all of the widgets to the GPanel, you should call validate() so that the
window is rebuilt with the inserted widgets with certainty. You can register button callbacks
with the parameter named actionListener. Remember that a callback should never execute
lengthy code.

MENUS (but not for food!)

Many windows have a menu bar with many menu items. When you click on a menu item, a
submenu can also be opened, which in turn contains menu items. Menus and menu items are
also regarded as objects. The selection of a menu option triggers an event that is handled by a
callback.

You build a menu by creating a JMenuBar() object Fe dbow
and adding JMenultem objects to it using add(). You
can also add a submenu. For this, create a JMenu
object, and add JMenultem objects to it. Thus, a menu
is built hierarchically.

In order to simplify the code a bit, you can use the
same callback actionCallback() for all menu options.
Register it with each constructor of JMenultem with |
the parameter actionPerformed. In the callback, you —
can determine by which menu option the callback was

triggered with getSource(). e

from gpanel import *
from javax.swing import *

def actionCallback(e):
)

if e.getSource() == goltem:
wakeUp ()

if e.getSource() == exitItem:
dispose ()

if e.getSource() == aboutltem:

msgDlg ("Pyramides Version 1.0")

def doIt():
clear ()
for 1 in range(l, 30):
setColor (getRandomX1llColor ())
fillRectangle(i/2, 1 - 0.35, 30 - i/2, i + 0.35)

Page 139

fileMenu = JMenu("File'")

goItem = JMenultem("Go", actionPerformed = actionCallback)
exitItem = JMenultem("Exit", actionPerformed = actionCallback)
fileMenu.add (goItem)

fileMenu.add(exitItem)

aboutItem = JMenultem ("About", actionPerformed = actionCallback)

menuBar = JMenuBar ()
menuBar.add (fileMenu)
menuBar.add (aboutItem)

makeGPanel (menuBar, 0, 30, 0, 30)

while not isDisposed():
putSleep ()
if not isDisposed():
doIt()

H MEMO

Remember to follow the rule that a callback should never execute lengthy code. You therefore
perform the drawing in the main block. To ensure that your program terminates with certainty
after you press the close button of the window or the exit option, use isDisposed() to test
whether the window was closed [more...].

B EXERCISES

1. Edit the program Moiré from chapter 3.2 and add a text label, an input field for the delay
time, and an OK button. When you click on the OK button, the image will be recreated with
the specified delay time (in milliseconds).

Delay time (ms) 0K
2. Edit the program under "Elegant Thread Options Go
Graphic Algorithms" in chapter 3.8 and add
the following menu: The menu item Red
"Options" should contain a submenu with Green
the text "Red", "Green", and "Blue". The Blue

menu item "Go" should draw the thread
graphics with the color selected under
Options. If no color is chosen yet, it will be
drawn using black.

3*. Take one of your favorite programs from the GPanel graphic and add some useful widgets
to it.

Page 140

Documentation GPanel

Module import: from gpanel import *

Function

Action

makeGPanel()

creates a GPanel graphics window with coordinates (x = 0..1, y = 0..1). Current
cursor at (0, 0)

makeGPanel(xmin, xmax, ymin,
ymax)

creates a GPanel graphics window with given float coordinate system. Current
cursor at (0, 0)

makeGPanel(xmin, xmax, ymin,
ymax, False)

same as above, but invisible window (call visible(True), to make it visible)

makeGPanel(Size(width, height))

same as makeGPanel(), but window size user selectable (in pixels)

getScreenWidth()

returns the screen width (in pixels)

getScreenHeight()

returns the screen height (in pixels)

window(xmin, xmax, ymin, ymax)

sets a new coordinate span

drawGrid(x, y)

draws a coordinate grid with 10 ticks in range 0..x, 0..y. Label text depends if x, y
or int or float

drawGrid(x, y, color)

same with given grid color

drawGrid(x1, x2, y1, y2)

same with given span x1..x2, y1..y2

drawGrid(x1, x2, y1, y2, color)

same with given grid color

drawGrid(x1, x2, y1, y2, x3, y3)

same with given number of ticks x3, y3 in x- and y-direction

color)

drawGrid(x1, x2, y1, y2, x3, VY3,

same with given grid color

drawGrid(p, ...)

same as drawGrid() with given GPanel references (for several GPanels)

visible(isVisible)

shows/hides the window

resizeable(isResizeable)

makes the window resizable (default: not resizeable)

dispose()

closes the window and releases resources

isDisposed()

returns True, if window is disposed by title bar's close button or by calling
displose()

bgColor(color)

sets background color (X11 color string or Color type returned my makeColor())

title(text)

sets text in title bar

makeColor(colorStr)

returns color as Color type that corresponds to given X11 color string

windowPaosition(ulx, uly)

sets screen position (in pixels)

windowCenter()

sets the window in the center of the screen

storeGraphics()

stores the current graphics in internal image buffer

recallGraphics()

renders the content of the internal image buffer

clearStore(color)

erases the internal image buffer by painting it with given color

delay(time)

pauses the program execution for given amount of time (in ms)

getDividingPoint(pt1, pt2, ratio)

returns the point that divides the line from ptl to pt2 with the given ratio (may be
negative and greater than 1)

getDividingPoint(c1, c2, ratio)

same with complex

clear() clears the graphics window and sets the graphics cursor to (0, 0)

erase() clears the graphics window without changing the position of the graphics cursor
putSleep() pauses program execution until wakeUp() is called

wakeUp() resumes paused program execution

Page 141

performs a linear regression y = a*x + b with data in X- and Y-lists and returns (a,

linfit(X, Y
(X, Y))
Drawing
lineWidth(width) sets the line width (in pixel)

setColor(color)

sets die drawing color (X11 color string or Color type)

move(X, V)

moves cursor to (X, y) without drawing a line

move(coord_list)

moves cursor to point list [x, y] without drawing a line

move(c) moves cursor to complex(x, y) without drawiing a line
getPosX() returns the cursor's current x-coordinate

getPosY() returns the cursor's current y-coordinate

getPos() returns the cursor current x-, y-coordinates as list
draw(x, y) draws line to (x, y) and updates cursor

draw(coord_list)

draws line to [x, y] and updates cursor

draw(c)

draws line complex [x, y] and updates cursor

line(x1, y1, x2, y2)

draws line from (x1, y1) to (x2, y2) without modifying cursor

line(ptl, pt2)

draws line from ptl = [x1, y1] to pt2 = [x2, y2] without modifying cursor

line(cl, c2)

draws line complex(x1, y1) to complex(x2, y2) without modifying cursor

circle(radius)

draws circle with center at current cursor position and given radius

fillCircle(radius)

draws fiilled circle with center at current cursor position and given radius (fill color
= pen color)

ellipse(a, b)

draws ellipse with center at current cursor positon and given semiaxis

fillEllipse(a, b)

draws ellipse with center at current cursor positon and given semiaxis (fill color =
pen color)

rectangle(a, b)

draws rectangle with center at current cursor position and given width and height

rectangle(x1, y1, x2, y2)

draws rectangle with center at current cursor position and given diagonal

rectangle(ptl, pt2)

same with diagonal point lists

rectangle(cl, c2)

same with diagonal complex

fillRectangle(a, b)

draws filled rectangle with center at cursor and given width and height (fill color =
pen color)

fillRrectangle(x1, y1, x2, y2)

draws filled rectangle with center at cursor and given diagonal (fill color = pen
color)

fillRectangle(ptl, pt2)

same with diagonal point lists

fillRrectangle(cl, c2)

same with diagonal complex

arc(radius, startAngle, extendAngle)

draws arc with center at cursor and given radius, start and sector angle (O to east,
positive counterclockwise)

fillArc(radius, startAngle,
extendAngle)

same, but filled (fill color = pen color)

polygon(x_list, y_list)

draws polygon with vertexes from x_list and y_list

polygon((li[pt1, pt2,..)

same with list of point lists ptl, pt2,...

polygon(li[c1, c2, c3,...])

same with list of complex c1, c2,...

fillPolygon(x_list, y_list)

draws filled polygon with vertexes from x-list and y-list (fill color = pen color)

fillPolygon((li[pt1, pt2,..)

same with list of point lists pt1, pt2,...

fillPolygon(li[c1, c2, c3,...])

same with list of complex c1, c2,...

quadraticBezier(x1, y1, xc, yc, x1,
y2)

draws quadratic Bezier-curve with 2 points (x1, y1), (x2, y2) and control point (xc,
yc)

Page 142

quadraticBezier(pt1, pc, pt2)

same with point lists

quadraticBezier(c1, cc, c2)

same with complex

cubicBezier(x1, yl1, xcl, ycl, xc2,
yc2, X2, y2)

draws cubic Bezier-curve with 2 points (x1, y1), (x2, y2) and two control points
(xc1, ycl), (yc2, yc2)

cubicBezier(ptl, ptcl, ptc2, pt2)

same with point lists

cubicBezier(cl, ccl, cc2, c2)

same with complex

triangle(x1, y1, x2, y2, x3, y3)

draws a triangle with vertexes from x-, y-coordinates

triangle(ptl, pt2, pt3)

same with point lists

triangle(li[pt1, pt2, pt3])

same with list of point lists

triangle(c1, c2, c3)

same with complex

fillTriangle(x1, y1, x2, y2, x3, y3)

draws a filled triangle with vertexes from x-, y-coordinates (fill color = pen color)

fillTriangle(ptl, pt2, pt3)

same with point lists

fillTriangle(li[ptl, pt2, pt3])

same with list of point lists

fillTriangle(cl, c2, c3)

same with complex

point(x, y)

draws one single point (pixel) at (x, y)

point(pt)

same with point list

point(complex)

same with complex

fill(x, y, color, replacementColor)

fills a closed area with point (X, y) inside by replacing each pixel with given color
by a pixel with replacementColor (floodfill)

fill(pt, color, replacementColor)

same with point list

fill(complex, color,replacementColor)

same with complex

image(path, X, y)

shows image in GIF , PNG oder JPG format at lower-left position x, y. The image
path may be relative to the TigerJython folder, in the distribution JAR (folder
sprites) or a URL starting with http://

image(path, pt)

same with point list

image(path, complex)

same with complex

imageHeighpath)

returns the height of the image

imageWidth(path)

returns the width of the image

enableRepaint(boolean)

enables/disables automatic rendering of the offscreen buffer (default: enabled)

repaint()

renders the offscreen buffer on screen (necessary if the automatic rendering is
disabled)

setPaintMode()

selects normal painting by overwriting the background

setXORMode(color)

selects XOR-painting with given color. Painting twice removes without artefact.

getPixelColor(x, y)

returns color of pixel at (x, y) as Color type

getPixelColor(pt)

same with point list

getPixelColor(complex)

same with complex

getPixelColorStr(x, y)

returns color of pixel at (x, y) as X11 color string

getPixelColorStr(pt)

same with point list

getPixelColorStr(complex)

same with complex

Text

text(string)

displays text starting at current cursor position

text(x, y, string)

display text starting at given x-, y-coordinates

text(pt, string)

same with point list

text(complex, string)

same with complex

Page 143

text(x, vy, string, font, textColor,
bgColor)

displays text at given x-, y-coordinates with given font, text and background color

text(pt, string, font, textColor,
bgColor)

same with point list

text(complex,string, font, textColor,
bgColor)

same with complex

auch mehrere, durch Komma
getrennt

font(font) selects another text font (see below for font format)

Callbacks

makeGPanel(mouseNNN =

onMouseNNN) registers the callback function onMouseNNN(x, y) that is called when a mouse

event happens. Values for NNN: Pressed, Released, Clicked, Dragged, Moved,
Entered, Exited, SingleClicked, DoubleClicked

isLeftMouseButton(),
isRightMouseButton()

returns True, if the event is caused by the left/right mouse button

makeGPanel(keyPressed =
onKeyPressed)

registers the callback onKeyPressed(keyCode) that is called when a keyboard key
is hit. keyCode is a unique integer value that identifies the key

getKeyModifiers()

returns an integer code for special keyboard keys (shift, ctrl, etc., also combined)

makeGPanel(closeClicked =
onCloseClicked)

registers the callback onCloseClicked() that is called when the title bar close
button is hit. The window must be closed manually by calling dispose()

Keyboard

getKey() returns the character (as string) of the last key pressed

getKeyCode() returns the key code of the last key pressed

getkeyWait() tsr:c;pkse)tlhe program until a key is pressed and returns the charactor (as string) of
getKeyCodeWait() stops the program until a key is pressed and returns the key code of the key
kbhit() returns True, if a key was hit since the last call of getKey() or getkeyCode()

GUI Components

add(component) inserts a GUI component near the top border of the window
validate() repaints the window after a component has been added
Status Bar

addStatusBar(height)

adds a status bar at the bottom of the window with given height (in pixels)

setStatusText(text)

displays text in the status bar (old text is erased)

setStatusText(text, font, color)

displays text in the status bar with given font and color (old text is erased)

Font Format

Font(name, style, size)

creates a new font with given name, style and size

a string with a font name available on the system, e.g. "Times New Roman",

name
"Arial", "Courier"
stvle One of the stype constants: Font.PLAIN, Font.BOLD, Font.ITALIC, may also be
y combined: Font.BOLD + Font.ITALIC
size an integer with an available font size in pixels, e.g. 12, 16, 72
Dialogs

msgDIg(message)

opens a modal dialolg with an OK button and given message

msgDIlg(message, title = title_text)

same with title text

Page 144

inputint(prompt)

opens a modal dialog with OK/Cancel buttons. OK returns integer (the dialog is
shown again, if no integer is entered). Cancel or Close terminate the program

inputint(prompt, False)

same, but Cancel/Close do not terminate, but returns None

inputFloat(prompt)

opens a modal dialog with OK/Cancel buttons. OK returns float (the dialog is
shown again, if no float is entered). Cancel or Close terminate the program

inputFloat(prompt, False)

same, but Cancel/Close do not terminate, but returns None

inputString(prompt)

opens a modal dialog with OK/Cancel buttons. OK returns string. Cancel or Close
terminate the program

inputString(prompt, False)

same, but Cancel/Close do not terminate, but returns None

input(prompt)

opens a modal dialog with OK/Cancel buttons. OK returns integer, float or string.
Cancel or Close terminate the program

input(prompt, False)

same, but Cancel/Close do not terminate, but returns None

askYesNo(prompt)

opens a modal dialog with Yes/No buttons. Yes returns True, No returns False.
Cancel or Close terminate the program

askYesNo(prompt, False)

same, but Close do not terminate, but returns None

Module import: from fitter import *

Curve fitting:

polynomfit(xdata, ydata, n)

fits a polynom of order n and returns the fitted values in ydata. Return value: list
with n + 1 polynom coefficients

splinefit(xdata, ydata, nbKnots)

fits a spline function that passes through nbKnots aequidistant data points.
Returns the fitted data in ydata

functionfit(func, derivatives,
initialGuess, xdata, ydata)

fits the function func(x, param) with n parameters in list param. derivatives(x,
param) returns a list with the values of the partial derivatives to the n parameters.
initGuess is a list with n guessed values for the n parameters

functionfit(func, derivatives,
initialGuess, xdata, ydata, weights)

same but with a list weights that determines the relative weights of the data points

toAequidistant(xrawdata,
deltax)

yrawdata,

returns two lists xdata, ydata with aequidistant values separated by deltax (linear
interpolation)

Page 145

chapter four

Learning Objectives

it.

SOUND

You know how sound is digitized and stored.
You are familiar with the term sampling and its implications.

You can record a sound with your own program, specifically change it, play it back, and save

"As the skills that constitute literacy evolve to accommodate digital media, computer science education
finds itself in a sorry state. While students are more in need of computational skills than ever, computer
science suffers dramatically low retention rates and a declining percentage of women and minorities.
Studies of the problem point to the over-emphasis in computer science classes on abstraction over
application, technical details instead of usability, and the stereotypical view of programmers as loners

lacking creativity. Media Computation, teaches programming and computation in the context of media
creation and manipulation.”

In Forte, Guzdial, Not Calculation: Media
as a Motivation and Context for Learning

Page 146

4.1 PLAYING BACK SOUND

M INTRODUCTION

In order to process a sound signal in the computer, it must first be digitized. To do this, one
samples it at equidistant time steps and converts the value of the signal to a number at every
sampling time using an analog-to-digital converter. The sound signal then yields a sequence of
numbers that can be stored and processed in the computer. The sampling frequency (or
sampling rate) is understood as the number of samples per second. This is standardized for the
WAV audio format and can have the following values: 8000, 11025, 16000, 22050 and 44100
Hertz. The higher the sampling frequency, the more precisely the sound can be restored by a
digital-to-analog conversion. The value range of the samples is also important for the quality. In
the TigerJython sound library, values are always stored as integers in a list in the 16-bit range
(-32768 and 32767).

We also need to distinguish whether we are dealing with a monaural or a binaural sound.
Depending on this, one or two channels are used. In the case of two channels (stereo), the
values for the left and the right channel are stored as consecutive numbers.

In this chapter you will heed a computer with a sound card, the ability to listen to sound through
a speaker or headphones, and a microphone.

PROGRAMMING CONCEPTS: Sound digitization, audio signal, sample, sampling rate

Hl LISTENING TO SOUND

Find a fun sound clip in WAV format that has a short duration (around 2 to 5 seconds long). You
can look on the Internet. Copy the sound file under the name mysound.wav in the same
directory as your program.

First, import all of the functions of the sound library. Next, copy the sound samples into the list
samplesand write the information of the sound file into the console window, for you need to
know the sampling rate. In the example shown here, its value is 22050 Hz. With
openMonoPlayer you have the ability to play back the sound. If you enter the wrong sampling
rate, the sound will be played with a different speed, hence with other frequencies.

from soundsystem i nport *

sanpl es = get WavMono(" nysound. wav")
print getWavlnfo("mysound. wav")

openMonoPl ayer (sanpl es, 22050)
play()

Highlight program code (ctri+C copy, Ctri+V paste)

B MEMO

The function getWavMono() provides the sound samples in a Python list. Each value is an
integer in the range between -32768 and 32767. The function openMonoPlayer() provides a
sound player so that the sound can be played with play().

Since lists can only have a certain maximum size that depends on the memory capacity of your

Page 147

computer, only relatively short sound clips can be read with getWavMono().

Il SOUND WAVE

It is interesting to also represent sound samples
graphically. To do this, simply use a GPanel window
and run through the list in a for loop.

from soundsystem i nport *

sanmpl es = get WavMono(" mysound. wav")
print getWavlnfo("mysound. wav")

openMonoPl ayer (sanpl es, 44100)
play()

from gpanel inport *

mekeGPanel (0, | en(sanples), -33000, 33000)
for i in range(len(sanples)):
draw(i, samples[i])

Highlight program code (ctri+C copy, Ctri+V paste)

B MEMO

We have to choose the coordinate system of the GPanel conveniently. The values displayed in
the x-direction are between 0 and the number of sampling values, which is equal to the length
of the sample list. The values of the y-direction are between -32768 and 32767. This is why
we use a range of +-33000.

M THERE IS AN EASIER WAY

If you just want to play a sound file, you only need three lines of code. You can even play long
sounds, for example your favorite songs.

from soundsystem i nport *

openSoundPl ayer (" myfavoritesong. wav")
play()

Highlight program code (ctri+C copy, Ctri+V paste)

Page 148

B MEMO

You can also use some sound clips that come in the distribution of TigerJython. Choose any of
the following file names:

Sound File Description
wav/bird.wav chirping bird
wav/boing.wav boing
wav/cat.wav meowing cat
wav/click.wav click

wav/dummy.wav empty sound
wav/explode.wav explosion

wav/frog.wav croaking frog
wav/mmm.wav eating sound
wav/notify.wav notification sound
wav/ping.wav ping sound

(The list is constantly updated. If you have a WAV sound file with the same name in your own
subdirectory wav, that one will be used.)

The sound player knows many control commands, just as a professional music player does.
You can, for example, stop the song with pause() and then continue playing the song at the
same spot using play().

The duration of the sound is not limited in these functions because the sound is only read and
played back in small packets (streaming player).

play() plays back a sound from the current position and returns immediately

plays back a sound from the current position and waits until it is finished
playing

advanceFrames(n) moves forward from the current position by the given number of samples
advanceTime(t) moves forward from the current position by the specified time
getCurrentPos() |returns the current position

getCurrentTime() [returns the current playing time

blockingPlay()

pause() pauses playback. play() will start it again
. moves backwards from the current position by the given number of
rewindFrames(n)
samples
rewindTime(t) moves backwards from the current position by the specified time
stop() stops playback. The playback position is set to the beginning
setVolume(v) adjusts the volume (value between 0 and 1000)

B PLAYING MP3 SOUND FILES

To play sounds in the MP3 format, you will need additional library files which you can download
and unzip separately here. Create the subdirectory Lib (if it does not already exist) in the
directory where tigerjython2.jar is located, and then copy the unzipped files into it.

Instead of using openSoundPlayer(), openMonoPlayer(), and openStereoPlayer() for MP3 files use
openSoundPlayerMP3(), openMonoPlayerMP3() and openStereoPlayerMP3() and indicate the
path to the sound file. To play, use the same functions mentioned above.

from soundsystem i nport *

openSoundPl ayer MP3(" song. np3")
play()

Highlight program code (ctri+C copy, Ctri+V paste)

Page 149

MEMO

To play MP3 sound files, you will need additional JAR library files that need to be located in the
directory Lib of the home directory to tigerjython2.jar.

EXERCISES

1. Explain why the tone frequencies are changed if you change the sampling rate during
playback

2. Show a sound wave in the GPanel representing a short range of 0.1 seconds starting at the 1
second mark. Explain the image.

3. Create a sound player with a GPanel where the following commands can be executed using
the keyboard:

Key Action

Cursor up play

Cursor down pause

Cursor left rewind by 10 s
Cursor right advance by 10 s
Buchstabe s stop

Write the command list as text in the window. With each key press, the action should be
written out in the title line.

Page 150

4.2 SOUND EDITING

M INTRODUCTION

As you know, sound samples (sampling values of a sound) are stored in a list and can be played
back again with this list. If you want to edit the sound, you can easily change the list
accordingly.

PROGRAMMING CONCEPTS: Rectangular wave, integer division, modulo operation

CHANGING THE LOUDNESS/VOLUME

The program should reduce the volume of the sound by one quarter. To do this, copy the sound
list to another list, where each list element is set to a of its original value.

from soundsystem i nport *

sanmpl es = get WavMono(" mysound. wav")
soundlist =[]
for itemin sanples:

soundl i st. append(item// 4)

openMnoPl ayer (soundl i st, 22010)
play()

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

To copy a list, first create an empty list then fill it using append(). In order to get a list of
integers again, you need to use integer division (double division slash).

USING THE LIST INDEX

In the following example, you go through the list
using the list index and change the list elements
without creating a new list. Display the sound
graphically before and after the change.

from soundsystem i nport *
from gpanel inport *

Page 151

sanmpl es = get WavMono(" mysound. wav")

makeGPanel (0, |en(sanples), -33000, 33000)
for i in range(len(sanples)):
if i ==
nove(i, sanples[i] + 10000)
el se:
draw(i, sanples[i] + 10000)

for i in range(len(sanples)):
sanmpl es[i] = sanples[i] // 4

for i in range(len(sanples)):
if i ==
nove(i, sanmples[i] - 10000)
el se:
draw(i, sanples[i] - 10000)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

People often use the variable name i as a list index. If you run through a loop block using a for
structure
for i in range(10):

i is also called a stepper.

GENERATING SOUNDS

It is exciting to create your own sounds, not by loading a sound list from a sound file, but rather
by creating the list elements yourself. To make a "rectangular wave sound" you repeatedly store
the value 5000 in the list, for a certain index range, and subsequently -5000 for the same index
range.

from soundsystem i nport *

sanmples = []
for i in range(4 * 5000):
val ue = 5000
ifi %10 == 0
val ue = -val ue
sanpl es. append(val ue)

openMonoPl ayer (sanpl es, 5000)
play()

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

The sampling rate of 10000 Hz corresponds to a sound sample every 0.1 ms. We want to
change the sign (-/+) always after 10 values, in other words, every 1 ms. This corresponds to
a rectangular wave period of 2 ms, which yields a sound of 500 Hz. We use the modulo
operator %, which returns the remainder of the integer division. The condition i % 10 == 0 is
then true fori = 0, 10, 20, 30, etc.

Page 152

B EXERCISES

4%,

5%,

Use the list operation reverse() to play a sound backwards, e.g. a spoken text.

With the slice notation list[start: end] you can create lists that contain only the elements
with the index start to end (without the last element). Using this, remove a part of your
present sound.

Load a sound clip and determine the maximum amplitude value. Write it in the title bar of
the GPanel and display the sound graphically. Now increase all of the sound samples, so that
the maximum amplitude value amounts to 32767 (the maximum volume) and display the clip
again. (This is an important function of most sound editors, called normalizing).

Create a sine wave of about 500 Hz with a sampling rate of 10000 Hz using the sine function

math.sin(x), which always restarts after x = 2n = 6.28. To get access to the sine function
you have to include import math.

Superimpose two sine waves with neighboring frequencies. What do you notice while
listening?

Page 153

4.3 RECORDING SOUNDS

M INTRODUCTION

You can also record and save sounds with the sound system. To get started, you have to connect
the sound card input with an external source, e.g. a microphone or a playback device. Laptops
usually have a built-in microphone.

PROGRAMMING CONCEPTS: Blocking and non-blocking function

Il SOUND RECORDER

Before recording, call openMonoRecorder() to prepare the recording system. You have to
specify the sampling rate as a parameter. You can start recording with capture(). This function
is non-blocking and returns immediately. You will have to call stopCapture() later to end the
recording. The recorded sound samples are copied into a list that you can get with
getCapturedSound(). Here you make a recording of 5 seconds duration and then play the
sound.

from soundsystem i nport *

openMbnoRecor der (22050)
print("Recording...");
capture()

del ay(5000)

st opCapt ure()
print("Stopped");

sound = get Capt ur edSound()

openMonoPl ayer (sound, 22050)
play()

H MEMO

A command like capture(),which triggers an action and immediately returns, is also called a
non-blocking function. With such functions you are able to control tasks from your ongoing
program, while these tasks are executed in the background. For instance, you can abort them.

Bl ILLUSTRATING RECORDED SOUND

Of course, we are often interested in the graphical representation of the recorded sound. You
should already know how you can do this with the GPanel.

The adjacent graphics shows the recording of the words
"one two three for five six seven eight nine ten".

Page 154

from soundsystem i nport *

openMonoRecor der (22050)
print("Recording...");
capture()

del ay(5000)

st opCapt ure()
print("Stopped");

sound = get Capt ur edSound()

from gpanel inport *
makeGPanel (0, |en(sound), -33000, 33000)
for i in range(len(sound)):

draw(i, sound[i])

H MEMO

You can obtain the number of samples from the length of the sound list. For the graphical
representation, simply use a for structure. Play around for a while with different recorded
sounds and think about whether you understand the sound curve.

Il SAVING WAV FILES

You can also save the recorded sound as a WAV file with writeWavFile().

from soundsystem i nport *

openMbnoRecor der (22050)
print("Recording...");
capture()

del ay(5000)

st opCapt ure()
print("Stopped");

sound = get Capt ur edSound()

writeWavFi | e(sound, "mysound. wav")

H MEMO

After saving, you can listen to the sound file with either Python or with any sound player that
is installed on your computer.

B EXERCISES

1. Record individual words
2. Put these words together in a sentence..

3*. Let the computer speak in single digits a phone number given as a text.

Page 155

4.4 SPEECH SYNTHESIS

M INTRODUCTION

In speech synthesis, a human voice is generated by the computer. A text-to-speech system (TTS)
converts written text into a speech output. The automatic generation of human language is
complicated, but it has made a lot of progress in recent years. Compared to the playback of
pre-made voice recordings, TTS has the advantage of being very flexible and able to speak any
text. Speech synthesis is a part of computational linguistics. Therefore, a close collaboration
between linguists and computer scientists is necessary in the development of a TTS.

The speech synthesis software used in TigerJython is called MaryTTS and was developed at the
Department of Computational Linguistics and Phonetics of the University of Saarland in Germany.

The system uses large library files that you download separately here and then unzip. In the
same directory as tigerjythonZ2.jar, create the subdirectory Lib (only if it does not already exist)
and copy the unzipped files into it.

PROGRAMMING CONCEPTS: Speech synthesis, artificial speech, text-to-speech system

l SPEAKING A TEXT IN 4 LANGUAGES

In this release, MaryTTS provides you with different voices speaking German, English, French and
Italien.. You can choose the voice with selectVoice(). After that you can call the function
generateVoice() by passing it the text to be spoken. It will return a list with the generated
sound samples that you can play back with a sound player.

from soundsystem import *

initTTS ()

selectVoice ("german-man")

#selectVoice ("german-woman")
#selectVoice ("english-man")
#selectVoice ("english-woman")

(
(
(
#selectVoice ("french-woman")
(
(

#selectVoice ("french-man")
#selectVoice ("italian-woman")
text = "Danke dass du mir eine Sprache gibst. Viel Spass beim Programmieren"
#text = "Thank you to give me a voice. Enjoy programming"
#ftext = "Merci pour me donner une voix. Profitez de la programmation"
#text = "Grazie che tu mi dia una lingua. Godere della programmazione"
voice = generateVoice (text)
openSoundPlayer (voice)
play()
B MEMO

You can change the commented lines to let the program speak the text using the different
voices. You first always have to call initTTS() in order to prepare the speech synthesis
software.

You could also pass the function initTTS() a path to the directory containing the MaryTTS data
files as a parameter. By default it is the subdirectory Lib.

Page 156

Il ANNOUNCING TODAY'S DATE AND THE CURRENT TIME

There are numerous applications of speech synthesis. People with visual impairments can have
texts read aloud to them, and navigation systems or train station or train announcements often
use synthetically generated voices.

Many interactive computer games also use artificially generated voices.
Your program determines the current time from the computer system, and it reads it out loud
with a German or an English speaking voice.

from soundsystem import *
import datetime

language = "german"
#language = "english"
initTTS ()
if language == "german":
selectVoice ("german-woman")
month = ["Januar", "Februar", "Marz", "April", "Mai",

"Juni"™, "Juli", "August", "September", "Oktober",
"November", "Dezember"]
if language == "english":
selectVoice ("english-man")
month = ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October",
"November", "December"]

now = datetime.datetime.now ()
if language == "german":
text = "Heute ist der " + str(now.day) + ". " \
+ month[now.month - 1] + " " + str(now.year) + ".\n" \
+ "Die genaue Zeit ist " + str(now.hour) + " Uhr " + str(now.minute)
if language == "english":
text = "Today we have " + month[now.month - 1] + " "™ \
+ str(now.day) + ", "+ str(now.year) + ".\n" \
+ "The time is " + str(now.hour) + " hours " + str(now.minute)
+ " minutes."

print text

voice = generateVoice (text)
openSoundPlayer (voice)
play ()

B MEMO

By selecting the commented lines, you can decide between the German or the English speaker.
The class datetime.datetime.now () provides you with information about the current date and
the current time, via its attributes year, month, day, hour, minute, second, microsecond. As
you can see, you can use the backslash as a line extension in the definition of long strings.

l CREATING YOUR OWN GRAPHICAL USER INTERFACE

As you have already learned in chapter 3.13 it is quite easy to create a simple dialog window
based on Tigerlython's EntryDialog class. As usual in many programming environments the
classic controls like text fields, push, check and radio buttons, as well as sliders are modeled by
software objects. These objects appear in a surrounding rectangular pane and the dialog remains
open while the program continues (such a dialog is called a modeless dialog). For a
comprehensive information please consult the APLU documentation.

Page 157

Your program opens a modeless dialog where you select the speaker using radio buttons. When
clicking the confirmation button, the text in the text field is read by a synthetic voice.

Speaker Selection
() Frau (Deutsch)
(7) Mann (Deutsch)
i@ Man (English)

Message: |Enju::n,-I programming!

from soundsystem import *
from entrydialog import *

speakerl = RadioEntry("Mann (Deutsch)")
speakerl.setValue (True)
speaker2 = RadioEntry("Man (English)™)

speaker3 = RadioEntry ("Homme (Francais)")
speaker4 = RadioEntry ("Donna (Italiano)™)
panel = EntryPane ("Speaker Selection",
speakerl, speaker2, speaker3, speaker4)
textEntry = StringEntry("Message:", "Viel Spass am Programmieren")

pane2 = EntryPane (textEntry)

okButton = ButtonEntry("Speak")

pane3 = EntryPane (okButton)

dlg = EntryDialog(panel, pane2, pane3)
dlg.setTitle ("Synthetic Voice")

initTTS ()

while not dlg.isDisposed() :
if speakerl.isTouched():
textEntry.setValue ("Viel Spass am Programmieren")
elif speaker2.isTouched() :
textEntry.setValue ("Enjoy programming")
elif speaker3.isTouched() :
textEntry.setValue ("Profitez de la programmation")
elif speakerd4.isTouched() :
textEntry.setValue ("Godere della programmazione")

if okButton.isTouched() :

if speakerl.getValue():
selectVoice ("german-man'")
text = textEntry.getValue()

elif speaker2.getValue():
selectVoice ("english-man")
text = textEntry.getValue()

elif speaker3.getValue():
selectVoice ("french-man")
text = textEntry.getValue()

elif speakerd.getValue():
selectVoice ("italian-woman™)
text = textEntry.getValue()

if text != "":
voice = generateVoice (text)
openSoundPlayer (voice)
play()

Page 158

B MEMO

The while loop executes until the dialog is closed with the title bar's close button. You check
with isTouched() in every cycle, if the confirmation button was clicked since the last call of
this function. In this case you get the current values of the GUI elements by calling
getValue()and transform the text in the text field to a voice like in the preceding examples.

It is a bit dangerous to go through such "narrow" loops, because you waste lot of processing
time for nothing other than just a check whether the button was pressed. However, when you
call isTouched() the program will automatically stop for a short time (1ms) so that the
throughput is slightly slowed down.

B EXERCISES

1. Find or write a short poem as a text file, for example:
Advice To A Son by Ernest Hemingway.

Never trust a white man,

Never kill a Jew,

Never sign a contract,

Never rent a pew.

Don't enlist in armies;

Nor marry many wives;

Never write for magazines;

Never scratch your hives.

Always put paper on the seat,
Don't believe in wars,

Keep yourself both clean and neat,
Never marry whores.

Never pay a blackmailer,

Never go to law,

Never trust a publisher,

Or you'll sleep on straw.

All your friends will leave you

All your friends will die

So lead a clean and wholesome life
And join them in the sky.

Ernest Hemingway (Download)

With the line text = open("poem.txt", "r").read() you can read the text from the text file
sorcery.txt, in the same directory as your program, as string. Let the text be read by the
English voice.

2. Define the function fac(n) either iteratively or recursively, which returns the factorial
nl=1*2*__*n
Your program should ask you for a number between 0 and 10 using readInt() and also speak

the question out loud. It then calculates the factorial n! of the entered number and outputs
the result as spoken text.

Page 159

4.5 ACOUSTIC EXPERIMENTS

M INTRODUCTION

You can also use the computer in place of an experimental system, for example you could
investigate human hearing using the sound system. This is not only cheaper, but it also gives
you a huge amount of flexibility, especially when you perform the experiments with a self-written
program.

PROGRAMMING CONCEPTS: Concert pitch, beating, scale

M TUNING A MUSICAL INSTRUMENT, BEATING

The hearing cannot distinguish two tones with almost the same frequencies when they are
played separately. However, if they are played simultaneously this results in a rise and fall in
volume which is very well audible. In order to experience this yourself, make your program play
a standard concert pitch A (440 Hz) for 5 seconds and later for the same period an only 1 Hz
higher pitch. There is no noticeable difference. When playing both tones at together you can
clearly hear the beating phenomenon.

import tine

pl ayTone(440, 5000)

tine.sleep(2)

pl ayTone(441, 5000)

tine.sleep(2)

pl ayTone(440, 20000, block = Fal se)
pl ayTone(441, 20000)

Highlight program code (ctri+C copy, Ctri+V paste)

H MEMO

The global function playTone() has different parameter variations that you can read about in
the TigerJython Help file under APLU Documentation (coordinate graphic). Here you use the
parameter block, with which you can define whether the function blocks until the tone is done
being played, or whether it returns immediately after starting to play. You have to use the
non-blocking variant to play multiple sounds simultaneously.

To tune instruments in an orchestra, but also to tune a single instrument (string instrument,
piano, etc.), two notes are played at the same time while paying attention to the beating.

B SCALES

The well-tempered musical scale is based on a standard concert pitch with the frequency 440 Hz
and divides the octave (frequency ratio 2) in 12 semitones with the same frequency ratio r. Thus
gives:

P22 or r=132+10594630943

You can easily play the C major scale with this, which according to the notation, consists of

Page 160

whole and half steps. The concert pitch corresponds to the note a.

_7?1{: | e

c d e f g a h c

In the just or natural scale the tone frequencies are formed by multiplication with simple ratios
starting from the root tone. The ratios for the 8 tones of an octave are:

or as a series of numbers, they are: 24, 27, 30, 32, 36, 40, 45, 48. To play these, you can save
the frequencies in a list and call playTone(). Once you have played both scales individually, you
can listen to the two differently tuned instruments playing the scale together. As you will notice,
it sounds really bad.

r = 2**(1/12)
a 440
c al r**9

scal e_tenp [c, ¢ * r**2, c * r**4, ¢ * r**5, ¢c * r**7,
c * r**9, ¢ * r**11, 2 * c]
scale_pure = [c, ¢ * 9/8, ¢ * 5/4, ¢ * 4/3, ¢ * 3/2 ,

c * 5/3, c* 15/8, 2 * c]

pl ayTone(scal e_tenp, 1000)
pl ayTone(scal e_pure, 1000)

pl ayTone(scal e_tenp, 1000, block = Fal se)
pl ayTone(scal e_pure, 1000)

Highlight program code (ctri+C copy, Ctri+V paste)

MEMO

In the well-tempered scale, neighboring semitones always have the same frequency ratio (so,
not equal frequency differences!). The advantage of the well-tempered scale over just
intonation is that the frequency ratios are always the same for all keys (C major, D major,
etc.). [more...]

PLAYING MELODIES

You can also play a simple melody for fun using playTone(). For subsequent tones of equal
length, use tuples with a pitch and speed indication, and put them into a list. Finally, it is also
possible to choose a musical instrument. In this example you probably recognize a children's
tune. Which one is it?

v = 250

pl ayTone([("cdef", v), ("gg", 2*v), ("aaaa", v//2), ("g", 2*v),
("aaaa", v//2), ("g", 2*v), ("ffff", v), ("ee", 2*v),
("dddd", v), ("c", 2*v)], instrument="harp")

Highlight program code (ctri+C copy, Ctrl+V paste)

Page 161

MEMO

It is really amazing how easily you can play a melody using playTone(). However, compared to
a real musical instrument, it sounds very synthetic.

EXERCISES

1. You can write down a song as a list of tone frequencies and then play it with a for loop:

mel ody = [262, 444, 349, 349, 392, 330, 262, 466, 440, 392, 392, 349]
v = 200
for f in nelody:

pl ayTone(f, v)

a. Do you know this song? Play it back a bit slower.
b. Play the song one octave higher.

c. For your singing class, the first version is too low and the second is too high. Transpose
the melody so that it starts with g' instead of c'.

2. Play the chord c¢", e", g" (third, fifth) for twenty seconds with the well-tempered intonation.

(For this, you can use playTone() giving it letters for the tones.) Now play the same chord,
but with just intonation. What do you notice?

Page 162

Sound Documentation

Sound
Function Action
playTone(freq) plays tone mit given frequency (in Hz) and duration 1000 ms (blocking function)

playTone(freq, blocking=False)

same, but not-blocking function, used to play several tones at (about) the same time

playTone(freq, duration)

plays tone with given frequency and given duration (in ms)

playTone([f1, f2, ...])

plays several tones in a sequence with given frequency and duration 1000 ms

playTone([(f1, d1), (f2, d2), ...])

plays serveral tones in a sequence with given frequency and given duration

playTone([("c", 700), ("e", 1500),
)

plays serveral tones in a sequence with given (Helmholtz) pitch naming and
duration.
Supported are: great octave, one-line to three-line octave (range C, C# up to h™

playTone([("c", 700), ("e", 1500),
...], instrument = "piano")

same, but selects instrument type. Supported are: piano, guitar, harp, trumpet,
xylophone, organ, violin, panflute, bird, seashore, ... (see MIDI specifications)

playTone([("c", 700), ("e", 1500),
...], instrument = "piano",
volume=10)

same, but selects sound volume (0..100)

Module import: from soundsystem import *

Playback:

getWavMono(filename)

provides lists of samples for the specified monaural sound file. "wav/xxx.wav" also
loads from the _wav directory in tigerjython2.jar

getWavsStereo(filename)

provides lists of samples for the specified binaural sound file. "wav/xxx.wav" also
loads from the _wav directory in tigerjython2.jar

getWavlnfo(file)

provides a string with information about the sample rate, etc.

openSoundPlayer(filename)

opens a sound player with the specified sound file. Afterwards, it can be played with
the following player functions

openMonoPlayer(filename)

opens a monaural sound player with the specified sound file. It can also handle
binaural files (average of both channels)

openStereoPlayer(filename)

opens a binaural sound player with the specified sound files. It can also handle
monaural files (both channels are identical)

openSoundPlayerMP3(filename)

just like openSoundPlayer(), but for MP3 files

openMonoPlayerMP3(filename)

just like openMonoPlayer(), but for MP3 files

openStereoPlayerMP3(filename)

just like openStereoPlayer(), but for MP3 files

play() plays the sound from the current position and returns immediately
) plays the sound from the current position and then waits until the playing has
blockingPlay() .
finished
advanceFrames(n) fast forwards the current position by a given number of samples

advanceTime(t)

fast forwards the current position by a specified time

getCurrentPos()

returns the current position

getCurrentTime()

returns the current playing time

rewindFrames(n)

rewinds the current position by the specified number of samples

rewindTime(t)

rewinds the current position by the specified time

stop()

stops playing and resets the current playhead to the beginning

setVolume(v)

sets the volume (v = 0...100)

isPlaying()

returns True if the clip has not yet finished playing

Page 163

mute(bool) turns to True when muted, and False when audible
playLoop() loops, and therefore plays the clip endlessly
replay() replays the clip once

delay(time) delays the program (in milliseconds)

Recording and Saving:

openMonoRecorder() opens a monaural sound recorder

openStereoRecorder() opens a binaural sound recorder

capture() begins recording

stopCapture() stops recording

getCapturedBytes() returns the recorded samples byte-by-byte

getCapturedSound() returns the recorded samples as integer list values (binaural: channels alternate)

writeWavFile(samples, filename)

writes the samples into a WAV file

Fast Fourier Transform (FFT):

fft(samples, n)

transforms the first n values of the specified list of samples (floats). Returns a list
with n // 2 equidistant spectral values (floats). At a sampling rate of fs these range
from 0 to fs/2 at a distance fs/n (resolution)

sine(A, f, t)

creates a sine wave with amplitude A and frequency f (phase 0) for each float value
t

square(A, f, t)

creates a square wave with amplitude A and frequency f (phase 0) for each float
value t

sawtooth(A, f, t)

creates a sawtooth wave with amplitude A and frequency f (phase 0) for each float
value t

triangle(A, f, t)

creates a triangle wave with amplitude A and frequency f (phase 0) for each float
value t

chirp(A, f, t)

creates a sine wave with amplitude A and a frequency that increases linearly with
time (initial value f) for each float value t

Page 164

chapter five

ROBOTICS

Learning Objectives

You can describe what a robot is and you know some of their possible applications.

You know the difference between an autonomous and a remotely controlled robot, and you
know why robots are simulated.

You can control EV3 or NXT robots with a Python program.

You can explain, using a few examples, what a learning robot is. You also understand the
difference between the teach and execute modes.

You know the principles of a control system and can list some examples of controls.

You can capture sensor values in a program using polling and events.

"Will robots inherit the earth? Yes, but they will be our children."

but:

"No computer has ever been designed that is ever aware of what it's doing; but most of the time, we
aren't either.”

Marvin Minsky, Al Researcher at MIT

Page 165

5.1 REAL AND SIMULATION MODE

H INTRODUCTION

A robot is usually understood as a computer-controlled machine that can perform an activity,
previously done by humans. If the machine can also detect the surrounding environment with the
help of cameras and sensors and can then react appropriately with actuators (motors, valves,
speech synthesizers, etc.), we speak of an intelligent system. If the behavior of such a system
is human-like, we speak of an android. .

A typical example of this is the movie
robot WALL-E who has his own
consciousness, so much that he is
looking for spare parts for himself, as
well as special objects that catch his
interest, which he treasures in a
collection. He is also able to solve a
Rubik's cube, which is definitely seen
as a sign of intelligence.

Artificial Intelligence (AI) deals with the interesting question of exactly how a computer
system can be described as "intelligent". In order to answer this question, we must first define
what is meant by an “intelligent” machine. One possible approach to the definition of intelligence
is the Turing Test.

Here you will be concerned with more simple questions and you will learn to handle a simple
robot equipped with touch, light, sound, infrared, and ultrasound sensors, and also with two
wheels driven by electric motors, which allow it to move forwards and backwards, and even
rotate.

The motors and sensors are controlled by the built-in computer, which is why people also call
robots an embedded system. If it often consists in a simple computer chip, it is called a
microprocessor (or a microcontroller). Nowadays, embedded systems play an extremely
important role and you can find them in many everyday devices, for instance in smartphones.
Surprisingly, most coffee machines, washing machines, televisions, cameras, and other similar
electronics are also embedded systems. In a modern car, there are up to 100 microcontrollers
that act as embedded systems in places such as the engine control or the anti-blocking system.
Therefore, you should be aware that you are also getting to know many general principles for
embedded systems while learning about robots.

If the built-in processor runs a stand-alone program in order to control the robot, we speak of an
autonomous robot. The built-in processor can also simply send the data collected from the
sensors over a data communication canal to an external computer, and then obtain control
commands from this computer. In this case, we speak of an remotely controlled robot. Finally,
a robot can also be simulated, which usually means that the sensors, motors, etc. are depicted
as software objects. A class construction then corresponds to the real-world assembly of robot
components. In general practice, robots are usually first simulated on the computer since this can
create a behavior to be studied with little effort and without any risks to the environment.

With the world famous robotics kit by LEGO Mindstorms you can learn the important aspects of
robotics in a playful way. The kit consists of a microprocessor-controlled brick and a variety of
Page 166

components used to construct different robot models. The brick has gone through several stages
of development: earlier it was called RCX, then NXT, and more recently EV3.

The EV3 brick is an embedded system with motors and sensors controlled by a modern ARM
processor. If you open it, its electronic components will be visible.

! e r PC port
R, =
g g — P 4 motor ports
. T : | USB port
= i) &l) loudspeaker
v YT i —— SD card
u e 32 bit ARM9 processor
Rl _ i Texas Instrument AM1808

| i with 64 MB RAM and

16 MB flash drive

= 4 sensor ports

EV3

Once you turn on the brick, a firmware starts on the microcontroller (or with EV3 the Linux
operating system) and a simple menu appears on the display. With this, you can already run
programs stored on the brick, in autonomous mode. For the external control mode on the EV3,
you have to start a helper program (BrickGate) which interprets commands that are received
through a Bluetooth connection, for example the command to turn on a motor in a certain
rotation direction or to report back the measured value of a senor. With the NXT, this program is
a part of the firmware.

As with all embedded systems in robotics, you need an external computer on which you develop
the robot programs. In autonomous mode the program is downloaded onto the brick, and in
external control mode it runs on the PC.

Autonomous mode External control mode

/"';" " l['.l'l "

Windows Mac Linux Windows Mac Linux

1. Edit the program 1. Edit the program

(«

2. Download and end the 2. Runs on the PC.
connection Communicates with the EV3

3. Runs on the EV3

PROGRAMMING CONCEPTS: Robots, androids, artificial intelligence, embedded systems,
microprocessors, microcontrollers, blocking/non-blocking methods

Page 167

Bl PREPARATIONS

With TigerJython you can simulate the robot (simulation mode) or using autonomous or
external control modes (real mode). You thereby use different class libraries which, however,
offer the same programming interface (Application Programming Interface, API) so that the
programs are practically identical for all modes. The only things that have to be adjusted are
imports and possibly some timings used in the program.

Simulation mode:

If you do not have an NXT or an EV3 available to you, you can nonetheless work through the topic
in simulation mode. The images required for the simulation are already included in the
distribution of TigerJython.

Real mode:

Most examples will use the basic model of the LEGO Mindstorm
NXT or EV3 robot, which moves with two motors and can be
equipped with various sensors. As long as you do not change the
basic functionality, you can also use your own deviated model.
Since the robot communicates through Bluetooth, your PC must
be Bluetooth compatible and enabled. Moreover you have to
“pair” the brick with your computer.

Using the LEGO NXT:
Make sure that the Java firmware 1eJOS is installed onto the LEGO NXT. Here you find instructions
how to proceed: http://www.legorobotik.ch/lejosfirmware_en

To pair it with the computer, you proceed as you would with other external Bluetooth devices
such as smartphones, Bluetooth handsets, printers, etc.

With Python, you can use the NXT only in its external control mode. For this, you write a regular
Python program in TigerJython using the module ch.ap/u.nxt and then hit the green Run button to
start. First you will be asked for the Bluetooth name and then the connection with the brick will
be established. During the program execution, a window with the connection information remains
open. If you close this window, the connection to the NXT is interrupted.

[nput == NxtlLib V123 (www.aplu.ch)
l'é'l Enter Bluetooth Mame Connection to MXT established,
- m Bluetooth address = 0016530847B5 (hex)

Application running...

(Close the window to terminate.)

If there are several LEGO NXT's in the room, the names for each must be different so that there are no conflicts. You can find a tool for
changing the name here. You can also use the Bluetooth address instead of the Bluetooth name, which you can figure out with the help of
different tools (one place to find it is shown above: it is written out in the connection dialog each time that a connection is established).

The BlueCove library is necessary for Bluetooth communication. Download the files here and
unzip them in the subdirectory Lib of the directory in which tigerjythonZ2.jar is located.

Using the LEGO EV3:

A Linux operating system runs on the EV3 that boots in conjunction with the 1e]JOS software,
which is located on the SD card. You can find a detailed guide on how to create the SD card here.
If you remove the SD card you can use the EV3 in its original state. If the EV3 is started using
1eJOS you communicate with it through a Bluetooth PAN connection. To do this, you have to pair
the PC with the brick and specify it as a network access point. You can find instructions here.

After booting the EV3 with 1eJOS and successfully connecting it via Bluetooth PAN, you need to
start the BrickGate server on the brick, which you can find in the menu "programs".

To use the EV3 in autonomous mode, check both boxes on the libraries tab in the settings of

Page 168

TigerJython, activate EV3 download and run after download. You will then find an additional EV3
icon on the toolbar.

Tigerlython
elp Enable EV3-Download o= |p
|| Fun after download b || o
b € m|K «— v e m g %
IP Address: |10.0.1.1
Preferenices.: | Download to EV3

For the external control mode, you click on the green Run button as usual. Just as with the NXT,
you will first be asked for the Bluetooth name and then a window will open with the connection
information. If you want to run the same program autonomously, simply click on the EV3 button.
The Python script is then downloaded onto the EV3 and executed there. Its name also appears on
the display of the EV3 and it can always be executed again with the Enter button, even without a
connection to the PC.

In the programs we assume that for the EV3 you are using the new motors and sensors from the EV3 product line. The EV3 color sensor also

serves as a light sensor. However, the old NXT motors and sensors are still supported for the EV3. You simply have to put "Nxt" everywhere
before the class name, i.e. NxtMotor, NxtGear, NxtTouchSensor, etc.

MOVING FORWARDS AND BACKWARDS, TURNING

In your first robot program, the robot should move for certain times, which are hard coded in the
program. The robot library is object-oriented and depicts reality by a model. So, when in reality
you pick up the LEGO brick when constructing the robot, in the software you create an instance of
the class LegoRobot() with robot = LegoRobot(). Next you take two motors and put them
together to a gear, which you can express as gear = Gear() in the software. Then you connect
the gear motors to the motor ports A and B, which you formulate as addPart() in the software.

With the command gear.forward() you turn on both engines
simultaneously with the same rotational speed and the robot ;‘:{.‘.
moves straight ahead. This state of movement will remain C
the same until you undertake something else. However,

the call returns immediately and your program continues

onwards with the next instruction (this is called a non-blocking

method). Therefore, your program has to ensure that the robot

does something else after a certain amount of time. To do this,

you can tell the program to wait using Tools.delay() and then

change or stop the movement with another command.

Once you send a movement command to the robot, the current state is ended and replaced by
the new state. At the end of the program you should always call the method exit(). Once called,
all motors are stopped and in the real mode the Bluetooth connection is also interrupted, which is
necessary for the next program to start successfully. (If the program does not end correctly you
might have to turn the brick off and on again.)

from simrobot import *
#from nxtrobot import *
#from ev3robot import *

robot = LegoRobot ()
gear = Gear ()
robot.addPart (gear)

gear.forward ()
Tools.delay (2000)
gear.left ()
Tools.delay (545)

Page 169

gear.forward() ;
Tools.delay (2000)
robot.exit ()

B MEMO

A Gear has two motors. Instead of controlling the motors individually, you can use commands
that affect both engines simultaneously.

The class libraries for both the simulation and the real mode are designed so that their
programs are almost identical. You can first develop your program in the simulation mode and
then with a few adaptations you can execute it with the real robot.

You can use the EV3 autonomously or externally controlled. In both cases the BrickGate
program must be started on the EV3, which receives and appropriately interprets the
commands sent from Python. Since no errors are displayed while running in autonomous mode,
you should always first test the program in external control mode (green button) and only then
download it to the brick using the EV3 button and execute it there.

MOVING WITH BLOCKING METHODS

Instead of moving the robot forward with the command forward() and then telling the program
to wait 2000 ms with delay(2000), you can use the blocking method forward(2000) which also
moves the robot forward, but only returns after 2000 ms. There are also blocking variants for
left() and right().

You can simplify the previous program slightly with blocking methods.

from simrobot import *
#from nxtrobot import *
#from ev3robot import *

robot = LegoRobot ()
gear = Gear ()
robot.addPart (gear)
gear.forward(2000)
gear.left (545)
gear.forward(2000)
robot.exit ()

MEMO

You must distinguish between blocking and non-blocking methods. Non-blocking commands
cause the robot to change state and return immediately. If you call a blocking method, the
program freezes a certen time interval, i.e. the next statement is only executed when the time
interval has expired.

At first glance, it might seem easier to always use blocking methods. But with them you get a
major disadvantage. While your program is blocked you cannot execute any other actions, so
for example, you could not read any sensor values! If the program hangs during execution, in
external control mode you can cancel it by closing the connection information window. In
autonomous mode in the case of an emergency, you can simultaneously press the two buttons
DOWN+ENTER .

Page 170

B EXERCISES

1. Write a program that makes your robot trace a square, using blocking methods.

2. Write a program using non-blocking methods so
that the robot moves along half-circle curves.

3. Create a course with some objects and write a
corresponding program so that the robot moves from
the start to the finish line.

For simulation mode, you can use the background
image bg.gif located in the subdirectory sprites, by
displaying it with RobotContext.useBackground().

Using RobotContext.setStartPosition() you can set the
robot to a specific location at the start of the program.
(window coordinates are from 0 to 500, O is at the top

left corner).

RobotContext.setStartPosition (200, 455)
RobotContext.useBackground ("sprites/bg.gif")

You can also create your own image (the image size should be 501x501).

ADDITIONAL MATERIAL

l INFRARED REMOTE CONTROL

A versatile infrared sensor comes with the EV3 robot that can be used in many ways. It is already
included in the LEGO Home set (including the remote control box), but it must be purchased
separately if you have the Education set. You can use the IRSensor in one of the three following

ways:
Class Metrics

IRSeekSensor distance and direction to the IR source of the remote control
IRRemoteSensor pressed buttons of the remote control

IRDistanceSensor distance to a reflective target

The use of the remote control is fun and motivating for your
with the robot. As opposed to a
predetermined remote control program, you can set the
actions that which are triggered when pressing the remote
control through simple Python programming.

first "tentative steps"

Page 171

You decide to use the following actions in your program:

Remote control button

Action

Left-Up

moves forward on a left bend

Right-Up

moves forward on a right bend

Left-Down+Right-Up

moves straight forward

Left-Down

stops

Right-Down

ends program

from ev3robot import *

robot = LegoRobot ()

gear = Gear ()

robot.addPart (gear)

irs = IRRemoteSensor (SensorPort.S1)
robot.addPart (irs)

isRunning = True

while not robot.isEscapeHit () and isRunning:
command = irs.getCommand ()
if command ==
gear.leftArc(0.2)
if command ==
gear.rightArc(0.2)
if command ==
gear.forward ()
if command ==
gear.stop ()
if command == 4:
isRunning =
robot.exit ()

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

The methods isEscapeHit(), isEnterHit(), isDownHit(), isUpHit(), isLeftHit(), isRightHit() return
True, if you click the corresponding buttons on the EV3 in autonomous mode.

However, in external control mode, they pertain to the keyboard keys ESCAPE, ENTER,
CURSOR-DOWN, CURSOR-UP, CURSOR-LEFT, CURSOR-RIGHT. For this,
information window must be active (click in it with the mouse to activate it).

the connection

Page 172

5.2 INTELLIGENT ROBOTS

M INTRODUCTION

Robots that can find their way in a changing environment
have many potential applications, for example as flying
objects, in underwater exploration, and in the examination of
sewer systems. Here you will learn step by step how you can
build a moving robot that is able to orient itself in a changing
environment

PROGRAMMING CONCEPTS: Externally controlled, autonomous, self-learning robot,
teach mode, execution mode, event loop

B THE ROBOT KNOWS THE WAY

In the simplest case, a robot should be able to find a
path in a very special canal that consists of elements of
the same length arranged orthogonally.

Information about the constant length of the canal
elements and whether they consist of left or right
curves is hardcoded ("wired") in the program.

from sinrobot inmport *
#from nxtrobot inport *
#from ev3robot inport *

Robot Cont ext . useObstacl e("sprites/bg.gif", 250, 250)
Robot Cont ext.set StartPosition(310, 470)

moveTi me = 3200
turnTi me 545

robot = LegoRobot ()
gear = Gear ()

robot . addPart (gear)
gear . forward(moveTi ne)
gear.left(turnTi me)
gear . forward(moveTi ne)
gear.right(turnTine)
gear . forward(moveTi ne)
gear.right(turnTime)
gear. forward(moveTi ne)
gear.left(turnTi ne)
gear. forward(moveTi ne)
robot.exit()

Page 173

H MEMO

You have to figure out moveTime and turnTime through a series of experiments and then
adjust accordingly. Naturally, they correlate to the speed of the robot. In reality, you would
probably rather specify the route to be traversed and the rotation angles instead of the times.

ROBOT CONTROLLED BY A HUMAN

The robot knows the constant lengths of the canal elements, but its turning movements are
controlled by a human. However, the robot is not capable of learning and it cannot remember the
path, so it remains "stupid". To control the robot in both the simulation and external control
mode, you use the left and right cursor keys of the keyboard, and in autonomous mode you use
the corresponding LEFT and RIGHT buttons. With the methods isLeftHit() and isRightHit() you can
ask whether the keys or the buttons were pressed and again released. Use the escape key or
ESCAPE button to exit the program.

from sinrobot inmport *
#from nxtrobot inport *
#from ev3robot inport *

Robot Cont ext . useObstacl e("sprites/bg.gif", 250, 250)
Robot Cont ext . set StartPosition(310, 470)

moveTi me = 3200
turnTi me 545

robot = LegoRobot ()
gear = Gear ()

robot . addPart (gear)
gear . forward(moveTi ne)

whi |l e not robot.isEscapeHit():
if robot.isLeftHit():
gear.left(turnTi me)
gear . forward(nmoveTi me)
if robot.isRightH t():
gear.right(turnTi nme)
gear . forward(moveTi me)
robot.exit()

MEMO

In this case, it makes less sense to use the autonomous mode since you actually want to
remote control the robot. You can also use the infrared remote control for this with the EV3
instead of using the keyboard (see Additional Material at the end of this chapter).

THE ROBOT LEARNS IN TEACH MODE

Computer-aided systems, whose behavior is not hardcoded and who can therefore later adapt
their behavior to an environment, are called adaptive systems. These are therefore capable of
learning, in a way. Industrial robots are “trained” by specialists in a "teach mode", for instance
which arm movements are to be carried out. In most cases, the operator uses an input system
similar to a remote control. The robot is successively moved to the desired positions and the
respective state is stored. In "execution mode" the robot runs through the stored states
independently (and with a higher speed).

Page 174

As before, your canal robot knows the constant length of the canal elements, but its turning
movements are controlled by a human. However, the robot is now able to learn, so it can
memorize the path and independently run through it any number of times.

It is often useful to imagine that in every moment, a robot is in a particular state. The states
are typically labeled with meaningful words and stored as a string. You assume the following
states: the robot is stopped, moving forward, turning left, or right, and you call them: STOPPED,
FORWARD, LEFT, RIGHT. [more...]

Instead of constantly querying the keys or buttons, here you use a more elegant event
programming model with registered callback functions, which are, independently of the currently
running program, always called automatically when an event occurs.

The main program, in an endless loop, is engaged in performing the corresponding actions in
each state. The state change takes place in the callback onButtonHit().

from sinrobot inport *
#from nxtrobot inport *
#from ev3robot inport *

Robot Cont ext . useObstacl e("sprites/bg.gif", 250, 250)
Robot Cont ext . set Start Positi on(310, 470)
Robot Cont ext . showSt at usBar (30)

def onButtonHit (buttonlD):

gl obal state

if buttonl D == BrickButton.|D_LEFT:
state = "LEFT"

elif buttonl D == BrickButton.|D_RI GHT:
state = "RI GHT"

elif buttonl D == BrickButton.|D_ENTER:
state = "RUN'

moveTi me = 3200

turnTime = 545

menory = []

robot = LegoRobot (buttonHit = onButtonHit)
gear = Gear ()

robot . addPart (gear)

state = "FORWARD"

whil e not robot.isEscapeHit():
if state == "FORWARD":
robot.drawStri ng("Moving forward", 0, 3)
gear . forward(moveTi me)
state = " STOPPED"

Page 175

robot.drawString("Teach me!", 0, 3)
elif state == "LEFT":
menmory. append(0)
robot.drawString("Saved: LEFT-TURN', 0, 3)
gear.left(turnTi ne)
state = "FORWARD"
elif state == "RI GHT":
memory. append(1)
robot.drawStri ng("Saved: RIGHT-TURN', 0, 3)
gear.right(turnTi nme)
state = "FORWARD"
elif state == "RUN":
robot.drawString("Executing menory", 0, 1)
robot.drawString(str(menory), 0, 2)
robot.reset()
robot.drawString("Mving forward", 0, 3)
gear . forward(moveTi ne)
for k in menory:
if k ==
robot.drawString("Turning left", 0, 3)
gear.left(turnTi ne)
el se:
robot.drawString("Turning right", 0, 3)
gear.right(turnTi me)
robot.drawString("Mving forward", 0, 3)
gear.forward(moveTi ne)
gear.stop()
robot.drawString("All done", 0, 3)
state = " STOPPED"
robot . exit()

Highlight program code (ctri+C to copy, Ctrl+V to paste)

MEMO

Processing the states occurs in a while loop in the main part of the program, instead of in
callback functions. In computer science, such a loop is commonly called an event loop. Only
the corresponding state is selected in the callback (state switch). With this programming
technique, you can obtain a clear chronological synchronization between the longer lasting
actions and the call of the event-driven callback, which can occur at any given time. The
"memory" consists of a list where you store the numbers 0 or 1, depending on whether the path
branches off to the left or the right.

THE SELF-LEARNING ROBOT

In certain applications it is not possible for the robot to be taught by an operator. The robot
could, for example, be located somewhere outside of the immediate communication area (e.g. on
Mars).

In order to find the path, the robot now has to capture the environment using built-in sensors and
“act” accordingly. People know the environment mainly from seeing with their eyes. For robots,
image capture with a camera is easy, but the analysis of these images can get extremely
complicated [more...].

In order to orient itself in the canal, your robot uses only a touch sensor that will trigger an event
when pressed. The canal should always consist of canal elements of equal lengths. When the
robot receives a touch event after passing through a canal member, it knows that it is at a
turning point in the path. It then goes back a bit and tries to progress with a left turn.

If within a short amount of time it bumps into a wall again, it knows that it took the wrong path.
It then goes back again and this time moves to the right. The robot remembers whether it had to

turn to the right or to the left in order to go the right way, and it can later run through the canal
Page 176

any number of times on its own without bumping into a wall.

Let the robot run through the canal in teach mode. Then, you press the enter key or the ENTER
button in order to transfer it from teach mode into execution mode.

from sinrobot inport *
#from nxtrobot inport *
#from ev3robot inport *

inport time

Robot Cont ext . useObstacl e("sprites/bg.gif", 250, 250)
Robot Cont ext. set Start Positi on(310, 470)
Robot Cont ext . showSt at usBar (30)

def onPressed(port):
gl obal startTine
gl obal backTi me

robot.drawString("Press event!", 0, 1)

dt = tine.clock() - startTime # time since last hit in s
gear . backwar d(backTi me)

if dt > 2

memory. append(0)

gear.left(turnTime) # turning left
el se:

menory. pop()

memory. append(1)

gear.right(2 * turnTime) # turning right
robot.drawString("Mem " + str(menory), 0, 1)
gear . forward()
startTinme = tinme.clock()

def run():
for k in menmory:
robot.drawString("Moving forward", 0, 1)
gear . forward(moveTi me)
if k ==
robot.drawString(" Turning left", 0, 1)
gear.left(turnTime)
elif k ==
robot.drawString("Turning right", 0, 1)
gear.right(turnTi me)
gear . forward(mveTi ne)
robot.drawString("All done", 0, 1)
i sExecuting = Fal se

moveTi me = 3200
turnTime = 545
backTime = 700
memory = []

robot = LegoRobot ()
gear = Gear ()

robot . addPart (gear)

ts = TouchSensor (SensorPort.S3, pressed = onPressed)
robot . addPart (ts)

startTime = tinme.clock()

gear . forward()

robot.drawStri ng("Mving forward", 0, 1)

whi |l e not robot.isEscapeHit():
if robot.isEnterHit():
robot.reset ()
run()
robot.exit()

Page 177

H MEMO

The touch sensor is connected to the Port S3 (in the simulation mode, this corresponds to an
assembly position in the middle front). The sensor signals the touch events via the callback
onPressed(), which is registered using the named parameter press. The touch sensor is a robot
component that is added to the robot as usual with addPart(). To find out whether the robot has
moved into either a canal element or a dead end, determine the time since the last touch event
using the built-in Python clock. If it is more than two seconds, the robot moved forward into a
canal element, otherwise it was a dead end. Since the robot always turns to the left first and
writes a 0 in its brain, in the case of a dead end it has to substitute the incorrect 0 with 1.

M THE ENVIRONMENT GETS MORE COMPLEX

You have probably noticed that the robot is perfectly able to figure out by itself how far forward it
has to go until the next turn occurs, since it can measure the time that it takes until it bumps into
the end of the canal element. This way, the robot is able to move appropriately in a canal with
differing lengths of canal elements as well. However, now it must not only keep the left-right
information in its head, but also the moving time. You best pack both related pieces of
information together in a list node = [moveTime, k], where moveTime is the moving time (in
ms), k = 0 is a left turn, and kK = 1 is a right turn.

You will get moveTime after passing through the canal element, but you still have to correct it by
the time by which the robot has driven too far. Then you store it in a global variable, since you
will have to use it again in case the robot moved into a dead end.

from sinrobot inmport *
#from nxtrobot inport *
#from ev3robot inport *

import tine

Robot Cont ext . useObstacl e("sprites/bg2.gif", 250, 250)
Robot Cont ext.set StartPosition(410, 460)
Robot Cont ext . showSt at usBar (30)

def pressCall back(port):
gl obal startTime
gl obal backTi me
gl obal turnTime
gl obal nmoveTi me

dt = tinme.clock() - startTinme # tine since last hit in s
gear . backwar d(backTi me)
if dt > 2:
noveTime = int(dt * 1000) - backTinme # save long-track tinme

node = [noveTi ne, 0]
menory. append(node) # save long-track tine

Page 178

gear.left(turnTine) # turning left
el se:

menmory. pop() # discard node

node = [noveTi nme, 1]

menory. append(node)

gear.right(2 * turnTime) # turning right
robot.drawString("Memory: " + str(menory), 0, 1)
gear . forward()
startTinme = time.clock()

def run():
for node in nmenory:
moveTi me = node[0]
k = node[1]
robot.drawString("Mving forward", 0, 1)
gear . forward(moveTi ne)
if k ==
robot.drawString("Turning left",0, 1)
gear.left(turnTi ne)
elif k == 1:
robot.drawString(" Turning right",0, 1)
gear.right(turnTi me)
gear.forward() # nmust stop manually
robot.drawString("All done, press DOM to stop", 0, 1)
i sExecuting = Fal se

turnTi me 545
backTime = 700

robot = LegoRobot ()
gear = Gear ()

robot . addPart (gear)

ts = TouchSensor (SensorPort.S3, pressed = pressCallback)
robot . addPart (ts)

startTime = tinme.clock()

nmoveTinme = 0

menory = []

gear. forward()

whil e not robot.isEscapeHit():
if robot.isDownHit():
gear.stop()
elif robot.isEnterHit():
robot.reset ()
run()
robot . exit()

Highlight program code (ctri+C to copy, Ctrl+V to paste)

MEMO

At first sight, the data structure of memory as a list of node lists may seem complicated.
However, data belonging together (in this case, the running time of the next track and the
subsequent left-right information) should always be stored in a shared data structure. Enjoy
that, with the same program, the robot can also find its way in a completely different canal
(bg3.gif).

Page 179

B EXERCISES

1. The robot should independently pass through a canal shown on
the right using a touch sensor, but without learning. For the
simulation mode, use the following RobotContext options:

Robot Cont ext . useObstacl e("sprites/bg2gif", 250, 250)
Robot Cont ext. set Start Positi on(400, 480)

2. Write a program for a lawn mower robot using a touch sensor that mows the grass strip by
strip. It bumps into the boundary of the lawn above and below.

For the simulation mode, use the following RobotContext options:

Robot Cont ext . useBackground("sprites/fieldbg.gif")
Robot Cont ext . useObstacl e("sprites/fieldl.gif", 250, 250)
Robot Cont ext. set Start Positi on(350, 300)

3. Unfortunately the boundary of the lawn now has a hole where the robot is able to escape.
Create a program with a learning robot that knows how long the strips are after cutting the
first strip of grass and thus no longer has to use the touch sensor.

For the simulation mode, use the following RobotContext options:

Robot Cont ext . useBackground("sprites/fieldbg.gif")
Robot Cont ext . useObst acl e("sprites/field2.gif", 250, 250)
Robot Cont ext . set Start Positi on(350, 300)

ADDITIONAL MATERIAL

B TEACH MODE WITH THE INFRARED REMOTE CONTROL
(only EV3 autonomous mode)

You've already learned in the last chapter, how to use the EV3 infrared remote control. Here you
uses it to guide the robot in teach mode through the channel. Both in teach as in execute mode,
the program runs autonomously on the EV3.

This approach is very close to reality as it is common in industrial robots, they "learn" with a
remote control and then execute the "learned" program.

In the teach mode, you use the top two buttons of the remote control to move the robot to the
left or right. If you press the lower left button, the execute mode is started. Again, it is elegant to
work with states.

from ev3robot inmport *

def onActionPerformed(port, command):
gl obal state
Page 180

if command ==

state = "LEFT"
elif command ==

state = "RI GHT"
elif command ==

state = "RUN"

moveTi me = 3200
turnTime = 545
memory = []

robot = LegoRobot ()
gear = Gear ()

gear . set Speed(50)
robot . addPart (gear)

irs = | RRempot eSensor (Sensor Port. S1, actionPerformed = onActionPerfornmed)
robot . addPart (irs)

state = "FORWARD"

robot.drawString("Learning...", 0, 3)

whi |l e not robot.isEscapeHit():

if state == "FORWARD":
gear. forward(nmoveTi me)
state = " STOPPED"

elif state == "LEFT":
memory. append(0)
gear.left(turnTi me)
gear . forward(nmoveTi me)
state = " STOPPED"

elif state == "RI GHT":
menory. append(1)
gear.right(turnTine)
gear . forward(moveTi ne)

state = " STOPPED"
elif state == "RUN":
robot.drawString("Executing...", 0, 3)

robot.reset ()
gear . forward(nmoveTi me)
for k in menory:
if k ==
gear.left(turnTime)
el se:
gear.right(turnTi me)
gear.forward(moveTi nme)
gear.stop()
robot.drawString("All done", 0, 3)
state = " STOPPED"
robot . exit()

Highlight program code (ctri+C to copy, Ctrl+V to paste)

Page 181

5.3 CONTROLLING AND REGULATING

l INTRODUCTION

When working with machines, which also include robots, we often face the problem of controlling
them in a way that a particular measured variable complies as well as possible with a
predetermined value (the target value or set point). For example, the cruise control in a car
should keep a predetermined speed even when the car drives on a slope or an incline. To do this,
a control system with a sensor needs to determine the current speed (the actual value) and
then adjust the power of the motor accordingly with an actuator, so in a way it needs to operate
the gas pedal.

Other examples of technical regulation systems:

O Maintaining the temperature of a refrigerator (thermostat control)
O Keeping an airplane on a specific course (autopilot)
O Maintaining the fill level of a liquid reservoir (e.g. toilet flushing)

Many human activities can be considered as regulatory processes. Some examples:

O Steering a car so that it stays on the road
O Working just as much as you need to barely pass your degree
O Maintaining your balance while standing on one foot

PROGRAMMING CONCEPTS: Control system, actual value, target value, measurement error

Il SELF-DRIVING CAR

Driving is a complex control process with many input signals that affect the driver not only
visually, but also tactually (forces on the body). The mental processing of these signals leads to
the driver's behavior (rotation of the steering wheel, pressing the pedals, etc.).

In the future,vehicles will be able to drive themselves without a human, even in complex traffic
situations. Several research groups around the world are working on this problem, and it is
possible that you might even participate in this interesting research at some point. You can
already try out some of your skills here in a highly simplified situation.

Page 182

Your task is to guide the robot, which is equipped with
a chassis and a light sensor that can measure the
brightness of the underlying layer, along a green road
that is bounded by a yellow and a black area. When on
the green part, the sensor signals a middle light value,
on the yellow part a large light value, and a small one
on the black part. It is the task of the control system to
create a control signal for the motors from the
measured light values, so that the robot is able to move
along the road as well as possible.

Schematically, you can represent this process in a control loop. The light sensor measures the
current light value (actual value) and delivers it to the controller, which compares it to the
desired value (target value) on the green road. The controller calculates the control quantity for
the chassis, meaning that the two motors are switched accordingly, using a control algorithm
invented by you, which takes decisions based on the difference between the target and actual
values.

target value (medium bright)

actual value (bright) .
e -

go right control
| algorthm

Control loop

As you can see, this scheme is indeed a "loop", from the vehicle sensor to the regulatory system,
and then back again to the vehicle engines.

Before you can write the program, you need to know
the light values that are provided by the sensor for the
yellow, green, and black areas. To figure this out, write
a small test program that displays the measured values
on the console or the display. In the real mode, you do
not have to move the robot. Instead, you can just place
it on the corresponding area. In the simulation mode,
you move through the areas colored accordingly (this
process is called calibration). Use the NXT Light
Sensor for the NXT and the EV3 Color Sensor for the
EV3.

from sinrobot inmport *
#from nxtrobot inport *
#from ev3robot inport *

Robot Cont ext . set St art Posi ti on(250, 490)
Robot Cont ext . useBackground("sprites/roadtest.gif")

robot = LegoRobot ()
gear = Gear ()
robot . addPart (gear)

Page 183

I's = Li ght Sensor (Sensor Port. S3)
robot. addPart (I s)
I's.activate(True)
gear . forward()

whi | e not robot.isEscapeHit():
v = | s.getVal ue()
print v
Tool s. del ay(100)

robot. exit()

Highlight program code (ctri+C to copy, Ctrl+V to paste)

You are using an obvious control algorithm in your program: If the actual value is larger than the
target value, the vehicle is in the yellow area and has to make a right turn. If the actual value is
less than the target value, the vehicle is in the black area and has to make a left turn.
Otherwise, it can move straight ahead.

from sinrobot inport *
#from nxtrobot inport *
#from ev3robot inport *

Robot Cont ext . set Start Posi ti on(50, 490)
Robot Cont ext . useBackground("sprites/road.gif")

robot = LegoRobot ()

gear = Gear()

robot . addPart (gear)

I's = Light Sensor (Sensor Port. S3)
robot . addPart (I s)

I s.activate(True)
gear . forward()

nom nal = 501

whil e not robot.isEscapeHit():

actual = |s.getValue()

if actual == nom nal:
gear.forward()

elif actual < nomnal:
gear.leftArc(0.1)

elif actual > nomnal:
gear.rightArc(0.1)

robot. exit()

Highlight program code (ctri+C to copy, Ctrl+V to paste)

MEMO

The regulation works well in the simulation mode, but not in the real mode. You probably
realize why this is: The measured values of the sensor vary, even when the sensor is located
on an uniformly colored area. But then this can be expected since the brightness, even on the
same surface, never remains exactly the same due to the differences in lighting, and also
because of measurement errors from the sensor. Try to find a solution for this problem! The
curve radius at leftArc() or rightArc() is a sensitive parameter. A smaller value leads to smaller
"outliers" away from the street, but to an unsettled oscillating behavior [more...], while a
larger value results in a calmer movement, but with less precise guidance on the street.
Confirm this through some trials with varied curve radiuses.

Page 184

B EXERCISES

1. Move along a black-green edge with a light sensor. Use the
following RobotContext for the simulation mode:

Robot Cont ext . useBackground("sprites/edge.gif")
Robot Cont ext . set Start Posi ti on(250, 490)

2. Move along a circular path with two light sensors.

Use the following RobotContext in the simulation mode:

Robot Cont ext . useBackground("sprites/roundpath.gif")
Robot Cont ext . set Start Posi tion(250, 250)
Robot Cont ext . set Start Di recti on(-90)

Change the starting position and direction so that the robot
begins on the track.

3. Ride on a roller coaster with two light sensors. Use the
background track.gif in the simulation mode.

Robot Cont ext . useBackground("sprites/track.gif")

Page 185

5.4 SENSOR TECHNOLOGY

M INTRODUCTION

A sensor is a measuring device for a physical quantity such as temperature, light intensity,
pressure, or distance. In most cases the value delivered by the sensor can be any number within
the measuring range. However, there are also sensors that only know two states, similar to a
switch, for example fill level detectors, touch sensors, etc.

The physical quantity in the sensor is usually converted into an electrical voltage and processed
further by evaluation electronics [more...]. The interior structure of sensors can be highly
complex, such as in ultrasonic sensors, gyroscope sensors, or laser distance measurers. The
characteristic curve of the sensor describes the relationship between the physical
measurement value and the value delivered by the sensor. With many sensors the characteristic
curve is fairly linear, but one has to determine the conversion factor and the zero offset. For this,
the sensor is calibrated in a series of measurements with known quantities.

The ultrasonic sensor determines the distance to an object via the running time required for a
short ultrasonic pulse to travel from the sensor to the object and back again. For distances
between about 30 cm and 2 m, the sensor yields values between 0 and 255, where 255 (in
simulation mode -1) is returned when there is no object in the measuring range.

Measurement
(value rejtidrned to program)
Mo target Mo target
155 Jetecte _ detected
200—
1007
e T o LA
Q 1 5 Distance
- = {in mtotarget)

Ultrasonic sensor Characteristics

In most applications, a sensor is integrated in a program in such a way that its value is
periodically retrieved. This is called "polling the sensor". In a repeating loop, the sensor values
are processed further in the program. The number of measurements per second (temporal
resolution) depends on the sensor type, the speed of the computer, and the data connection
between the Brick and the program. The ultrasonic sensor is only capable of about 2
measurements per second.

The state of the sensors that have only two states can also be detected through polling. However,
it is often easier to conceive of the changing of state as an event and to process it
programmatically with a callback.

PROGRAMMING CONCEPTS: Sensor, sensor calibration, polling & event, trigger level

Il USING POLLING OR EVENTS?

In many cases you can decide whether you would prefer to handle a sensor via polling or events.
This is somewhat dependent on the application. You can compare both procedures by connecting

a motor and a touch sensor to the brick. Here, a click on the touch sensor should turn the motor
Page 186

on, and another click should turn it off again.

Events are much smarter for this application because they inform you about the pressing of the
touch sensor through a function call. You simply have to pass this function as a named parameter
when creating the TouchSensor. With polling, on the other hand, it is necessary to use a flag in
order to process only the transition from a non-pressed state to a pressed state.

With polling:

from nxtrobot inport *
#from ev3robot inport *

def switchMotorState():
if motor.isMving():
nmot or . st op()
el se:
nmot or . f orwar d()

robot = LegoRobot ()

mot or = Mot or (Mot or Port . A)
robot . addPart (ot or)

ts = TouchSensor (Sensor Port. S3)
robot . addPart (ts)

isOff = True
whi |l e not robot.isEscapeHit():
if ts.isPressed() and isOff:
isOff = Fal se
swi t chMbt or St at e()
if not ts.isPressed() and not isOff:
isOff = True

Highlight program code (ctri+C to copy, Ctrl+V to paste)

With events:

#from nxtrobot inport *
from ev3robot inport *

def onPressed(port):
if motor.isMving():
nmot or . st op()
el se:
nmot or . f orwar d()

r obot LegoRobot ()

mot or = Mot or (Mot or Port. A)

robot . addPart (mot or)

ts = TouchSensor (SensorPort. S1,
pressed = onPressed)

robot . addPart (ts)

whi |l e not robot.isEscapeHit():

pass
robot . exit()

Highlight program code (ctri+C to copy, Ctrl+V to paste)

MEMO

Sensors can be handled with polling or events. You must know both of the methods and be able
to determine which one is more appropriate in a given situation. In the event model, you

define functions whose name usually begins with “on”. These are called callbacks because
Page 187

they are automatically called by the system upon the occurrence of the event ("recalled"). You
have to register callbacks using named parameters during the generation of the sensor object.

POLLING AN ULTRASONIC SENSOR

Preliminary note: If you do not have an ultrasonic sensor in your EV3 kit, you can use the EV3
infrared sensor instead.

You must always poll a sensor if you need its measured data at a constant rate. Now you will take
on a task where the robot, after you put anywhere on the floor, has to find an object (an aim or
target) and travel to it.

You use an ultrasonic sensor to detect a target, which is implemented similarly to a radar target
recognition system. To learn about the properties of a sensor and to try it out, you should not shy
away from writing a short test program that you will have no need for later on. It is advisable to
write out the sensor values and to also make them potentially audible, since you would then have
your hands and eyes free to move the robot and the sensor. You request the sensor values in a
loop, the period of which adjusts itself, depending on whether you are in autonomous or the
external control mode.

from nxtrobot inport *
from ev3robot inport *

robot = LegoRobot ()
us = Ul trasoni cSensor (SensorPort. S1)
robot . addPart (us)
i sAut onomous = robot. i sAutononous()
whi | e not robot.isEscapeHit():
di st = us.getDistance()
print "d =", dist
robot.drawString("d=" + str(dist), 0, 3)
robot. pl ayTone(10 * dist + 100, 50)
if dist == 255:
robot. pl ayTone(10 * dist + 100, 50)
i f isAutononous:
Tool s. del ay(1000)
el se:
Tool s. del ay(200)
robot . exit()

Highlight program code (ctri+C to copy, Ctrl+V to paste)

In order to find and get to a target, you rotate the robot

like a radar antenna and constantly search for the target

with the ultrasonic sensor. If you detect the target, you
% should note the direction and continue to rotate until the
% echo stops. You do this in order to determine the apparent
size of the target (the angle range in which the target is
“visible”). You then move the robot along the middle of
the angle of the range and stop at a certain distance.

In simulation mode, you can visualize the distance
measuring with setBeamAreaColor() and
setProximityCircleColor(). The displayed target
corresponds to the image file that is specified in
RobotContext.useTarget().

Page 188

However, for the registration of the target by the
simulated sensor it is not that picture that will be
used, but a web of triangle meshes. These consists of
a common central point and two vertices. The
displayed target has the meshes:

PPOP1, PP1P2, PP2P3, PP3P4, PP4PO.

In the program, you indicate the vertices of the
meshes as a parameter of the method useTarget().
The coordinates refer to a pixel coordinate system
with its origin at the center, the positive x-axis
pointing to the right, and the positive y-axis pointing
downwards.

The mesh coordinates for a hexagon with a diameter
of 100 are:

[50, 0], [25, 43], [-25, 43], [-50, 0], [-25, -43], [25,
-43].

¥

from sinrobot inport *
#from nxtrobot inport *
#from ev3robot inport *

mesh = [[50, 0], [25, 43], [-25, 43], [-50, 0],
[-25, -43], [25, -43]]
Robot Cont ext . useTarget("sprites/redtarget.gif", mesh,

def searchTarget():
gl obal left, right
found = Fal se
step = 0
whi | e not robot.isEscapeHit():
gear.right(50)
step = step + 1

di st = us.getDistance()
print "d =", dist
if dist !'=-1: # sinulation

#if dist < 80: # real
if not found:
found = True

left = step
print "Left at", left
robot . pl ayTone(880, 500)
el se:
if found:
right = step
print "Right at ", right
robot . pl ayTone(440, 5000)
br eak
left =0
right =0

robot = LegoRobot ()

gear = Gear ()

robot . addPart (gear)

us = Ul trasoni cSensor (Sensor Port. Sl)

robot . addPart (us)

us. set BeamAr eaCol or (makeCol or ("green"))

us. setProxi mtyCircl eCol or (makeCol or ("l ightgray"))
gear . set Speed(5)

Page 189

400,

400)

print "Searching..."
sear chTarget ()

gear.left((right - left) * 25) # sinmul ation
#gear.left((right - left) * 100) # real

print "Moving forward..."
gear. forward()

whi |l e not robot.isEscapeHit() and gear.isMoving():
di st = us.getDistance()
print "d =", dist
robot. playTone(10 * dist + 100, 100)
if dist < 40:
gear.stop()
print "All done"
robot.exit()

B MEMO

You can usually determine the sensor value through the repeated queries (polling) of a getter
method (getValue(), getDistance(), etc.). When switching between simulation mode and real
mode you have to adjust certain values, especially time intervals. You must also note that the
sensor returns -1 in the simulation mode and 255 in the real mode if it cannot find the target.
In simulation mode, the viewing direction of the ultrasonic sensor is determined by the sensor

port used:
Sensor port Viewing direction
S1 forwards
S2 left
S3 backwards

M EVENTS WITH A TRIGGER LEVEL

A e
Sensors that provide continuous values can be

implemented with the event model, too. Here, we s il
define a certain measurement value as a = cmmmmmemmgleeeeeiymeeee o e
threshold, usually called a trigger level. An event

is triggered when this level is crossed, either from iow-high

smaller to larger values or vice versa. poernent » e

high-aow

The sensors have a default value for the trigger level, but you
can change this with setTriggerLevel().Your program ensures
that the moving robot stays within a circular area (for
example, so that it does not fall off a table). In this case, you
use the light sensor, and it must react only to light and dark.
If the surface is dark, the callback onDark is triggered. With
the NXT in real mode, it is important that you turn on the LED
illumination of the sensor with activate(True).

from si ntobot inport *
#from nxtrobot inmport *
#from ev3robot inmport *

Page 190

Robot Cont ext . set Start Positi on(250, 200)
Robot Cont ext. set StartDi recti on(-90)
Robot Cont ext . useBackground("sprites/circle.gif")

def onDark(port, level):
gear . backwar d(1500)
gear .| eft (545)
gear . forward()

robot = LegoRobot ()

gear = GCear ()

robot . addPart (gear)

I's = LightSensor (SensorPort. S3,

dark = onDar k)

robot . addPart (I s)

| s.setTriggerlLevel (100) # adapt val ue

gear . forward()

whi |l e not robot.isEscapeHit():
pass

robot.exit()

B MEMO

The crossing of a particular measured value can be interpreted as an event. This is called
triggering. Default values of the trigger levels:

Sensor Trigger level(standard)
Sound sensor 50

Light sensor 500

Ultrasonic ensor 10

The advantages and disadvantages of the event model, compared to polling:

Advantages of the event model Disadvantages of the event model

A simplified and clearer programming style, |The program currently running is interrupted at
since the code in the callback is separate unpredictable times (asynchronous). This can
from the rest of the program. interfere with the rest of the program flow.

Callbacks can have unwanted side effects, e.g. if

The event is always detected, even when the .
Y they change global variables or the state of the

PC is slow.

robot.
The main program can continue normally Callbacks run in a separate process, so there
and does not need take care of the sensor. may be conflicts between processes (threads).
Triggering is a central concept of Only a certain value can be detected (the trigger
measurement technology. level).

Callbacks should, in principle, only contain short-
lasting code, otherwise the other events may
get lost.

The event model fits thinking in states (the
event puts the system in a new state).

B EXERCISES

1. At a first clap the robot should start moving, and with any further clapping it should change
its direction. Solve this problem in both real mode and simulation mode. In real mode, use
the sound sensor. In simulation mode, you need a microphone on your PC and you have to
correctly set up the microphone level in the control panel.

Page 191

2. Connect a motor and a touch sensor to the Brick and write a program, where the motor
turns on when you press the sensor button and turns off again when you release it.

3. Make a robot with an ultrasonic sensor and a touch sensor that
finds 3 taller objects (candles, cans...), runs into them, and
knocks them over. In simulation mode, you can interpret the -
knocking over as a touch event and you can use squaretarget.gif -
to represent the objects. The image is 60x60 pixels in size. You
can use the following template for the RobotContext. Try to
understand the information under mesh. ,.g.. .

mesh = [[-30, -30], Point[-30, 30], Point[30, -30], Point[30, 30]]
Robot Cont ext . useTarget ("sprites/squaretarget.gif", mesh, 350, 250)
Robot Cont ext . useObst acl e("sprites/squaretarget.gif", 350, 250)
Robot Cont ext . useTarget ("sprites/squaretarget.gif", mesh, 100, 150)
Robot Cont ext . useObst acl e("sprites/squaretarget.gif", 100, 150)
Robot Cont ext . useTarget ("sprites/squaretarget.gif" ,mesh, 200, 450)
Robot Cont ext . useCObst acl e("sprites/squaretarget.gif", 200, 450)
Robot Cont ext . set Start Positi on(40, 450)

4*. A robot with an ultrasonic sensor is placed at a random position in
a rectangular field to begin. Its task is to find the exact middle of
the field as quickly as possible. This task can be done in either
simulation mode or real mode.

You can use the image file bar0.gif and barl.gif as a target.

Il ADDITIONAL MATERIAL: ARDUINO-SENSORS

In contrast to the EV3 the familiar Arduino-
microcontroller board has a standard I/O system
with digital input and output ports. Analog inputs
are also available to connect simple sensors that
deliver a voltage proportional to the measured
quantity. This allows you to use a variety of
inexpensive sensors/actuators and to connect
easily home-built electronic circuits. If you connect
the EV3 to an Arduino through a suitable
communication link, you can access these devices
from EV3 programs. The connection between the
two systems is simple, if you use an I2C link, since
both systems support the 12C protocol.

Here the EV3 acts as I12C master and the Ardunio as I2C slave. The additional software support
is already included in the distribution of Tigerlython. The EV3 can be operated in direct or
autonomous mode. For more information consult the website http://www.aplu.ch/ev3.

Page 192

Documentation robotics

Module import: from simrobot import *
from ev3robot import *
from nxtrobot import *

LegoRobot:

Function Action

LegoRobot() generates a robot (without motors) and establishes a connection to the robot
addPart(part) adds a component to the robot

clearDisplay() clears the display [Simulation mode: status bar]

drawString(text, X, y)

writes text at position x, y [Simulation mode: in the status bar, (X, y) is irrelevant]

isEnterHit()

indicates True if ESCAPE button is pressed [NXT and simulation mode: use
keyboard key escape]

indicates True if LEFT button is pressed [NXT and simulation mode: use keyboard

isLeftHit
0 key cursor left]
isRightHit() indicates True if RIGHT button is pressed [NXT and simulation mode: use keyboard
isRi i
g key cursor right]
isUpHit() indicates True if UP button is pressed [NXT and simulation mode: use keyboard
isUpHi

key cursor up]

playTone(frequency, duration)

plays a tone with a given? frequency (in Hz) and duration (ms) [Simulation mode:
not available]

setVolume(volume)

sets the volume for all sound output (0..100)

setLED(pattern) sets the EV3 LEDS: 0: off, 1: green, 2: red, 3: bright red, 4: flashing green, 5:
flashing red, 6: flashing bright red, 7: double flashing green, 8: double flashing red,
9: double flashing bright red

exit() stops the robot and ends the connection

isConnected() indicates True if the connection is broken, or if the simulation window is closed

reset() in simulation mode: puts the robot to the starting position/direction

Gear:

Gear() generates a chassis/gear with 2 synchronized motors at port A, B

backward() moves/drives backwards (non-blocking method)

backward(ms) moves backwards during a given time (in ms) (blocking method)

isMoving() indicates True if the chassis is moving

forward() moves forwards (non-blocking method)

forward(ms) moves forwards during a given time (in ms) (blocking method)

left() turns left (non-blocking method)

left(ms) turns left during a given time (in ms) (blocking method)

leftArc(radius)

moves on a left curve with a given radius (non-blocking method)

leftArc(radius, ms)

moves during a given time (in ms) on a left curve (blocking method)

right()

turns right (non-blocking method)

right(ms)

turns right during a given time (in ms) (blocking method)

rightArc(radius)

moves on a right curve with a given radius (non-blocking method)

rightArc(radius, ms)

moves during a given time (in ms) on a right curve (blocking method)

setSpeed(speed)

sets the speed

Page 193

stop() stops the chassis/gears
getLeftMotorCount() returns current value of left motor counter [not available in sim]
getRightMotorCount() returns current value of left motor counter [not available in sim]

resetLeftMotorCount()

sets left motor counter to 0 [not available in sim]

resetRightMotorCount()

sets right motor counter to 0 [not available in sim]

TurtleRobot:

TurtleRobot() generates a robot with a chassis with motors at port A, B
backward() moves backwards (non-blocking method)

backward(step) moves the given number of steps backward (blocking method)
forward() moves forwards (non-blocking method)

forward(step) moves the given number of steps forward (blocking method)
left() turns left (non-blocking method)

left(angle) turns around the given angle to the left (blocking method)
right() turns right (non-blocking method)

right(angle)

turns around the given angle to the right (blocking method)

setTurtleSpeed(speed) sets the speed

Motor:

Motor(MotorPort.port) generates a motor at the motor port A, B, C, or D
backward() rotates the motor backwards

forward() rotates the motor forwards

setSpeed(speed) sets the speed

isMoving() indicates True if the motor is moving

stop() stops the motor

getMotorCount() returns current value of motor counter [not in sim]
resetMotorCount() sets motor counter to 0 [not in sim]
rotateTo(count) sets counter to 0, moves motor until count und stops (blocking) [not available in sim]

rotateTo(count, blocking)

same as rotateTo(count), but not blocking for blocking = False [not available in sim]

continueTo(count)

same as rotateTo(count), but counter is not set to 0 [not available in sim]

continueTo(count, blocking)

same as rotateTo(count, blocking), but counter is not set to 0 [not available in sim]

continueRelativeTo(count)

same as continueTo(count), but count is increment [not available in sim]

continueRelativeTo(count,
blocking)

same as continueTo(count, blocking), but count is increment [not available in sim]

LightSensor:

LichtSensor(SensorPort.port)

generates a light sensor at the port S1, S2, S3, or S4

LightSensor(SensorPort.port,
dark = onDark)

registers the callback function onDark

LightSensor(SensorPort.port,
bright = onBright)

registers the callback function onBright

activate(True)

activates the LED of the light sensor (only when NXT is required)

activate(False)

disconnects the LED of the light sensor

getValue()

indicates the value of the light sensor (a number somewhere between 0 and 1000)

setTriggerLevel(level)

sets a trigger level

bright(port, level), dark(port, level)

callback functions that may be registered by named parameters

Page 194

ColorSensor:

ColorSensor(SensorPort.port)

generates a color sensor at the port S1, S2, S3, or S4

indicates the measured color as a color type with the methods getRed(),

getColor() . .

getGreen(), and getBlue(), which provides the RGB value from 0 to 255

indicates a color identification number: 1: black, 2: blue, 3:green, 4: yellow, 5: red,
getColorID() .

6: white

provides the color as a string (BLACK, BLUE, GREEN, YELLOW, RED, WHITE and
getColorStr()

UNDEFINED)

getLightValue()

indicates the brightness (from the HSG model) of the measured color

TouchSensor:

TouchSensor(SensorPort.port)

generates a touch sensor at the port S1, S2, S3, or S4

TouchSensor(SensorPort.port,
pressed = onPressed)

registers the callback function onPressed

TouchSensor(SensorPort.port,
release = onRelease)

registers the callback function onRelease

isPressed()

indicates True if the touch sensor is pressed

pressed(port), released(port)

callback functions that may be registered by named parameters

SoundSensor:

SoundSensor(SensorPort.port)

generates a sound sensor at the port S1, S2, S3, or S4

SoundSensor(SensorPort.port,
loud = onLoud)

registers the callback function loudCallback

SoundSensor(SensorPort.port,
quiet = onQuiet)

registers the callback function quietCallback

getValue()

indicates the level of the volume (from 0 to 100)

setTriggerLevel(level)

sets a trigger level

loud(port, level), quiet(port, level)

callback functions that may be registered by named parameters

UltrasonicSensor:

UltrasonicSensor(SensorPort.port)

generates a ultrasonic sensor at the port S1, S2, S3, or S4

getDistance()

returns the measured distance (in cm approx.; 255, if measurement fails)

setTriggerLevel(level)

setzt den Triggerlevel (default: 10)

far(port, level), near(port, level)

callback functions that may be registered by named parameters

setProximityCircleColor(color)

Simulation: sets the color of the proximity circle

setMeshTriangleColor(color)

Simulation: sets the color of the mesh triangles

eraseBeamArea()

Simulation: erases the beam area

InfraredSensor (nur EV3):

IRRemoteSensor(SensorPort.port)

creates an infrared sensor for remote control at SensorPort S1, S2, S3 or S4

getCommand(l)

returns the current command ID: 0:Nothing,1: TopLeft,2:BottomLeft,3:TopRight,
4:bottomRight 5:TopLeft&TopRight, 6:TopLeft&BottomRight,7:BottomLeft&TopRight,
8:bottomLeft&BottomRight,
9:Centre,10:BottomLeft&TopLeft,11:TopRight&BottomRight The channel is selected
by the red slider switch: 1: top, 4: bottom. It corresponds to the port number, where
the sensor is attached.

actionPerformed(port, command)

callback function that may be registered by a named parameter

IRSeekSensor(SensorPort.port)

creates tn infrared search sensor at SensorPort S1, S2, S3 or S4 . The active IR
source of the remote control must be switched on (centre button)

Page 195

v = getValue()

v.bearing returns the direction (-12..12) and v.distance the distance (in cm) to the
source. The channel is selected by the red slider switch: 1: top, 4: bottom. It
corresponds to the port number, where the sensor is attached

IRDistanceSensor(SensorPort.port)

creates a infrared distance sensorer at SensorPort S1, S2, S3 or S4 (reflecting
target)

getDistance()

returns the distance to the target (in cm)

TemperatureSensor (only EV3)):

TemperatureSensor(SensorPort.port)

creates a temperature sensor at SensorPort S1, S2, S3, S4 (Lego NXT
Temperature Sensor 9749)

getTemperature()

returns the temperature in range -55..128 degrees Celsius

ArduinoLink (only EV3):

ArduinoLink(SensorPort.port)

creates an 12C master for the connection to the Arduino at SensorPort S1, S2, S3,
S4

getReply(request, reply)

sends the request (integer 0..255) to the Arduino and returns the answer in the
given list reply (max.16 integers 0..255)

getReplyint(request)

sends the request (integer 0..255) to the Arduino und returns the answer as integer
0..255

getReplyString(request)

sends the request (integer 0..255) to the Arduino und returns the answer as string
(max. 15 ASClI-characters)

RobotContext (nur Simulation)

setStartDirection(angle)

sets the starting direction (0 to east, positive clockwise)

setStartPosition(x, y)

sets the starting position (in pixels, zero at upper-left vertex)

showStatusBar(height)

adds a status bar with given height at the bottom of the window

setStatusText(text)

inserts text into the status bar (old text is erased)

useBackground(filename)

inserts the given image into the background to be used by a light or color sensor

useObstacle(filename, X, y)

inserts an obstacle at given position to be used by a the touch sensor

useTarget(filename, mesh, x, y)

inserts a target at given position to be used by the ultrasonic sensor

Page 196

chapter six

INTERNET

Learning Objectives

You know the data type string and can work with important string methods.

You know what a HTML-formatted document is and you also know some HTML tags.

You can open a HTML document as a file or download it from a web server and display it in a
browser window.

You know the client-server model and can request a file from the web server with the HTTP
GET command.

You know a procedure of how to search a HTML document for specific information.

You can describe the data type dictionary and know in which cases it is especially beneficial.
You can programmatically perform a search on Google.

Page 197

6.1 HTML, STRINGS

M INTRODUCTION

HTML (Hyper Text Markup Language) is a document description language for websites. A website
shown in the browser, however complicated it might appear, is generated from an ordinary text
file that contains markups for the layout in addition to the visible text. These consist of a tag
pair with both a start and end tag. The start tag begins with the angle bracket < and closes with
the angle bracket >; the end tag starts with </ and is also closed with >.

The basic structure of a HTML text file consists of the tags <htm/> and <body> as well as the
corresponding end tags.

<htm >
<body>
Ti gerJython Web-Site
</ body>
</htm >

The letter case of the tags, as well as the line breaks and indentation, do not matter for the
layout of the document.

PROGRAMMING CONCEPTS: HTML, hyperlink, string, constant data type

B WHAT ARE STRINGS?

In many programs, including in the context of the web, you need a data type in order to store
text. This consists in a stringing together of letters (a character string) that you can type with
the keyboard. In addition, you will need some control characters to do things such as indicating a
line break. In Python you use the data type str for character strings.

The text of a string is placed between double or single quotes. You can interpret strings as lists
whose elements are individual characters. Most familiar operations for lists are also applicable to
strings, but with one important difference: You can get a single character from the string with an
index (square parentheses), but you cannot change the character with an allocation because the
string is a fixed data type. If you want to change a string, you have to create a new one.

Your program defines HTML-formatted text as a string htm/ and writes it out to the console.

htm = "<htm ><body>Ti gerJyt hon Web Site</body></htm >"
print html

In order to run through a string character by character, you cann use a for loop with an index:

htm = "<htm ><body>Ti gerJyt hon Web Site</body></htm >"

for i in range(len(htm)):
print htm[i]

It is more elegant, however, to use a for loop with the keyword in:

Page 198

htm = "<htm ><body>Ti gerJyt hon Web Site</body></htm >"
for ¢ in htnl:
print c

A string can also contain special control characters. These escape character are initiated with a
backslash, for example the character for a new line \n (newline, also called a linefeed <If>).
One example is creating the format shown in the very beginning of the chapter with:

htm = "<htm >\n <body>\n TigerJython Web Site\n </ body>\ n</ ht m >"
print html

You can also read texts from a text file. To do this, create the file welcome.htm/ with any text
editor in the directory where your program is located in, with the following content:

<ht m >
<body>
<h1>Ti gerJyt hon Web-Site</hl>
Good nor ni ng
</ body>
</ htm >

You draw a heading with the tag <h1>. Your program reads the text file in the htm/ string and
then writes it out again to the console.

htm = open("wel come. htnml ").read()
print html

MEMO

A string is a constant object consisting of individual characters. You can read individual
characters with an index. However, if you try to replace a character with an allocation you will
get an error message. There is no character type in Python, since single characters are also
considered as strings.

Text files are opened with open(). With this, you deliver the path to the file. The path can be
relative to the directory where tigerjython2.jar is located, but also absolute when you prepend
a fraction line (in Windows, possibly also a drive letter), for example:

welcome.txt in the subdirectory test of the home

open("test/welcome.html"
pen(/) directory of tigerjython2.jar

welcome.txt in the directory /myweb/test of the

open("/myweb/test/welcome.html|"
pen("/my / /) drive where tigerjython2.jar is located

(only for Windows)
open("d:/myweb/test/welcome.html") welcome.txt in the directory \myweb\test of the
drive d:

You can connect two strings with the addition operator + (concatenate). However, it is
important that both operands are really strings. For example, "pi = " + 3.1459 leads to an
error message. In this case, you have to write "pi = " + str(3.14159) so that the number is first
converted into a string.

Page 199

The most important operations with strings:

s = "Python"
s[i]

s[start:end]

defines a string (or with the single quotes s = 'Python')
accesses string character with index i

new sub-string of characters start to end, but without end

s[start:] new sub-string with characters from start

s[:end] new sub-string with characters from end, but without end
s.index(x) index of the first occurrence of x (-1: not found)

s.find(x) index of the first occurrence of x (-1: not found)

s.find(x, start)

s.find(x, start, end)

index of the first occurrence of x from start

index of the first occurrence of x from start to end

s.count(x) returns the number of occurrences of x

xXins returns True if x is contained in s

X notins returns True if x is not contained in s

sl + s2 concatenation of s1 and s2 as a new string

sl +=5s2 replaces s1 by the concatenation of s1 and s2
s*4 repeats new string with characters s four times
len(s) returns the number of characters

M WEB BROWSER

The most important task of web browsers is to interpret the HTML tags and display the page on
a screen window according to the layout information. You can display the file welcome.htm/ on
your PC after installing a web browser (Firefox, Explorer, Chrome, Safari, Opera, etc.).

Tigerlython provides you with a simple - B n
browser window as an instance of the class
HtmlPane. The method insertText() causes
the input string to appear as a web page in

the window.

L Jython HTML Pane

TigerJython Web Site

Good morning !

fromch.aplu.util Ht M Pane

i mport
htm = open("wel come. html ") .read()
pane = Htnl Pane()

pane.insertText (htm)

Highlight program code (ctri+C to copy, Ctrl+V to paste)

Page 200

B MEMO

A web browser interprets the HTML markups and displays the document according to its layout
information.

HtmlIPane knows only the basic HTML tags. Displaying complex HTML pages is not supported.
You can also use a Html/Pane to display your program output in a separate window with a
pleasing layout, rather than write it out to the console.

M HYPERLINKS

The explosive propagation of the web is essentially attributed to the fact that a website can
contain elements that lead, by a simple mouse click, to other websites that could be located on
any other web server, even far away on the world. Elements of this type are called hyperlinks.
Hyperlinks can build an interconnected information structure, similar to a spider web.

Create the file welcomey.htm/ again with a text editor that contains the link tag <a>. Now we
also use the paragraph tag <p> which defines a new section with a line break.

<htm >
<body>
<h1>Ti gerJyt hon Web-Site</hl>
<p>Good norni ng! </ p>
TigerJython Home
</ body></htm >

You have to enable hyperlinks in your program by defining the function linkCallback() (or any
other name) and registering it with the named parameter linkListener. Clicking on the link leads
to the invocation of the callback whereby the URL contained in the link tag is delivered.

fromch.aplu.util inmport Htm Pane

def linkCall back(url):
pane.insertUrl (url)

htm = open("wel comex. htm ").read()
pane = Html Pane(linkListener = linkCall back)
pane.insertText (htm)

Highlight program code (ctri+C to copy, Ctrl+V to paste)

H MEMO

Hyperlinks are cross references in a document with which you can jump to other documents.
Linked documents are a characteristic feature of the World Wide Web.

Unfortunately, the display of web pages with Htm/Pane is incomplete. However, you can use
the default browser with Htm/Pane.browse() [more...].

fromch.aplu.util inport Htnl Pane
Ht m Pane. browse("www. ti gerjython.conl)

Page 201

B EXERCISES

1. With the tag
</i mg>
you can embed an image that is located in the subdirectory gifs of the directory with the
HTML file. The values of width and height should match the image size in pixels.
Create a file showlogo.htm/ and a program that shows the following in a Htm/Pane:

Iyt HTHL Paria - 0

|| TigerJython is cool

Thm is our bogn

You can download the image tigerlogo.png here.

2. Define the strings last name, first name, street, and location as well as the house number
and zip code either with your personal information or with something made up. Link these
strings together into a single string address with the + sign, so that print(address) writes out
the formatted information:

first name, last name
house number, street
zip code, location

3. The same information from exercise 2 (above) should appear in a Htm/Pane, but with the zip
code and location in bold.

Write a corresponding HTML-formatted string and deliver it to the Htm/Pane with
insertText().

Note: the tag
 creates a line break and the tag makes the text bold.

Page 202

6.2 CLIENT SERVER MODEL, HTTP

M INTRODUCTION

You should already know that a web page displayed in your web browser is described by an
ordinary HTML text file, which is typically located on an Internet server (also called a host). In
order to locate the file, the browser uses the URL in the form http://servername/filepath.

http stands for Hypertext Transfer Protocol and refers to the process of how the file is
transferred from the server to your PC browser, called a client. The server name, also called its
IP address (IP: Internet Protocol), is either in the "dotted" form, e.g. 192.41.150.141, or it is an
alias, e.g. www.tigerjython.com. The file path of the HTML file begins with a slash, but it is
relative to a specific document path on the server.

In the communication between the client and the server we employ the request-response
method, which is one of the most important principles of computer communication. It assumes
that a server program is started on the server that waits for a client request on a specific TCP

port (for the web port 80).
: /"\,_\‘ Listening
on port 80
Internet 3
Server (Hosl)

www tigerjython.ch
192.41.150.44

<

Clignt
112.142.19.74

The exchange of data consists of the following four phases:

Phase 1: Socket Accepl
Connect 182.41.150.44 112.149.19.74

The client creates a socket object
and connects to the server. The - Internet
server accepts the connection and %

remembers the client address. Clignt
112.149.19.74 »erver (Hosl)
www tigerjython.ch
192.41.150.44
Phase 2: Reques!
GET\pywelcome html
The client sends a request to the '
server and passes it the path to the
.) P P - Internet
desired file. Q)
" Server (Host)
Client www. tigerjython .ch
112.148.19.74 192 41 150,44
Phase 3: Response
Header/Content
The server processes the request
and sends the file to the client in Internet [
response. Q>
Cliant
112.149.19.74 Server (Host)

www tigerjython.ch
192.41.150.44
Page 203

Phase 4: Lge

Header/Content
The client receives the response I% /\A\
and processes it (displayed in the \I 2 Internet

browser window).

Cllent Server (Host)
112.149.19.74 www tigerjython.ch
192.41.150.44

PROGRAMMING CONCEPTS: Host, client, IP address, request-response model, HTTP, parsing

B REQUESTING A WEBSITE WITH HTTP

Your client program performs the phases 1, 2, and 4 and fetches the file welcomex.htm! located
in the subdirectory py of the server document path.

The method socket() of the socket class provides a socket object to the variable s. Two
constants must be passed that define the correct socket type.

import socket

import sys

host = "www. tigerjython.ch"

port = 80

remote_ip = socket.gethostbyname(host)
Phase 1

s = socket.socket(socket.AF_INET, socket. SOCK_STREAM)
s.connect((remote_ip , port))

print "Socket Connected to " + host + "onip" + remote_ip
Phase 2
request = "GET /py/welcome.html HTTP/1.1\r\nHost: " + host + "\r\n\r\n"

s.sendall(request)

Phase 4

reply = s.recv(4096)
print ~ "\nReply:\n"
print reply

H MEMO

The request for a website from a web server uses the HTTP protocol. This is an agreement
between the client and the server and it determines the procedure of the data transfer in full
detail. The GET command is documented in the HTTP as follows :

1. Zeile GET /pyfwelcomeex.html HTTP/L.1irin The command to fetch the file in the directory path of
the server, version of the protocol <carriage
return><line feed> (line break)

2. zeile Host: hostnamelrin Name of the host <carriage return><line feed>

3. Zeile \rin Blank line as a marker for the end of the command

Page 204

M HTTP HEADER AND CONNECT

The response consists of a header with status information and the content with the requested file.
In order to represent the website, you cut off the header and deliver the contents to a Htm/Pane.

import socket

import sys

from ch.aplu.util import HtmlPane
host = "www. tigerjython.ch"

port = 80

remote_ip = socket.gethostbyname(host)

s = socket.socket(socket.AF_INET, socket. SOCK_STREAM)

s.connect((remote_ip , port))

request = "GET /py/welcome.html HTTP/1.1\r\nHost: " + host + "\r\n\r\n"
s.sendall(request)

reply = s.recv(4096)

index = reply.find("<html|")
html = repl y[index:]

pane = HtmlPane()
pane.insertText(html)

Highlight program code (ctri+C to copy, Ctrl+V to paste)

B MEMO

The function recv(4096) returns maximum 4096 characters from a data buffer, in

which the received characters are copied. To cut away the header use the string method
find(str), which searches the string for the given substring str and returns the index of the
first occurrence. (If the substring is not found, -1 is returned.) Afterwards you can neatly filter
out the substring with a slice operation, starting at the index and going to the end.

M READING THE WEATHER FORECASTS

You will probably wonder why you should apply such a complicated procedure to display a web
page, when you can do the same thing using a single line insertUrl() from HtmlPane. What you
have just learned makes perfect sense, however, if you do not want to display the content of the
website in a browser window, for example, but if you are rather interested in only certain
information embedded there. As a sensible application your program fetches the current weather
forecast from the website of Australian's Bureau of Meteorology and writes it out as text.

You can make your life as a programmer even easier, if you use the library url/lib2 instead of the
socket class to fetch the file from the web server [more...].

To find out where the desired information is located, you can create an analysis program that
simultaneously represents the page as a text in the console window and as a web page in your
default browser.

import urllib2

from ch.aplu.util import HtmlPane

url = "http ://www.bom.gov.au/nsw/forecasts/sydney.shtml|"
HtmlPane.browse(url)

html = url | ib2.urlopen(url).read()

print html

Page 205

B MEMO

The use of software libraries such as urllib2 simplifies the code, but obscures the basic
mechanisms.

Il PARSING OF TEXTS

You now have the interesting and challenging task of fetching the relevant information from a long
string of text, which is the parsing of a text.

At first you have the subtask of removing all HTML tags from the string with the function
remove_html_tags()

The procedure is typical and the applied algorithm can be described as follows:

You go through the text character by character. You thereby imagine that you remember two
states: you are either inside or outside of a HTML tag. You should only copy the character to the
end of an output string if you are outside of a HTML tag. The change of state takes place while
reading the tag angle brackets < or >.

To extract the information of interest you analyze the text after removing the HTML tags by
copying it into a text editor and looking for a token that is unique for the beginning of the
information. With the string method find(), you can get the index start if this token. You then look
for a token that characterizes the end of the information and search its index end beginning at the
start index. For this website the start token is "Sydney area" and the end token is "Summary".
The text in between is extracted by a slice operation [start:end].

import urllib2

def remove_html_tags(s):
inTag = False
out =

for ¢ in s:
if c== '< :
inTag = True
elif c== "'
i nTag = False
elif not inTag:
out = out +c
return out

url = "http: //www.bom.gov.au/nsw/forecasts/sydney.shtml|"
html = urllib2.urlopen(url).read()
html = remo ve_html_tags(html)

start = html.find("Sydney area")
end = html. find("Summary" , start)
html = html [start:end].strip()

print html
from soundsystem import *

initTTS()

sel ectVoice("english-man")
sound = ge nerateVoice(html)
openSoundPlayer(sound)

play()

Highlight program code (ctri+C to copy, Ctrl+V to paste)

Page 206

MEMO

The parsing of texts is usually done character by character. In many cases, however, methods
of the string class may help as well [more...].

VOICE/SPEECH SYNTHESIS OF WEATHER FORECASTS

With your knowledge from the previous chapter Sound, you can have the text of the weather
forecast read by a synthetic voice with just a few extra lines of code. You can simply add the
following lines to the program:

from soundsystem import *

initTTS()

sel ectVoice("german-man")
sound = ge nerateVoice(html)
openSoundPlayer(sound)

play()

EXERCISES

1. Various interesting information is offered under the URL http://www.timeanddate.com that
can be extracted and reused with a self-written program. One example is that you can get
the weather information of any city in the world. Look, for example, at the website
http://www.timeanddate.com/weather/canada/halifax with a web browser.

The program should write out the current temperature in an arbitrarily chosen city.

The procedure: First write out the entire text that you get from the above URL and search
for the temperature value. Your program must extract this value using appropriate string
methods. Let the user select the country aud town with inputString() or an EntryDialog and
write the temperature value to the console or to a StringEntry of the EntryDialog.

2*. The method urllib2.urlopen(url) throws an exception in case the URL is not found. Putting the
call in a try-except block makes the program branch at an error in the except block.

try :
urllib2 . urlopen(url)
except :
print "Error"

If the city is not found, add a sensible error output to the program from exercise 1.

Page 207

6.3 BING SEARCH, DICTIONARY

H INTRODUCTION

It is possible to use known search engines such as Google, Bing or Yahoo to programmatically
perform a web search. For this you have to provide additional parameters to the specific URL of
the provider that contain the search string, and perform an HTTP GET request with this. This data
is evaluated by a web application, i.e. a program that runs on the web server, and the results
are returned to you as a HTTP response [more...].

Moreover some Web search providers make available search services that can be used via a
programming interface (API, Application Programming Interface). Although these services are
mostly with costs, there is sometimes a limited, but free version for training and development
purposes. For example, using the Bing Search API, you can create your own search machine with
an individualized layout.

Search APIs mostly return results in a special format, namely the JavaScript Object Notation
(JSON). With the Python module json it is easy to convert the format into a Python dictionary. But
to extract data of your interest, you have first to learn what is a Python dictionary.

PROGRAMMING CONCEPTS: Web application, Python dictionary

M UNDERSTANDING A DICTIONARY

As the name suggests, a dictionary is a data structure similar to a dictionary book. You can
imagine word pairs with words on the left being in a language you already know and ones on the
right in a foreign language (we disregard any ambiguities). The example below shows some
names of colors from English to German:

Deutsch Englisch
blau blue

rot red

grin green
gelb yellow

(In a real-world dictionary words are arranged alphabetically so that finding a specific word is
simplified.)

The word on the left is the key and the word on the right is the value. A dictionary thus consists
of key-value pairs [more..]. Both keys and values can have any data type [more...].

Your program translates the above colors from German to English. If the input is not in the
dictionary, the error is caught and an error message appears.

Input

I.é.l Color (deutsch)?
ot

QK Cancel

Page 208

dict = {"blau":"blue", "rot":"red", "grin":"green", "gelb":"yellow"}
print "All entries:"
for key in dict:

print key + " -> " + dictlkey]

while True:

farbe = input ("color (deutsch)?")
if farbe in dict:
print farbe + " -> " + dict[farbe]
else:
print farbe + " -> " + " (not translatable)"

Highlight program code (Ctri+C to copy, Ctrl+V to paste)

MEMO

A dictionary consists of key-value pairs. In contrast to a list, these pairs are not ordered. In the
definition, you use a pair of curly brackets, separate the respective pairs with commas, and
key and value with a colon.

Important operations:

dict[key] provides the value for the key

dict[key] = value adds a new key-value pair

len(dict) provides the number of key-value pairs

del dict(key) deletes the pair (key and value) with the key

key in dict returns True when the key exists

dist.clear() deletes all entries, what remains is an empty dictionary

A dictionary can be iterated through with a for loop

for key in dict:

DICTIONARIES ARE EFFICIENT DATA STRUCTURES

You are right if you object to the thought that paired information can be saved in a list. It would
be obvious to save each pair as a short list, all of which would be elements of a parent list. Why
then is there a dictionary as a separate data structure?

The big advantage of dictionaries is that you can easily and quickly access its values when
specifying the key with the bracket notation. So in other words, dictionaries are able to be
browsed efficiently. Of course, the efficient retrieval of information only really matters when
there are large amounts of data involved, for example when dealing with around a hundred or
even thousands of key-value pairs.

As an interesting and useful application, your program should find the postal code of any city in
Switzerland. For this, use the text file chplz.txt, which you can download by clicking on the
hyperlink. Copy it into the directory where your program is located. The file is structured line by
line as follows (and has no blank line, not even at the end):

Page 209

Aarau:5000
Aarburg:4663
Aarwangen:4912

Aathal Seegraeben:8607

Your first task is to convert this text file into a dictionary. In order to do this, first load it in as a
string with read() and then split it into individual lines using split("\n") [more...].

To create the dictionary, separate the key and value in each row once again at the colon and add
the new pairs to the (originally empty) dictionary using the bracket notation. Just like before
with the colors example, you can now access the postal codes using the bracket notation.

file = open("chplz.txt")
plzStr = file.read()
file.close ()

pairs = plzStr.split("\n")
print str(len(pairs)) + " pairs loaded"
plz = {}

for pair in pairs:
element = pair.split(":")
plz[element[0]] = element[1l]

while True:
town = input ("City?")
if town in plz:
print "The postal code of " + town + " is " + str(plz[town])
else:
print "The city " + town + "was not found."

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

MEMO

It is very easy and quick to access a value for a certain key in a dictionary [more...].

USING BING FOR YOUR OWN PURPOSES

Your program uses the Bing search engine to search for websites with a search string entered by
the user and to write out the information provided. In order to access the Bing search machine,
you need a personal authentication key. To acquire it, proceed as follows:

Visit the site https://www.microsoft.com/cognitive-services/en-us/apis and choose "Get started
for free."” You will be prompted to use your existing Microsoft account or create a new one. In the
page titled Microsoft Cognitive Services you choose "APIs" and "Bing Web Search" and click on
"Request new trials". Scroll down and select "Search Bing-Free". After confirmation with
"Subscribe"” you get two key values. Save one of them with copy&paste for further use a a local
text file. You can retrieve the keys any time under your Microsoft account.

In your program you send a GET request supplemented with the search string. The response from
Bing is a string in which information is structured by curly brackets. The formatting is consistent
with the JavaScript Object Notation (JSON). Using the method json.load() it can be converted
into a nested Python dictionary, that can then be parsed more efficiently. During a test phase,
you can analyze the nesting by writing out the appropriate information to the console. You can
comment out or remove these lines later. What does Bing find for the search string "Hillary
Clinton"?

Page 210

import urllib2
import json

def bing search (query):
key = "XXXXXXXXXXXXXXXXXXXxxx' # use your personal key
url = 'https://api.cognitive.microsoft.com/bing/v5.0/search?g="' + query
urlrequest = urllib2.Request (url)
urlrequest.add header ('Ocp-Apim-Subscription-Key', key)
responseStr = urllib2.urlopen (urlrequest)
response = json.load(responseStr)
return response

query = input ("Enter a search string(AND-connect with +):")
results = bing search(query)
#fprint "results:\n" + str(results)
webPages = results|['webPages']
print "Number of hits:", webPages["totalEstimatedMatches"]
print "Found URLs:"
values = webPages.get ('value')
for item in values:
print item["displayUrl"]

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

H MEMO

As you can see, a dictionary can in turn contain other dictionaries as values. Thus, hierarchical
information structures can be created, similar to XML.

The authentication key is used in a additional header entry of your GET request. You can modify
the Bing search by additional query parameters. For example if you append "&count=20" to the
URL, you get a total of 20 replies. For more information consult the API reference.

B EXERCISES

1. Improve the postal code program step by step so that a city will be found even if you:
a. input spaces before or after the name of the city
b. do not consistently adhere to the use of upper and lower case letters
c. write umlauts as Ae, Oeg, ae, oe, and ue
d. omit accents (note: there is a conflict with 8)
Some places are ambiguous, but have additional information. How will you deal with this?

2. Use Bing Search to write out the title and the content of the search results with the highest
ranking in a Html/Pane. For example, something similar to the following should appear for
the search string “tigerjython”:

(2 APLU Bibliotheks-Dokumentation ~ = HEMN |

TigerJython is free development environment
for the Python programming language. If you
want to learn programming, this is the tool for.

www.tigerjython.com

Page 211

chapter seven

GAMES & OOP

Learning Objectives

You know how to define and use a class consisting of a constructor, instance variables, and
methods in Python.

You know what a class hierarchy is and how to define and use derived classes.

You can explain what a polymorphism is in simple words.

You know the basic design of the game library JGameGrid and you can program a simple
computer game using it.

"Today, digital media are not imaginable without computer games. Due to the games' high importance
for adolescents, many educators are motivated to investigate the didactic potential of the medium.
Game-Based Learning (GBL) is the subject of many scientific studies and is part of todays curriculum.
In computer science courses, games can be approached from the perspective of the producers. As
highly dynamic programs, they encourage beginners to think in procedures and with their moving
graphics objects (sprites), they are exceptionally well suited for the introduction into object-oriented
programming."”

Jarka Arnold, Aegidius Pliss
in "Games as an Introduction to Object-Oriented Programming"

Page 212

7. 1 OBJECTS EVERYWHERE

l INTRODUCTION

In daily life, you are surrounded by a multitude of different objects. Since software often builds
of models of reality, it is straightforward to also introduce objects in computer science. This is
called object-oriented programming (OOP). For more than decades, the concept of OOP has
proved to be groundbreaking in computer science to the extent that it is applied in virtually all
developed software systems today [more...]. In the following chapter you will learn the main
concepts of OOP so that you can participate in the hype.

You have already gotten to know the turtle as an object. A turtle has properties (it has a
certain color, is located at a certain position, and has a specific viewing direction) and skills (it
can move forward, rotate, etc.). In OOP, objects with similar properties and skills are grouped in
classes. The turtle objects belong to the Turtle class, we also say that they are instances of the
Turtle class. In order to create an object, you must first define a class or use a predefined class
such as with the turtles.

When programming, the properties are also called attributes or instance variables, and the
skills are also called operations or methods. These are variables and functions, except for the
fact that they belong to a certain class and are thus "encapsulated" in this class. In order to use
them outside of the class, you have to prefix a class instance and the dot operator.

PROGRAMMING CONCEPTS: Class, object (instance), property, ability,
attribute/instance variable, method, inheritance, base/super class,
constructor

B AN ADAPTIVE GAME WINDOW

It is not possible to create a computer game with reasonable effort without OOP, since the game
performers and other objects of the game board are obviously objects. The game board is a
rectangular screen window and it is modeled by the class GameGrid from the game library
JGameGrid. TigerJython provides you with an instance when calling makeGameGrid() and
displays the window with show(). Here you can customize the look of the game window with
parameter values. With makeGanmeGri d(10, 10, 60, Color.red, "sprites/town.jpg", False)

a square game window is displayed, the size of which is
10 horizontal by 10 vertical cells of the size 60 pixels.
You will see red grid lines and a background image
town.jpg. (The last parameter causes the navigation bar
to be disabled, which is not needed in this case.)

b
%%

s
I
3
E
L
E
2
A

Al

E

fromgamegrid inmport *

makeGameGri d(10, 10, 60, Color.red, "sprites/town.jpg", False)
show()

Page 213

B MEMO

The methods of the class GameGrid are available to you as functions using makeGameGrid().
However, you can also generate an instance yourself and call the methods using the dot
operator.

fromgamegrid inport *

gg = GaneGrid(10, 10, 60, Color.red, "sprites/town.jpg", False)
gg. show()

The game window is constructed of square cells, and as specified above, each cell is 60 pixels
in size with 10 horizontal and 10 vertical cells. This means that when the right and bottom
gridline is displayed, the window has a size of 601 x 601 pixels. This corresponds to the
(minimum) size of the background image.

The last Boolean parameter determines whether a navigation bar appears.

Il DEFINING A CLASS WITH DERIVATION

When defining a class, you can decide whether your new class is fully independent, or derived
from a previously existing class. All the properties and skills of the parent class (also called
base class or superclass) are available to you in the derived class. Simply said, the derived
class (or subclass) inherits properties and skills.

In the game library JGameGrid, game characters are called actors and are instances of the
predefined class actor. If you need your own performer, define a class that is derived from an
actor.

Your class definition should begin with the keyword class. This is followed by any selected class
name and a pair of parentheses. In the parentheses, you write down the name of the class from
which you derived your class. Since you want to derive your character from Actor, you provide
that class name.

The class definition contains the definition of the methods that are defined like regular
functions, with the difference that they mandatorily must have the parameter self as the first
parameter. With this parameter you can access other methods and instance variables of your
class and its base class.

The list of method definitions usually begins with the definition of a special method named
__init__ (with two leading and trailing underlines). This is called a constructor and it is
automatically called when an object of the class is created. In our case, you call the constructor
of the base class Actor in the constructor of Alien, to which you deliver the path to the sprite
image.

Next, you define the method act() which plays a central role in game animation, as it is called
automatically by the game manager in each simulation cycle. This is a particularly smart trick so
that you do not have to worry about animation in a looping structure.

You can define what the game character should do in each simulation cycle with act(). As a
demonstration, you only move it to the next cell with move() in this example. Since move() is a
method of the base class Actor, you have to call it with prefixed self.

Page 214

Once you have defined your class Alien, you create an
alien object by calling the class name and assigning a
variable to it. Typical of OOP, you can create as many
aliens as you would like. As in everyday life, they each
have their own individuality, therefore they "know"
how they should move from their act() method.

To add the created aliens to the game board you use
addActor(), where you have to specify the cell
coordinates with Location() (the cell with the
coordinates (0,0) is at the top left, x increases to the PG F &
right, y increases going down). To finally start the B vl RN [
simulation cycle, call doRun().

from ganmegrid inport *

R class Alien ----------------
class Alien(Actor):
def __init__(self):
Actor.__init__(self, "sprites/alien.png")
def act(self):
sel f. move()
mekeGameGi d(10, 10, 60, Color.red, "sprites/town.jpg", False)
spin = Alien() # object creation, many instances can be created
urix = Alien()
addAct or (spin, Location(2, 0), 90)
addAct or (urix, Location(5, 0), 90)

show()
doRun()

B MEMO

A class definition begins with the keyword class and encapsulates the methods and instance
variables of the class. The constructor with the name __init__ is called automatically when an
object is created. To create an object (an instance), write the corresponding class name and
pass it the parameter values that __init__ asks for. All game characters are derived from the
class Actor. You define what the game character should do in each simulation cycle in the
method act(). With addActor() you can add a game character to the game board. You must
indicate its starting position (Location) and its starting direction (in degrees) (0 goes east,
positive is clockwise).

M ATTACK OF THE ALIENS

You notice the strengths and benefits of the object-
oriented programming paradigm when you see how
easily you are able to populate the game board with
many aliens falling from the sky by using just a few
lines of code.

Using a repeating loop in the main part, design an alien
figure so that every 0.2 seconds a new alien is placed at
a random location somewhere in the top grid line.

fromgamegrid inmport * ‘
Page 215

i mport random

A class Alien ----------------
class Alien(Actor):
def __init__(self):
Actor.__init__(self, "sprites/alien.png")

def act(self):
sel f. move()

mekeGameGi d(10, 10, 60, Color.red, "sprites/town.jpg", False)

show()
doRun()

whi |l e not isDisposed():
alien = Alien()
addAct or (al i en, Location(randomrandint(0, 9), 0), 90)
del ay(200)

H MEMO

An endless loop in the main part of the program should test using isDisposed() whether the
game window was closed, so that the program is able to end correctly.

Note: Sometimes it is necessary to close TigerJython and reopen it, so that sprites and
background images with the same name but changed content are reloaded.

M SPACE INVADERS LIGHT

In your first self-written computer game, the player should try to fight off an alien invasion by
removing the invading aliens with a mouse click. Each alien landed in the city subtracts one
point.

To get mouse support in the program, you have to add a mouse callback with the name
pressCallback and register it as the named parameter mousePressed. In the callback, you first
fetch the cell position of the mouse click from the event parameter e. If there is an Actor located
in that cell you will get it with getOneActorAt(). If the cell is empty, None will be returned.
removeActor() removes the actor from the game board.

from gamegrid i nport *
i nport random

R class Alien ----------------
class Alien(Actor):
def __init__(self):
Actor.__init__(self, "sprites/alien.png")

def act(self):
sel f. mve()

def presscCall back(e):
l ocation = toLocationlnGid(e.getX(), e.getY())
actor = get OneActor At (Il ocation)

if actor != None:
removeAct or (act or)
refresh()

mekeGameGi d(10, 10, 60, Color.red, "sprites/town.jpg", False,
mousePressed = pressCall back)
set Si mul ati onPeri od(800)

show()
doRun()

Page 216

whil e not isDisposed():
alien = Alien()
addAct or (al i en, Location(randomrandint(0, 9), 0), 90)
del ay(1000)

H MEMO

Since act() is called once in every simulation cycle, the period is responsible for the execution
speed of the game. The default value of the simulation period is 200 ms. It can be set to a
different value using setSimulationPeriod().

The game board is rebuilt in each simulation cycle (rendered), and therefore a change in the
game situation is only visible at this moment. If you want to immediately display the new
situation at a mouse click, you can manually execute the rendering with refresh().

B EXERCISES

1. Create your own background image with an image editor. Add it to the directory sprites, in
the same directory where your program is located (or in <userhome>/gamegrid/sprites) or
specify the fully qualified file path.

2. Add a 30 pixel high status bar with addStatusBar(30) and write the number of aliens that
were able to land in the city (despite the defense system) into it using setStatusText().

3. The landed aliens should not simply disappear, rather they should be transformed into a
different form at the landing spot ("sprites/alien_1.png" or your own image) and remain
there.

(Hint: with removeSelf() you can remove an old alien and with addActor() you can generate
a new actor in the same place.)

4*, The landed aliens report back to the attacking alien
where they have landed so that new aliens can jump
into the “open” columns. Once all the columns are
occupied, the game ends and displays "Game Over"
("sprites/gameover.gif").

(Hint: the game manager can be stopped using
doPause())

B s\

- . - = B
R % ol o
-

»~ B e N W S-S

5*. Expand the game with some of your own ideas

Page 217

7.2 CLASSES AND OBIJECTS

H INTRODUCTION

You have already been acquainted with important concepts of object-oriented programming and
noticed that it would be very difficult to write a computer game in Python without OOP. It is
therefore important that you get to know the concepts of OOP and their implementation in
Python a little more systematically.

PROGRAMMING CONCEPTS: [nhperitance, class hierarchy, overriding, is-a relationship,
multiple inheritance

M INSTANCE VARIABLES

Animals are well suited to be modeled as objects. First, define a class Animal that displays the
corresponding animal image in the background of the game board. When creating an object (or
an instance) of this class, you pass the file path of the animal image to the constructor so that
the method showMe() is able to display the image. It does this using the drawing methods of the
class GGBackground.

The constructor that receives the file path has to save it as an initial value in a variable so that
all methods can access it. One such variable is an attribute or an instance variable of the class.
In Python, instance variables are given the prefix self and are generated at the first allocation of
a value. As you already know, the constructor has the special name __init___ (with two leading
and trailing underlines). Both the constructor and the methods must have self as the first
parameter, which is often forgotten.

So, you first define the constructor,
def __init__ (self, imgPath):

as well as a method.

def show Me(self, x, y):

Once you have generated an animal object myAnimal
using

myAnimal = Animal(bildpfad)

you call this method with

myAnimal.showMe(X, y)

It especially makes sense to use OOP when you are using multiple objects of the same class. To
experience this close up, a new animal should pop up in your program at each mouse click.

from gamegrid import *

~mmmmmmmmmeaen class Animal ----------------

class Animal ():
def __init__(self, imgPa t h):
self.imagePath = im gPath # Instance variable
def showMe(self, x, y): # Method definition

bg.drawlmage(self.imagePath, x, y)

def pressCallback(e):

Page 218

myAnimal = Animal("sprites/animal.gif") # Obj ect creation
myAnimal.showMe(e.getX(), e.getY()) # Method call

makeGameGrid(600, 600, 1, False, mousePressed = pressCallback)
setBgColor(Color. green)

show()

doRun()

bg = getBg()

B MEMO

The properties or attributes of an object are defined as instance variables. They have
individual values for each object of the class. Accessing instance variables inside of the class is
done by prepending self. A class has also access to the variables and functions of the main
part of the program, for example all methods of the class GameGrid and with bg the
backgroundof the game window. The methods can even modify a variable of the main part, if it
is declared as global in the method. If the object does not require initialization, the definition
of the constructor can also be omitted. Instead of passing the sprite image to the constructor,
use the variable imagePath in the following program so that you can forego the constructor.

from gamegrid import *
import random

#ommmm e class Animal ----------------
class Animal ():
def showMe(self, x, y):
bg.drawlmage(image Path, x, y)

def pressCallback(e):
myAnimal = Animal()
m yAnimal.showMe(e.getX(), e.getY())

imagePath = "sprites/animal.qgif"

makeGameGrid(600, 600, 1, False, mousePressed = pressCallback)
setBgColor(Color. green)

show()

doRun()

bg = getBg()

B INHERITANCE, ADDING METHODS

Class hierarchies are created through a class derivation or an inheritance, and with it you can
add additional properties and behaviors to an existing class.

Objects of the derived class are also automatically
objects of the parent class (also called base class or
super class) and can therefore use all the properties
and methods of the parent class as if they were defined
in the derived class itself. For example, a pet is an
animal that also has its own name, which it is should
write out using tell(). Hence, you define a class Pet that
is derived from Animal. Since you want to specify the
name of the animals for each pet individually during its
creation, you provide it to the constructor of Pet as an
initialization value, which then stores it in an instance
variable.

from gamegrid import *
from java.awt import Point

Page 219

#oommmm s class Animal ----------------
class Animal ():
def __init__ (self, imgPat h):
self.imagePath = im gPath

def showMe(self, x, y):

bg.drawlmage(self. imagePath, x, y)
#oommmmem e class Pet ----------------
class Pet (Animal): # Derived from Animal
def __init__(self, imgPath, name):
self.imagePath = im gPath
self.name = name
def tell(self, x, y): # Additional method

bg.drawText(self.name, Point(x, y))

makeGameGrid(600, 600, 1, F alse)
setBgColor(Color.green)

show()

doRun()

bg = getBg()

bg.setPaintColor(Color.black)

for i in range(5):
myPet = Pet("sprites/pe t.gif" , "Trixi")
myPet.showMe(50 + 100 * i, 100)

myPet.tell(72 + 100 * i, 145)

MEMO

As you can see, you can call myPet.showMe() even though showMe() is not defined in the class
Pet, because a pet is also an animal. The relationship of Pet and Animal is therefore called an
is-a relationship.

Since imagePath is set by the Animal constructor, you may replace the line self.imagePath =
imgPath in the Pet constructor by Animal.__init__(self, imagePath) to initialize the Animal base
class.

For derived classes, the base classes are placed in parentheses after the class name. In Python
you can also derive a class from several base classes (multiple inheritance).

CLASS HIERARCHIES, OVERRIDING METHODS

Methods of the base class can also be changed in a
derived class by being redefined (overridden) with the
same name and parameter list. If you want to model
dogs that also bark with tell(), derive the class Dog
from Pet and override the method tel/l(). You can get a
cat to meow by deriving a class Cat from Pet and
overriding tell() there as well.

Page 220

Animal The four classes can be visualized in a class
imageFath diagram. The is-a relationship becomes particularly
—mit_{ clear with it [more...].
showhle()
T,-H The classes are displayed as a rectangular box in the
class diagram, into which you first write the class
Pet name. The instance variables follow separated by a
e horizontal dividing line and then, led by the
—mit_{ constructor, follow the methods of the class. The
[tell) . .
h class hierarchy is easy to follow thanks to a clever
il arrangement and connecting arrows.
I]
Dog Cat
mit) _mit_)
tell) tell)
from gamegrid import *
from java.awt import Point

class Animal
Animal ():

def __init__(self, imgPa

self.imagePath = im

class

def showMe(self, x, y):
bg.drawlmage(self.

class Pet
Pet (Animal):

def __init__(self, imgPat

self.imagePath = im

self.name = name

def tell(self, x, y):

bg.drawText(self.na

class Dog
Dog(Pet):

def __init__(self, imgPa

self.imagePath = im

self.name = name

def tell(self, x, y):

bg.setPaintColor(Color.blue)

bg.drawText(self.na

class

class Cat
Cat (Pet):

def __init__(self, imgPat

self.imagePath = im

self.name = name

def tell(self, x, y):

class

bg.setPaintColor(Color.gray)

bg.drawText(self.na

makeGameGrid(600, 600, 1, F
setBgColor(Color.green)
show()

doRun()

bg = getBg()

alex = Dog("sprites/dog.gif"
alex.showMe(100, 100)
alex. tell(200, 130)

rex = Dog("sprites/dog.qgif"
rex.showMe(100, 300)

t h):
gPath

imagePath, X, y)

h, name):
gPath

me, Point(x, y))

t h, name):
gPath

Overriding
" tells 'Waoh™

me + , Point(x, y))

h, name):
gPath

Overriding
" tells 'Meow™

me + , Point(x, y))

alse)

, "Alex")

Overriden method is called

, "Rex")

Page 221

rex.tell(200, 330) # Overriden method is cal | ed

xara = Cat("sprites/cat.gif" , "Xara")
xara.showMe(100, 500)
xara.t ell(200, 530) # Overriden method is called

Highlight program code (ctri+C to copy, Ctrl+V to paste)

MEMO

By overriding methods, you can change the behavior of the base class in the derived classes.
When calling methods of the same class or the base class, you have to prepend self. However,
self does not have to be provided in the parameter list.

Sometimes you might want to use the identical method of the base class in an override
method. To invoke it, you have to prefix the class name of the base class and provide self in
the parameter list [more...].

This rule also applies to the constructor: if the constructor of the base class is used in the
constructor of the derived class, it has to be called by prepending the class name of the base
class and passing the parameter self.

TYPE-BASED METHOD CALLS: POLYMORPHISM

Polymorphism is a bit more difficult to understand, but it is a particularly important feature of
object-oriented programming. It refers to the calling of overridden methods, where the call is
automatically adjusted to the class affiliation. With a simple example you can see what this
means. You use a list Animals with the previously defined classes in which there are two dogs
and a cat

animals = [Dog(), Dog(), Cat()]

A problem occurs when going through the list and calling tell() because there are three different
methods of tell() (one in the class Pet, Dog and Cat).

for animal in animals:
animal.tell()

The computer can resolve this ambiguity in one of three ways:

1. It can give an error message.
2. It can call tell() of the base class Pet.
3. It can find out what kind of pets you have and then call the appropriate tell().

In a polymorphic programming language such as Python, the last and best option applies.

from gamegrid import *
from soundsystem import *

#ommmm e class Animal ----------------
class Animal ():
def __init__(self, imgPat h):
self.imagePath = im gPath

def showMe(self, x, y):

bg.drawlmage(self . imagePath, x, y)
#oommmme e class Pet ----------------
class Pet (Animal):

def __init__(self, imgPa t h, name):

Page 222

self.imagePath = imgPath
self.name = name
def tell(self, x, y):

bg.drawText(self.na me, Point(x, y))
H#oemmmmm e class Dog ----------------
class Dog(Pet):
def __init__(self, imgPat h, name):
self.imagePath =i mgPath
self.name = name
def tell(self, x, y): # Overridden
Pet.tell(self, x, y)
openSoundPlayer("wav/dog.wav")
play()
#oommmeeee e class Cat ----------------
class Cat (Pet):
def __init__(self, imgPa t h, name):
self.imagePath = im gPath
self.name = name
def tell(self, x, y): # Overridden
Pet.tell(self, X, y)
openSoundPlayer("wav /cat.wav")
play()

makeGameGrid(6 00, 600, 1, False)
setBgColor(Color.green)

show()

doRun()

bg = getBg()

animals = [Dog("sprites/dog.gif" . rAlex”),
Dog("sprites/dog.gif" . "Rex"),
Cat("sprites/cat.qgif" , "Xara")]

y =100
for animal in animals:
animal.showMe(100, y)
animal.tell(200, y + 30) # Which tell()????
show()
y=y+ 200
delay(10 00)

Highlight program code (ctri+C to copy, Ctrl+V to paste)

MEMO

Polymorphism ensures that the class affiliation decides which method is called in overridden
methods. Since the affiliation to classes in Python is only determined at runtime anyway,
polymorphism is self-evident.

The dynamic data binding of Python is called duck test or duck typing, according to the
quote attributed to James Whitcomb Riley (1849 - 1916):

“"When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call
that bird a duck.”

There are some cases where an overridden method is defined in the base class, but it should
not do anything. This can be achieved either with an immediate return or with the empty
statement pass.

Page 223

B EXERCISES

1. Define a class TurtleKid derived from the class Turtle that draws a square with shape(). Try
to get the following main part to work:

tf = TurtleFrame()

john is a Turtle

john = Turtle(tf)

john knows all commands of Turtle
john.setColor("green")
john.forward(100)

john.right (90)

john.forward(100)

laura is a TurtleKid, but also a Turtle

laura knows all commands of Turtle
laura = TurtleKid(tf)

laura.setColor("red")

laura.le f t(45)

laura.forward(100)

laura knows a new command too
laura.shape()

2. Define two derived classes, TurtleBoy and TurtleGirl, from TurtleKid which override shape()
so that a TurtleBoy draws a solid triangle and a TurtleGirl draws a solid circle. The following
main part has to work:

tf = TurtleFrame() '

aGirl = TurtleGirl(tf)
aGirl.setColor("red")
aGirl.left(45)

aGirl.forward(100)
aGirl.shape()

aBoy = TurtleBoy(tf)
aBoy.setColor("green")
aBoy.right(45)
aBoy.forward(1 00)
aBoy.shape()

aKid = TurtleKid(tf)
aKid.back(100)
akKid.left(45)
aKid.shape()

3. Draw the class diagram for exercise 2.

ADDITIONAL MATERIAL

Bl STATIC VARIABLES AND STATIC METHODS

Classes can also be used to group related variables or functions, thus making the code easier to
read. For example, you can condense the main physical constants in the class Physics. Variables
defined in the same class header are called static variables and we call them by prefixing the
class name. Unlike with instance variables, it is not necessary to create an instance of the class.

import math

#ommmm e class Physics ----------------
class Physics ():
Avogadro constant [mo | -1]

N_AVOGADRO = 6.0221419947e23

Page 224

Boltzmann constant [J K-1]
K_BOLTZMANN =1.3806 50324e-23
Planck constant [J s]
H_PLANCK = 6.6260687652e-34;
Speed of light in vacu 0 [m s-1]
C_LIGHT = 2.99792458e8
Molar gas constant [K- 1 mol-1]
R_GAS = 8.31447215
Faraday constant [C mo I-1]
F_FARADAY = 9.6485341539¢e4;
Absolute zero [Celsius]
T_ABS =-273.15
Charge on the electron [C]
Q_ELECTRON =-1.60217646263e-19
Electrical permittivit y of free space [F m-1]
EPSILON_O = 8.854187817e-12
Magnetic permeability of free space [4p10-7 H m-1 (N A-2)]
MU_0 = math.p i *4.0e-7
¢ = 1/ math.sqrt(Physics.E PSILON_O * Physics.MU_0)
print ("Speed of light (calulated): %s m/s" %cC)
print ("Speed of light (table): %s m/s" %Physics.C_LIGHT)

You can also group a collection of related functions by defining them as static methods in a
meaningfully designated class. You can use these methods by directly prepending the class
name, without having to create an instance of the class [more...] .

To make a static method, you have to write the line @staticmethod before the definition.

B class OhmsLaw ----------------
class OhmsLaw():
@staticmethod
def UR, I):
return R * |
@stati cmethod
def I(U, R):
return U/R
@stat icmethod
def R(U, 1I):
return U/ |
r=10
i= 1.5
u = OhmsLaw.U(r, i)
print ("Voltage = %s V" %u)

B MEMO

Static variables (as opposed to instance variables, also called class variables) belong to the
class as a whole and in contrast to instance variables, all objects of the class have the same
value. They can be read and changed with prepended class names.

A typical use of static variables is an instance counter, which is a variable that counts the
number of generated objects of the relevant class.

Related functions can be grouped as static methods in a suggestively designated class. The
line @staticmethod (called a function decorator) must be prepended when defining the
function.

Page 225

7.3 ARCADE GAMES, FROGGER

M INTRODUCTION

Many computer games found on game consoles and the Internet consist of images moving over a
background. Sometimes even the background moves too, especially in situations where the game
characters move to the edge of the window allowing the player to have the impression of a
scenario that is substantially larger than the display window. Even though game animation
requires a lot of computational power, it is generally easy to understand: at time points in quick
succession, the so-called game loop recalculates the screen content, copies the background and
the images of the game characters into an invisible image buffer, and then displays (renders) it
as a whole in the window. With anything more than around 25 frames per second, you will see a
smooth, flowing movement, but with anything less the movement will be jerky.

In many games, characters interact through collisions, and therefore dealing with collisions is
fundamental. Well developed game libraries such as JGameGrid provide programmers with
built-in collision detection under the use of event models. One defines the potential collision
partners and the system automatically calls a callback when a collision occurs.

PROGRAMMING CONCEPTS: Game design, sprite, actor, collision, supervisor

M GAME-SCENARIO

When developing a computer game it is important that you first think of a game scenario that is
as detailed as possible, and then write out notes as functional program specifications. Often your
goals are set too high in your first attempt, and so you should try to simplify the game a bit so
that you can develop executable subversions that can then gradually be expanded. The trick is to
write the program as generally as possible so that you will not have to modify the existing code
with following extensions. Instead, you will only need to add to it. However, this rarely succeeds
right off the bat, even with professional programmers, and it is thus common that feelings of
euphoria and frustration lie close together when developing a game. This will make your pleasure
and satisfaction even greater once you can finally show off your very own personal computer
game and let people play it.

Along the way of becoming a competent game programmer, it is advisable to learn by developing
well-known games that you can implement in your own personal way using your own sprite
images. It is not very important that these games are readily available in the training phase,
because it is not about playing a lot, but rather about learning how it is developed. One
well-known game is Frogger. It has the following fun scenario:

A frog tries to move across a busy road and
get to a pond. If it hits a car, the frog loses its
life. The goal is to use the cursor keys to bring
it safely across the road.

You should implement four lanes: two of the
lanes with trucks and buses moving in
opposite directions, and the other two with
vintage cars (see the adjacent image).

N |
~ B

—_——
LR EEELTTIT

Page 226

There are two possible development paths available: you can either first implement the
movement of the frog, or the movement of the vehicles. After this, you add the collision
mechanism and the calculation of the game points, as well as the end of the game (game over).

In GameGrid the vehicles are modeled as instances of the class Car derived from Actor. The
movement of the vehicles is programmed in the method act().

Use the images car0.gif,..car19.gif as sprites, located in the distribution of TigerJython. You can,
of course, also use your own images (they should be a maximum of 70 pixels high and 200
pixels wide with a transparent background).

With arcade games it is common to use a game board with a size of 1 pixel, i.e. the grid
corresponds to the pixel grid. Choose 800 x 600 pixels as a window size and display the road
scenario using the background image /ane.gif with the size 801 x 601 pixels. Generate 20 car
objects in the function initCars() and think about where and with which viewing direction you
want to add them to the game board.

Moving the cars with the method act() is easy: you push them on with move(), and let the cars
moving from left to right jump to the far left as soon as they have driven out of the window, and
similarly let the cars moving from right to left jump to the right. Remember that the location
coordinates of actors can also be outside of the screen.

from gamegrid import *

#ommmmm e class Car ----------------
class Car (Actor):
def __init__(self, path):
Actor.__init__(self , path)

def act(self):
self.move()
if self.getX() <-100:
self.setX(1650)
if self.getX() > 1650:
self.setX(-100)

def initCars():

for i in range(20):
car = Car("sprites/c ar" + str(i) + "gift)
if i<5:
a ddActor(car, L ocation(350 * i, 100), 0)
if i>=5 and i < 10:
addActor(car, L ocation(350 * (i - 5), 220), 180)
if i>=10 and i < 15:
addActor(car, L ocation(350 * (i - 10), 350), 0)
if i>=15:
addActor(car, L ocation(350 * (i - 15), 470), 180)
makeGameGrid(800, 600, 1, None, "sprites/lane.gif" , False)
setSimulationPeriod(50)
initC ars()
show()
doRun()
B MEMO

Usually a game grid with a cell size of 1 pixel is used in arcade games (pixel game).

The game scene is rendered 20 times per second in a simulation period lasting 50 ms,
resulting in a relatively good flow of movement. Sporadic jerks are caused by a computer's low
processing power. Due to the limit of computing power, the simulation period cannot be
significantly reduced.

Page 227

B MOVING THE FROG WITH THE CURSOR KEYS

Now you can start thinking about how to incorporate the frog into the game. It should first
appear at the bottom of the screen, and should then move with the up, down, left, and right
cursor keys.

Since the frog is also an Actor, first write the class Frog which you derive from Actor. You do not
need any methods besides the constructor, since the frog is moved by keyboard events. For this,
define the callback onKeyRepeated, that you register through the call makeGameGrid() with
the parameter named keyRepeated. This callback is not only called once when you press the key,
but also periodically if you hold it down.

You test the key code in the callback and move the frog 5 steps further accordingly.

from gamegrid import *

#ommmemmmeeeeenee class Frog ----------------
class Frog (Actor):
def __init__(self):
Ac tor.__init__(self, " sprites/frog.gif")

#ommmm e class Car ----------------
class Car (Actor):
def __init__(self, path):
Actor.__init__(self , path)

def act(self):
self.move()
if self.getX() <-100:
self.setX(1650)
if self.getX() > 1650:
self.setX(-100)

def initCars():

for i in range(20):
c ar = Car("sprites/c ar" + str(i) + "gift)
if i<5:

addActor(car, L ocation(350 * i, 100), 0)
if i>=5 and i < 10:

addActor(car, L ocation(350 * (i - 5), 220), 180)
if i>=10 and i < 15:

addActor(car, L ocation(350 * (i - 10), 350), 0)
if i>=15:

addActor(car, L ocation(350 * (i - 15), 470), 180)

def onKeyRepeated(keyCode):

if keyCode == 37: # left
frog.setX(frog.getX() - 5)

elif keyCode == 38: # up
frog.setY(frog.getY() - 5)

elif keyCode == 39: #righ t

frog.setX(frog.getX() + 5)

elif keyCode == 40: # down

frog.setY(frog.getY() + 5)

makeGameGrid(800, 600, 1, N one, ‘'sprites/lane.gif" , False,
keyRepeated = onKeyRepeated)

setSimulationPeriod(50);

frog = Frog()

addActor(frog, Location(400, 560), 90)

initCars()

show()

doRun()

Page 228

B MEMO

In order to capture keyboard events, you can also register the callbacks keyPressed(e) and
keyReleased(e). In contrast to keyRepeated(code), the key code must be fetched from the
parameter e with e.getKeyCode(). Moreover, keyPressed(e) is less suitable in this game
because there is a delay after pressing and holding down the button until the following press
events are triggered.

If you do not know the key codes, you should write a small test program that writes them out:

from gamegrid import *

def onKeyPressed(e):
print "Pressed:" ,e.getke yCode()

def onKeyReleased(e):

print "Released:" , e.getke yCode()
makeGameGrid(800, 600, 1, N one, ‘“sprites/lane.gif" , False,
keyPressed = onKeyPressed , keyReleased = onKeyReleased)
show()

B COLLISION EVENTS

The procedure to detect collisions between actors is simple: When generating a vehicle car, you
say that the frog should trigger an event when colliding with a car, using the method

frog.addCollisionActor(car)

The collision event triggers the method collide(), located in the class Frog. There, you treat the
event according to your own wishes, for example you could make the frog jump back to the
starting position.

from gamegrid import *

H#oemmmmm e class Frog ----------------
class Frog (Actor):
def __init__(self):
Actor.__init__(self , "sprites/frog.gif")
self.setCollisionCi rcle(Point(0, -10), 5)

def collide(self, actorl, actor2):
self.setLocation(Lo cation(400, 560))
return 0

#ommmemmmeeeeenee class Car --------=--=-=--
class Car (Actor):
def __init__(self, path):
Actor.__init__(self , path)

def act(self):
self.move()
if self.getX() < -100:
self.setX(1650)
if self.getX() > 1650:
self.setX(-100)

def initCars():

for i in range(20):

car = Car("sprites/c ar' + str(i) + "gift)
frog.addCollisionAc tor(car)

if i<5:

Page 229

addActor(car, Location(350 * i, 100), 0)
if i>=5 and i < 10:

addActor(car, L ocation(350 * (i - 5), 220), 180)
if i>=10 and i < 15:
addActor(car, L ocation(350 * (i - 10), 350), 0)
if i>=15:
addActor(car, L ocation(350 * (i - 15), 470), 180)

def onKeyRepeated(keyCode):

if keyCode == 37: # left
frog.setX(frog.getX() - 5)

elif keyCode == 38: # up
frog.setY(frog.getY() - 5)

elif keyCode == 39: #righ t

frog.setX(frog.getX() + 5)

elif keyCode == 40: # down

frog.setY(frog.getY() + 5)

makeGameGrid(800, 600, 1, None, "sprites/lane.gif" , False,
keyRepeated = onKeyRep eated)

setSimulationPeriod(50)

frog = Frog()

addActor(frog, Location(400, 560), 90)

initCars()

show()

doRun()

H MEMO

The method collide() is not an actual callback, but rather a method of the class Actor that is
overridden in Frog. This is why you do not need to register collide() with a named parameter.

By default, the collision event is triggered when the bounding rectangles of the sprite images
overlap. However, you can also change the collision areas in shape, size, and position to fit the
sprite image. For this, you can use the following methods of the class Actor:

Methode Collision area

setCollisionCircle(centerPoint, radius) circle with a given center and radius (in pixels)

non-transparent image pixels (only with a partner

setCollisionImage
9e0 that has a circle, line, or point as a collision area)

setCollisionLine(startPoint, endPoint) line between the given start and end points
setCollisionRectangle(center, width,

. gle(rectangle with a given center, width, and height
height)
setCollisionSpot(spotPoint) an image pixel

All methods use a relative pixel coordinate system with the zero point in the center of the
sprite image, a positive x-axis going to the right, and a positive y-axis going down.

The frog image is 71 x 41 pixels in size. So, for example,
you can add the following to the constructor of Frog

self.setCollisionCircle(Point(0, -10), 5)

so that a vehicle has to drive over the circle with a radius of
5 pixels around the head of the frog to trigger a collision
event.

(Since the collision area is cached for efficiency reasons, it may be necessary to restart
TigerJython so that your changes are taken into effect.)

Page 230

M GAME SUPERVISOR AND SOUND

In many games it is necessary that an "independent game supervisor" is made responsible for
the compliance with the game rules, the distribution of points, and the proclamation of the
winner at game over. Similar to daily life, it is also better if the task is not allocated to a
character in the game, but rather to an independent part of the program. The main part of the
program is especially well suited for this, which continues to runs after the initialization of the
game. Add a loop to the end of the existing program so that it periodically checks the game and
reacts accordingly. You should, however, not implement a very tight loop without a delay(), as
this will unnecessarily waste computing power, which can lead to delays in the remaining
execution of the program. The loop should stop when the game window is closed. You can ensure
this with isDisposed = True. The supervisor can, for example, limit the number of attempts and
also count and display the number of successful and unsuccessful crossings of the road.

Dealing with the game over situation is often especially tricky, since one has to consider different
variants. It is also often the case that you want to play the game several times without
restarting the program.

You can use your knowledge from the chapter Sound to include sound effects. The easiest way to
do this is to use the function playTone().

from gamegrid import *

#ommmemmmeeeeenee class Frog ----------------
class Frog (Actor):
def __init__(self):

Actor.__init__(self , "sprites/frog.gif")
def collide(self, actorl, actor2):

global nbHit
nb Hit +=1
pl ayTone([("c"h'a'f™ , 100)])
self.setLocation(Lo cation(400, 560))

return 0O

def act(self):
globa | nbSuccess
if self.getY() < 15:
nbSuccess += 1

playTone([("c'e'g'c"™" , 200)])
self.setLocatio n(Location(400, 560))
#ommmm e class Car ----------------

class Car (Actor):
def __init__(self, path):
Actor.__init__(self , path)

def act(self):
self.move()
if self.getX() <-100:
self.setX(1650)
if self.getX() > 1650:
self.setX(-100)

def initCars():

for i in range(20):
c ar = Car("sprites/c ar" + str(i) + "gift)
frog.addCollisionA ctor(car)
if i<5:
addActor(car, L ocation(350 * i, 90), 0)
if i>=5 and i< 10:
addActor(car, Location(350 * (i - 5), 220), 180)
if i>=10 and i < 15:
addActor(car, L ocation(350 * (i - 10), 350), 0)

Page 231

if i>=15:
addA ctor(car, L ocation(350 * (i - 15), 470), 180)

def onKeyRepeated(keyCode):

if keyCode == 37: # left
frog.setX(frog.getX() - 5)

elif keyCode == 38: # up
frog.setY(frog.getY() - 5)

elif keyCode == 39: #righ t

frog.setX(frog.getX() + 5)

elif keyCode == 40: # down

frog.setY(frog.getY() + 5)

makeGameGrid(800, 600, 1, N one, ‘'sprites/lane.gif" , False,
keyRepeated = onKeyRepe ated)

setSimulationPeriod(50)

setTitle("Frogger")

frog = Frog()

addActor(frog, Location(400, 560), 90)

initCars()

show()

doRun()

Game supervision
maxNbLifes = 3

nbHit=0

nbSuccess =0

while not isDisposed():

if nbHit + nbSuccess == m axNbLifes: # game over
addActor(Actor("sprites/gameover.gif"), Location(400, 285))
removeActor(frog)
doPause()
setTitle("#Success: " + str(nbSuccess) + " #Hits " + str(nbHit))
delay(100)
B MEMO

The counting of successes with nbSuccess and failures with nbHit takes place in the class
Frog. This is why these variables have to be declared as globals. You could also use static or
instance variables of the Frog class. At game over an Actor image with a text is inserted, the
frog is removed, the simulation cycle is stopped with doPause(), and finally, the supervisor
loop is left with break. You could also use a TextActor, which makes it possible to adjust the
text at runtime.

rate = nbSuccess / (nbSuccess + nbHit)

ta = TextActor(" Game Over: Success Rate =" + str(rate) + "% ",
DARKGRAY, YELLOW, Font ("Arial" , Font.BOLD, 24))
addActor(ta, Location(200, 287))

B EXERCISES

1. Replace the background image and the vintage car photos with animal images that swim in
a river (crocodiles, etc.).

2. Introduce a scoring system and a time limit for the crossing: Each successful crossing
should give you 5 points, each hit should take away 5 points. Exceeding the time limit

should minus 10 points and put the frog back at the starting point.

3. Add some of your own ideas to the game.

Page 232

7.4 GRID GAMES, SOLITAIRE BOARD GAME

M INTRODUCTION

In a certain class of computer games, tokens are restricted to be located on cells in a grid
structure whereby the cells often have the same size and are arranged in a matrix. The
consideration of this location restriction on a grid structure substantially simplifies the
implementation of the game. As the name implies, the game library JGameGrid is particularly
optimized for grid-like games.

In this chapter you will gradually develop the peg solitaire with the English board layout. You will
get to know important solution methods that you can apply to all grid games.

PROGRAMMING CONCEPTS: Game board, game rules, specifications, game over

Il BOARD INITIALIZATION, MOUSE CONTROL

There is a regular arrangement of holes or recesses in a
board into which you can either plug pegs or put marbles.
The best-known Solitaire board uses a board with a
cross-like arrangement of 33 holes and is called the English
board. At the start of the game, all the holes except for the
center hole are filled with marbles. As the name Solitaire
implies, the game is usually played by a single person.

The following rules apply: a turn consists of moving a
marble onto a free hole by skipping exactly one marble
either horizontally or vertically. The skipped marble is
removed from the game board.

An English Solitaire board from India, 1830
© 2003 puzzlemuseum.com

The goal is to "clear up" all the marbles from the board, except for the last marble. If the last
marble ends up in the center, the game is considered to be solved especially well. When Solitaire
is implemented as a computer game, you should be able to "grab" a certain marble by pressing
the mouse button and move it by holding down and dragging. When you release the mouse
button, the game checks if the turn followed the rules of the game. If you make an illegal move
the marble will jump back to its previous location, and if you make a legal move the marble will
appear at the new location and the skipped marble will be removed from the board.

With this, the specification is clear and you can start with the implementation. As always, this is
done step by step, and you should make sure that your program is running at each of these
steps. It is perfectly obvious to use a game grid with 7x7 cells, without using the corner cells.
First you draw the board in the function initBoard() using the background image
solitaire_board.png which is included in the distribution of TigerJython.You implement the mouse
controls with the mouse callbacks mousePressed, mouseDragged, and mouseReleased.

At a Press event you keep track of the current cell location and the marble currently in it. You
can obtain the marble with getOneActorAt() and you will receive None if the cell is empty. If
you write out important results in a status bar (or in the console), the development process will
be easier to control and mistakes easier to find.

Page 233

During the Drag event you move the visible image of the
marble to the current cursor position using
setLocationOffset(). You also move it to any mouse
position away from the middle of the cells, so that a
continuous motion arises. It is important that this does
not move the marble actor itself, but only its sprite image
(hence the term offset). With this, you can avoid any
difficulties with superimposed actors.

In this first version, the marble should simply jump back
to its original position upon a Release event. You can do
this by calling setLocationOffset(0, 0).

from gamegrid inport *

def isMarbl eLocation(loc):
if loc.x <0 or loc.x > 6 or loc.y <0 or loc.y > 6:
return Fal se
if loc.x in [0, 1, 5, 6] and loc.y in [0, 1, 5, 6]:
return Fal se
return True

def initBoard():
for x in range(7):
for y in range(7):
Il oc = Location(x, y)
i f isMarbleLocation(loc):
mar bl e = Actor("sprites/ marble.png")
addAct or (mar bl e, 1oc)
removeAct or sAt (Location(3, 3)) # Renove marble in center

def pressEvent(e):
gl obal startLoc, novingMarble
startLoc = tolLocationlnGrid(e.getX(), e.getY())
movi ngMar bl e = get OneAct or At (startLoc)

i f nmovi ngMarbl e == None:

set StatusText ("Pressed at " + str(startLoc) + ". No marble found")
el se:

set StatusText ("Pressed at " + str(startLoc) + ". Marble found")

def dragEvent (e):
i f novi ngMarbl e == None:
return
startPoint = toPoint(startlLoc)
novi ngMar bl e. set Locati onOf f set (e. get X() - startPoint.Xx,
e.getY() - startPoint.y)

def rel easeEvent(e):
i f nmovi ngMarbl e == None:
return
nmovi ngMar bl e. set Locati onCf f set (0, 0)

makeGameGrid(7, 7, 70, None, "sprites/solitaire_board.png", False,
mousePressed = pressEvent, mouseDragged = dragEvent,
nmouseRel eased = rel easeEvent)

set BgCol or (Col or (255, 166, 0))

set Si mul ati onPeri od(20)

addSt at usBar (30)

set St atusText ("Press-drag-rel ease to make a nove.")

i ni t Board()

show()
doRun()

Highlight program code (ctrl+C to copy, Ctrl+V to paste)

Page 234

B MEMO

Instead of moving the actual actor while dragging, you can just move its sprite image. For this,
use setLocationOffset(x, y) where x and y are coordinates relative to the current center
point of the actor.

You have to carefully distinguish between the coordinates of the mouse and the cell coordinates
when dealing with mouse movements. You can use the functions toLocationInGrid(pixel_coord)
and toPoint(location_coord) to convert between these coordinates.

If you start at an empty cell, the drag and release events lead to an infamous program crash.
This is because you are trying to call a method with movingMarble that has the value None.

b JGameGrid Fatal Error

Traceback (most recent call last):
File "<string>", line 33, in dragEvent
AttributeErron 'MoneType' chject has no attribute 'setlocationOffset’

In order to avoid this error, leave the callbacks with an immediate return right at the
beginning.

B IMPLEMENTING THE GAME RULES

How would you verify the game rules with the real game? You would have to know which marble
you started with, so you would need to know its starting location start. You would then need to
know where you want to move the marble to, which is the cell location dest. The following
conditions must be met in order to make a legal move:

. At start there is a marble

. At dest there is no marble

. dest is a cell belonging to the board

. start and dest are either horizontally or vertically two cells apart
. There is a marble in the cell between them, too

u b W N~

It is a good idea to implement these conditions in a function getRemoveMarble(start, dest)
that returns the marble to be removed after a legal turn and returns None after an illegal turn.

Thus, you should call this function at the release event and remove the returned Actor from the
board using removeActor() if the turn was legal.

from gamegrid inport *

def getRenpbveMarbl e(start, dest):

if getOneActorAt(start) == None:
return None
if getOneActorAt(dest) != None:

return None
if not isMarblelLocation(dest):
return None

if dest.x - start.x == 2 and dest.y == start.y:

return getOneActor At (Location(start.x + 1, start.y))
if start.x - dest.x == 2 and dest.y == start.y:

return getOneActor At (Location(start.x - 1, start.y))
if dest.y - start.y == 2 and dest.x == start.x:

return getOneActor At (Location(start.x, start.y + 1))
if start.y - dest.y == 2 and dest.x == start.x:

Page 235

return get OneActor At (Location(start.x, start.y - 1))

def isMarblelLocation(loc):
if loc.x <0 or loc.x >6 or loc.y <0 or loc.y > 6:
return Fal se
if loc.x in [0, 1, 5, 6] and loc.y in [0, 1, 5, 6]:
return Fal se
return True

def initBoard():
for x in range(7):
for y in range(7):
|l oc = Location(x, y)
if isMarblelLocation(loc):
marble = Actor("sprites/ marble. png")
addActor (marbl e, |oc)
renoveAct or sAt (Location(3, 3)) # Remobve narble in center

def pressEvent(e):
gl obal startLoc, novingMarble
startLoc = tolLocationlnGrid(e.getX(), e.getY())
movi ngMar bl e = get OneAct or At (startLoc)

i f nmovi ngMarbl e == None:

set StatusText ("Pressed at " + str(startLoc) + ". No marble found")
el se:

set StatusText ("Pressed at " + str(startLoc) + ". Marble found")

def dragEvent (e):
i f movi ngMar bl e == None:
return
start Point = toPoint(startLoc)
novi ngMar bl e. set Locati onOf f set (e.get X() - startPoint.x,
e.getY() - startPoint.y)

def rel easeEvent(e):
i f movi ngMar bl e == None:
return
destLoc = toLocationlnGrid(e.getX(), e.getY())
movi ngMar bl e. set Locati onCf f set (0, 0)
removeMar bl e = get RenbveMar bl e(startlLoc, destlLoc)
if removeMarbl e == None:
set Stat usText (" Rel eased at " + str(destLoc) + ". Not a valid nove.")
el se:
removeAct or (r emoveMar bl e)
movi ngMar bl e. set Locati on(dest Loc)
set St at usText ("Rel eased at " + str(destLoc)+ ". Marble removed.")

startLoc = None
movi ngMar bl e = None

makeGameGrid(7, 7, 70, None, "sprites/solitaire_board.png", False,
mousePressed = pressEvent, mouseDragged = dragEvent,
mouseRel eased = rel easeEvent)

set BgCol or (Col or (255, 166, 0))

set Si nul ati onPeri od(20)

addsSt at usBar (30)

set St at usText ("Press-drag-rel ease to nake a nmove.")

i ni t Board()

show()
doRun()

Highlight program code (ctri+C to copy, Ctrl+V to paste)

Page 236

B MEMO

Instead of using several early returns to leave the function getRemoveMarble(), you could also
combine the conditions with a Boolean operation. Which programming technique is considered
to be more appropriate is a matter of opinion.

M CHECKING FOR GAME OVER

Now all that remains is checking if the game is over at the end of each turn. The game is
certainly over if only a single marble is left in the game, which means you have achieved the goal
of the game.

However, you may forget that there are other game constellations
where the game is considered to have ended, namely when there is
more than one marble on the board, but you can no longer make a legal ‘
turn. It is not certain whether you will ever run into this situation with ® ©
legal moves, but you have to program defensively to make sure that 0

you always stay on the safe side. You can expect Murphy's law to also be
true for programming: "If anything can go wrong, it goes wrong".

In order to get the situation under control, you can test for each remaining marble individually
whether it can be used in a legal move, by implementing a function isMovePossible(). There,
you check for each marble whether there is a removable intermediary marble in combination
with any empty spot [more...].

fromgamegrid inport *

def checkGaneOver ():
gl obal isGaneOver
mar bl es = get Actors() # get remaining marbles
if len(marbles) ==
set St at usText (" Gane over. You won.")
i sGameOver = True
el se:
check if there are any valid noves |eft
if not isMovePossible():
set St atusText (" Ganme over. You lost. (No valid nmoves avail able)")
i sGameOver = True

def isMovePossible():
for a in getActors(): # run over all remaining marbles
for x in range(7): # run over all holes
for y in range(7):
loc = Location(x, y)
if getOneActorAt(loc) == None and \
get RenoveMar bl e(a. get Location(), Location(x, y)) != None:
return True
return Fal se

def get RenobveMarbl e(start, dest):

if getOneActorAt(start) == None:
return None
i f getOneActorAt(dest) != None:

return None
if not isMarblelLocation(dest):

return None
if dest.x - start.x == 2 and dest.y == start.y:

return get OneActor At (Location(start.x + 1, start.y))
if start.x - dest.x == 2 and dest.y == start.y:

return getOneActor At (Location(start.x - 1, start.y))
if dest.y - start.y == 2 and dest.x == start.x:

return getOneActor At (Location(start.x, start.y + 1))

Page 237

if start.y - dest.y == 2 and dest.x == start.x:
return get OneActor At (Location(start.x, start.y - 1))
return None

def isMarblelLocation(loc):
if loc.x <0 or loc.x >6 or loc.y <0 or loc.y > 6:
return Fal se
if loc.x in [0, 1, 5, 6] and loc.y in [0, 1, 5, 6]:
return Fal se
return True

def initBoard():
for x in range(7):
for y in range(7):
Il oc = Location(x, V)
if isMarblelLocation(loc):
marble = Actor("sprites/ marble. png")
addActor (marbl e, |oc)
renoveAct or sAt (Location(3, 3)) # Renmobve narble in center

def pressEvent(e):
gl obal startLoc, novingMarble
if isGameOver:
return
startLoc = toLocationlnGrid(e.getX(), e.getY())
nmovi ngMar bl e = get OneAct or At (startLoc)

i f nmovi ngMarbl e == None:

set StatusText ("Pressed at " + str(startLoc) + ".No nmarble found")
el se:

set StatusText ("Pressed at " + str(startLoc) + ".Marble found")

def dragEvent (e):
if isGameOver:
return
i f movi ngMar bl e == None:
return
startPoint = toPoint(startlLoc)
movi ngMar bl e. set Locati onCf f set (e. get X() - startPoint.x,
e.getY() - startPoint.y)

def rel easeEvent (e):
if isGameOver:
return
i f movi ngMar bl e == None:
return
destLoc = toLocationIlnGrid(e.getX(), e.getY())
novi ngMar bl e. set Locati onCOf f set (0, 0)
renoveMar bl e = get RemoveMar bl e(startLoc, destLoc)

if removeMar bl e == None:
set St at usText (" Rel eased at " + str(destlLoc)
+ ". Not a valid nmove.")
el se:

removeAct or (renoveMar bl e)
movi ngMar bl e. set Locati on(destLoc)
set Stat usText (" Rel eased at " + str(destlLoc)+
"“. Valid nove - Marble removed.")
checkGaneOver ()

startLoc = None
movi ngMar bl e = None
i sGameOver = Fal se

mekeGameGrid(7, 7, 70, None, "sprites/solitaire_board. png", False,
mousePressed = pressEvent, mpouseDragged = dragEvent,
mouseRel eased = rel easeEvent)

set BgCol or (Col or (255, 166, 0))

set Si nul ati onPeri od(20)

addSt at usBar (30)

Page 238

set St at usText ("Press-drag-rel ease to nmake a nmove.")
i ni t Board()

show()
doRun()

Highlight program code (ctri+C to copy, Ctrl+V to paste)

B MEMO

After each turn, you check if the game is over using checkGameOver(), If it is over, the
game is in a very specific state that you can distinguish with the Boolean variable (a flag)
isGameOver = True .

In particular, you must remember to stop all the mouse actions in Game Over. You can do this
with an immediate return from the mouse callbacks.

B EXERCISES

1. Create a French Solitaire board.

2. Expand the Solitaire board with a score that counts and writes out the number of turns. The
game should also be able to restart by pressing the space bar.

3. Familiarize yourself with solution strategies of Peg solitaire with the help of a teacher or the
Internet [more...].

4. Create a Solitaire board from your own imagination.

Page 239

7.5 SPRITE ANIMATION

M INTRODUCTION

When working with the game library JGameGrid, all tokens should be derived from the class
Actor so that they already include many important features and capabilities without any
necessary programming effort. However, they get their specific appearance loaded from an
image file, called a sprite.

Actors in a game are animated in various ways: they move across the game area and change
their appearance in the process, e.g. their posture or expression. For this reason, an Actor object
can be assigned any number of different sprite images that are distinguished by an integer index
(the sprite ID). This is simpler than modeling Actors with different sprites via class derivation.

Game tokens also often change their place, direction, and rotation angle. The rotation angle
should automatically be adjusted to the direction of the movement. In JGameGrid, for efficiency
reasons, one has to already specify at their definition whether Actors can be rotated and which
sprite images they are assigned. The latter are, at the creation of the Actor object, loaded into an
image buffer that also contains the rotated images. At runtime, the images therefore do not have
to be loaded from the hard drive or otherwise transformed. By default, 60 sprite images are
generated for every 6 degrees of rotation. JGameGrid uses an animation concept also available in
other game libraries, particularly Greenfoot [more...] .

Fundamental animation principle:

The method act(), defined for the class Actor(), has an empty definition part, and so it
returns immediately. The user-defined derived actors then override act() and thereby
implement the specific behavior of the actor.

When adding a character to the game window with addActor(), it will be inserted into an
act-order list (ordered by Actor classes). An internal game loop (in this case also called a
simulation cycle) periodically runs through this list and subsequently calls all the actors'
specific act() methods due to polymorphism.

For this ingenious principle to work, the actors have to be cooperative, i.e. act() must have
short running code. Loops and delays have especially catastrophic effects, since other actors
must wait for their own call of act().

The drawing of the sprite images happens according to the following principle. In the game loop,
the images of all Actors are copied into a screen buffer according to the order in the paint-order
list and finally rendered in the game window. The order of execution thus determines the
visibility of the sprite images: images of later actors cover the ones of all previously drawn
actors, they lie above them, so to speak. Since the actors are added to the paint-order list when
addActor() is called, sprites added later will lie above the others. [more...]

Although any number of sprite images can be assigned at the initialization of an Actor, they
cannot be changed at runtime.

PROGRAMMING CONCEPTS: Simulation cycle, cooperative code, factory class, static variable,
decoupling

Page 240

M MOVING A BOW AND SHOOTING ARROWS

You want to shoot arrows that move on a natural trajectory (parabola) using a crossbow that you
control with the keyboard. You will use these arrows later to slice flying fruit in half.

You write a class Crossbow that is derived from the class Actor. When calling the constructor of
the base class Actor, you use True to say that it is a rotatable actor. The value 2 indicates that
there are 2 sprite images, namely one with a cocked crossbow that has an arrow attached to it
and the other for a relaxed crossbow without an arrow. The image files are automatically
searched for under the name sprites/crossbow_0.gif and sprites/crossbow_1.gif and are found in
the distribution of TigerJython.

Actor.__init__(self, True, "sprites/crossbow.gif" , 2)

The crossbow is controlled with keyboard events: You can change the direction using the cursor
up/down keys and you can shoot the arrow with the spacebar. The callback keyCallback() is
registered in makeGameGrid() as keyPressed.

The arrow class Dart already gets a bit more complicated, as the arrows have to move on a
parabolic trajectory in an x-y coordinate system, with the horizontal x-axis and the vertical y-axis
pointing down. The trajectory is not determined by a curve equation, but rather iteratively as a
change in the short time dt. It is known from kinematics that the new speed coordinates (vx’,
vy') and the new location coordinates (px’, py') after the time difference dt are calculated as
follows (g = 9.81m/s”2 is the gravitational acceleration):

VX' = VX
vy' = vy + g *dt

px'= px + vx * dt
py' = py + vy * dt

You determine the starting values (initial conditions) in the
method reset(), which is automatically called when you add
the Dart instance to the game area.

You can give the arrow a new location and direction in act().
To save some resources, you remove it from the board as
soon as it is outside of the visible window and then bring the
crossbow into the firing position again.

from gamegrid import *
i nport math

e LEELEEE class Crossbow --------------m-mmommmn
cl ass Crossbow (Actor):
def __init__(self):
Ac tor.__init__(self, True, "sprites/crossbow.gif" , 2)

R class Dart ----------------
class Dart (Actor):
def __init__(self, speed):
Ac tor.__init__(self, True, "sprites/dart.gif")
se If.speed = speed
self.dt = 0.005 * getSimulationPeriod()

Called when actor is added to GameGrid

def reset(self):

S elf.px = self.getX()

self.py = self.getY()

self.vx = self.speed * math.cos(math.radians(self.getDirection()))
self.vy = self.speed * math.sin(math.radians(self.getDirection()))

def act(self):
s elf.vy = self.vy + g * self.dt

Page 241

self.px = self.px + self.vx * self.dt
self.py = self.py + self.vy * self.dt
self.setLocation(Location(int(self.px), int(self.py)))
self.setDirection(math.degrees(math.atan2(self.vy, self.vx)))
if not self.isInGrid():
self.removeSelf()
crossbow.show(0) # Load crossbow

- E nd of class definitions --------------------

def keyCallback(e):

code = e.getKeyCode()

if code == KeyEvent.VK_UP:

cr ossbow.setDirection(crossbow.getDirection() - 5)

elif code == KeyEvent.VK_DOWN:

cr ossbow.setDirection(crosshow.getDirection() + 5)

elif code == KeyEvent.VK_SPACE:

if crossbow.getldVisible() == 1: # Wait until crossbow is loaded

return

crossbow.show(1) # crossbow is released

dart = Dart(100)

a ddActorNoRefresh(dart, crossbow.getLocation(),

crossbow.getDirection())

screenWidth = 600
screenHeight = 400
g=29.81

makeGameGrid(screenWidth, screenHeight, 1, False, keyPressed = keyCallback)
setTitle("Use Cursor up/down to target, Space to shoot.")
setBgColor (makeColor("skyblue"))

crossbow = Crossbow()

addActor(crossbow, Location(80, 320))

setSimulationPeriod(30)

doRun()

show()

Highlight program code (ctri+C to copy, Ctrl+V to paste)

MEMO

When calling the constructor of the class Actor you indicate whether the actor is rotatable and
whether it is assigned more than one sprite image. [more...]

You rotate the direction of the arrow continuously into the direction of the velocity so that it has
a natural flight appearance.

FRUIT FACTORY AND MOVING FRUITS

Your program should use three different types of fruits: melons, oranges and strawberries. The
fruits are continuously generated in a random order and then move from the upper right edge to
the left with a randomly varied horizontal speed on a parabolic trajectory. The three different
types of fruit have many similarities and just a few small differences. It would therefore not be a
good idea to derive the classes Melon, Orange, and Strawberry directly from Actor, because you
would have to re-implement the shared properties in each class which leads to frowned-upon
duplicated code. In this situation, it is appropriate to define a helper class Fruit where the the
similarities can be implemented and where the specific fruits Melon, Orange, and Strawberry can
be derived from..

You delegate the generation of fruit to a type of class called factory class. Although it does not
have a sprite image, you can (also) derive it from Actor so that act() can be used to produce new
fruits. A Factory class has a specific feature: Although it produces multiple fruits, there is only a

Page 242

single instance [more...]. Because of this, it is not common to include a constructor which is
intended for the creation of multiple instances. Factory classes therefore have a method called
create() (or a similarly meaningful name), that creates a single object of the class and returns it
as a function value. Each subsequent call of create() then merely provides the already created

factory instance.

Since the method create() is invoked without an instance,
it must be statically defined with @staticmethod.

At the creation of the FruitFactory, the maximum number of
fruits that the factory can create is specified in the variable
capacity. Also, each Actor can call setSlowDown() to slow
down the calling frequency of act().

o™

&

L2
¥ e

from gamegrid import *
i nport random

def act(self):
se If.movePhysically()
self.turn(10)

def movePhysically(self):
s elf.dt = 0.002 * getSimulationPeriod()

self.vy = self.vy + g * self.dt # vx = const
self.px = self.px + self.vx * self.dt
se If.py = self.py + self.vy * self.dt

self.setLocation(Location(int(self.px), int(self.py)))
self.cleanUp()

def cleanUp(self):
if not self.isInGrid():
self.removeSelf()

#o-emee- class Melon -----------
class Melon (Fruit):
def __init__(self, vx):
Fr uit.__init__(self, "sprites/melon.gif" , VX)

#o-emee- class Orange -----------
class Orange (Fruit):
def __init__(self, vx):
Fr uit.__init__(self, "sprites/orange.gif" , VX)

#o-eeeee class Strawberry -----------
class Strawberry (Fruit):
def __init__(self, vx):
F ruit.__init__(self, "sprites/strawberry.gif"

H#oommmmmm e class FruitFactory -------------------
cl ass FruitFactory (Actor):

myFrui tFactory = None

myCapacity = 0

Page 243

o class Fruit --------------cmmmommmmn
class Fruit (Actor):
def __init__(self, spritelmg, vx):
Ac tor.__init__(self, True, spritelmg, 2) # rotatable, 2 sprites
self.vx = vx
se If.vy =0
def reset(self): # Called when Fruit is added to GameGrid
self.px = self.getX()
se If.py = self.getY()

nbGenerated = 0

@sta ticmethod
def create(capacity, slowDown):
if FruitFactory.myFruitFactory == None:
FruitFactory.myCapacity = capacity
FruitFactory.myFruitFactory = FruitFactory()
FruitFactory.myFruitFactory.setSlowDown(slowDown)
slows down act() call for this actor

return FruitFactory.myFruitFactory

def act(self):
if FruitFactory.nbGenerated == FruitFactory.myCapacity:
print "Fact ory expired"
return

VX = -(random.random() * 20 + 30)
r = random.randint(0, 2)
if r==
fruit = Melon(vx)
elif r==
fruit = Orange(vx)
else :
fruit = Strawberry(vx)
FruitFactory.nbGenerated += 1
y = int(random.random() * screenHeight / 2)
addActorNoRefresh(fruit, Location(screenWidth-50, y), 180)

FACTORYCAPACITY = 20
FACTORY_SDWDOWN = 35
screenWidth = 600
screenHeight = 400

g=9.81

makeGameGrid(screenWidth, screenHeight, 1, False)

setTitle("Use Cursor up/down to target, Space to shoot.")
setBgColor (makeColor("skyblue"))

factory = FruitFactory.create(FACTORY_CAPACITY, FACTORY_SLOWDOWN)
addActor(factory, Location(0, 0)) # needed to run act()
setSimulationPeriod(30)

doRun()

sho w()

Highlight program code (ctri+C to copy, Ctrl+V to paste)

MEMO

In a static method, the parameter self is not available. Therefore, all variables assigned in
create() must be static variables (the class name is prepended) [more...].

Certain functions or methods may still be incompletely coded in a development phase. You can,
for example, merely write out to the console that they have been called. You do this here by
printing "Factory expired”. With the adding of actors in the GameGrid using addActor(), the
image buffer is automatically rendered on the screen so that the actor is immediately visible.
As soon as the simulation cycle is started, the rendering happens at every cycle anyway. That
is why in this case, you should use addActorNoRefresh() since rendering too frequently can
cause the screen to flicker.

ASSEMBLING AND DEALING WITH COLLISIONS

The two program parts just written may well have been developed by two research groups. The
Page 244

next task is to merge these parts, which is not always easy. However, if the programming style
is consistent and mostly decoupled as it is here, merging the code is significantly easier.

Additionally, you will incorporate a new functionality where the fruits are cut in half when they
are hit by an arrow. We have already prepared this, as the fruits have two sprite images: one for
the whole fruit and one for the halved fruit.

As you already know, collisions between actors are detected by a collision event. For this, you
determine what the possible collision partners are for each actor. Consider the following: when
creating an arrow, all currently existing fruits are potential collision partners.

However, do not forget that more fruits are added during the movement of the arrow. That is
why you also need to declare all existing arrows (maybe there is only one) as collision partners
when creating a fruit.

In JGameGrid you can also pass addCollisionActors() a whole list of actors as collision partners
(more specifically an ArrayList). With getActors(class) you will get a list with all the actors of the
specified class, which you can pass on after converting it to an ArraylList.

® &

from gamegrid import *
i nport random
import math

o class Fruit -------------cccmmemmo-
class Fruit (Actor):
def __init__(self, spritelmg, vx):
A ctor.__init__(self, True, spritelmg, 2)
self.vx = vx
self.vy =0
self.isSliced = False
def reset(self): # Called when Fruit is added to GameGrid
self.px = self.getX()
se If.py = self.getY()

def act(self):
se If.movePhysically()
self.turn(10)

def movePhysically(self):

se If.dt = 0.002 * getSimulationPeriod()
self.vy = self.vy + g * self.dt

self.px = self.px + self.vx * self.dt

self.py = self.py + self.vy * self.dt
self.setLocation(Location(int(self.px), int(self.py)))
self.cleanUp()

def cleanUp(self):
if not self.isInGrid():
self.removeSelf()

Page 245

def sliceFruit(self):
if not se |lf.isSliced:
self.isSliced = True
self.show(1)

def collide(self, actorl, actor2):
act orl.sliceFruit()
return 0

#oeeee class Melon -----------
class Melon (Fruit):

def __init__(self, vx):

Fr uit.__init__(self, "sprites/melon.gif"
#o--me- class Orange -----------
class Orange (Fruit):

def __init__(self, vx):

F r uit.__init__(self, "sprites/orange.gif"
#o--me- class Strawberry -----------
class Strawberry (Fruit):

def __init__(self, vx):

Fr uit.__init__(self, "sprites/strawberry.gif"
e EEEL LR e class FruitFactory -------------------
cl ass FruitFactory (Actor):

myCapa city =0
myFruitFactory = None
nbGenerated = 0

@staticmethod
def create(capacity, slowDown):
if FruitFactory.myFruitFactory == None:
FruitFactory.myCapacity = capacity
FruitFactory.myFruitFactory = FruitFactory()
FruitFactory.myFruitFactory.setSlowDown(slowDown)
return FruitFactory.myFruitFactory

def act(self):
S elf.createRandomFruit()

def createRandomFruit(self):

, VX)

, VX)

» VX)

if FruitFactory.nbGenerated == FruitFactory.myCapacity:

print
return

"Fact ory expired"”

VX = -(random.random() * 20 + 30)
r = random.randint(0, 2)

if r==
fruit = Melon(vx)

r==1:

fruit = Orange(vx)

else :

fruit = Strawberry(vx)

FruitFactory.nbGenerated += 1
y = int(random.random() * screenHeight / 2)

elif

addActorNoRefresh(fruit, Location(screenWidth-50, y), 180)
for a new fruit, the collision partners are all existing da rts

fruit.addCollisionActors(toArrayList(getActors(Dart))

#ommmmmm e class Crossbow -------------mmcomoaen
cl ass Crossbhow (Actor):

def __init__(self):

A ctor.__init__(self, True,

#ooeeeee class Dart ----------------
class Dart (Actor):
def __init__(self, speed):

Page 246

"sprites/crossbow.gif"

' 2)

Actor.__init__(self, True, "sprites / dart.gif")
se If.speed = speed
self.dt = 0.005 * getSimulationPeriod()

Called when actor is added to GameGrid

def reset(self):

se If.px = self.getX()

self.py = self.getY()

dx = math.cos(math.radians(self.getDirectionStart()))
self.vx = self.speed * dx

dy = math.sin(math.radians(self.getDirectionStart()))
self.vy = self.speed * dy

def act(self):
se If.vy = self.vy + g * self.dt
self.px = self.px + self.vx * self.dt
self.py = self.py + self.vy * self.dt
self.setLocation(Location(int(self.px), int(self.py)))
self.setDirection(math.degrees(math.atan2(self.vy, self.vx)))
if not self.isInGrid():
self.removeSelf()
crossbow.show(0) # Load crossbow

def collide(self, actorl, actor2):

ac tor2.sliceFruit()
return 0O
#o----e- End of class definitions --------------------

def keyCallback(e):

code = e.getkeyCode()
if code == KeyEvent.VK_UP:
cr ossbow.setDirection(crossbow.getDirection() - 5)
elif code == KeyEvent.VK_DOWN:
cr ossbow.setDirection(crossbhow.getDirection() + 5)
elif code == KeyEvent.VK_SPACE:
if crossbow.getldVisible() == 1: # Wait until crossbow is loaded
return
crossbow.show(1) # crossbow is released
dart = Dart(100)
a ddActorNoRefresh(dart, crossbow.getLocation(),

crossbow.getDirection())
for a new dart, the collision partners are all existing fru
dart.addCollisionActors(toArrayList(getActors(Fruit)))

FACTORY_CAPACITY = 20
FACTORY_SLOWDOWN = 35
screenWidth = 600
screenHeight = 400

g=9.81

makeGameGrid(screenWidth, screenHeight, 1, False, keyPressed = keyCallback)
setTitle("Use Cursor up/down to target, Space to shoot.")
setBgColor (makeColor("skyblue"))

factory = FruitFactory.create(FACTORY_CAPACITY, FACTORY_SLOWDOWN)
addActor(factory, Location(0, 0)) # needed to run act()

crossbow = Crossbow()

addActor(c rossbow, Location(80, 320))
setSimulationPeriod(30)

doRun()

show()

its

Highlight program code (ctri+C to copy, Ctrl+V to paste)

Page 247

B MEMO

Once you have declared the collision partners of your actor with addCollisionActor() or
addCollisionActors(), you have to insert the method collide() in the class of the actor which is
automatically called at each collision. The return value must be an integer that determines how
many simulation cycles collision will now be deactivated (in this case 0). A number greater than
0 is sometimes necessary so that the two partners have time to separate before collisions
become active again.

Also note that in collide(self, actorl, actor2)) actorl is the actor of the class, in which
collide() is defined.

Collision areas are the surrounding rectangles of the sprite image by default (of course they are
rotated along with the rotation of the actors). For the dart, you could also set the collision area
to a circle around the arrowhead, so that the fruits that collide with the back part of the arrow
do not get halved.

setCollisionCircle(Point(20, 0), 10)

B DISPLAYING THE GAME STATE AND DEALING WITH GAME OVER

For dessert, you refine the code by incorporating a game score and user information. The easiest
way is to write them out in a status bar.

As you already know, it is favorable to implement a game supervisor in the main part of the
program. It should write out the number of the hit and missed fruits and end the game when the
fruit factory reaches its capacity. It shows the final score, generates a Game Over actor, and
prevents the game from continuing on.

from gamegrid import *
import random
import math

#ommmees class Fruit --------=mmmmmmmmmmaenn
class Fruit (Actor):
def __init__(self, spritelmg, vx):
A ctor.__init__(self, True, spritelmg, 2)
self.vx = vx
self.vy =0
self.isSliced = False
def reset(self): # Called when Fruit is added to GameGrid
self.px = self.getX()
se If.py = self.getY()

def act(self):
se If.movePhysically()
self.turn(10)

def movePhysically(self):

se If.dt = 0.002 * getSimulationPeriod()
self.vy = self.vy + g * self.dt

self.px = self.px + self.vx * self.dt

self.py = self.py + self.vy * self.dt
self.setLocation(Location(int(self.px), int(self.py)))
self.cleanUp()

def cleanUp(self):
if not self.isInGrid():
if not self.isSliced:
FruitFactory.nbMissed += 1
self.removeSelf()

Page 248

def sliceFruit(self):
if not se |f.isSliced:
self.isSliced = True
self.show(1)
FruitFactory.nbHit += 1

def collide(self, actorl, actor2):
act orl.sliceFruit()
return 0

H#ommemee class Melon -----------
class Melon (Fruit):
def __init__(self, vx):
Fr uit.__init__(self, "sprites/melon.gif" , VX)

- class Orange -----------
class Orange (Fruit):
def __init__(self, vx):
F r uit.__init__(self, "sprites/orange.gif" , VX)

- class Strawberry -----------
class Strawberry (Fruit):
def __init__(self, vx):
Fr uit.__init__(self, "sprites/strawberry.gif" , VX)

B class FruitFactory -------------------
cl ass FruitFactory (Actor):

myCapa city =0

myFruitFactory = None

nbGenerated = 0

nbMissed = 0

nbHit=0

@staticmethod
def create(capacity, slowDown):
if FruitFactory.myFruitFactory == None:
FruitFactory.myCapacity = capacity
FruitFactory.myFruitFactory = FruitFactory()
FruitFactory.myFruitFactory.setSlowDown(slowDown)
return FruitFactory.myFruitFactory

def act(self):
S elf.createRandomFruit()

@staticmethod
def createRandomFruit():
if FruitFactory.nbGenerated == FruitFactory.myCapacity:

return
vx = -(random.random() * 20 + 30)
fr uitClass = random.choice([Melon, Orange, Strawberry])

fruit = fruitClass(vx)
FruitFactory.nbGenerated += 1
y = int(random.random() * screenHeight / 2)
addActorNoRefresh(fruit, Location(screenWidth-50, y), 180)
for a new fruit, the collision partners are all existing da rts
fruit.addCollisionActors(toArrayList(getActors(Dart)))

H#ommmmm e class Crossbow --------------comeumno-
cl ass Crosshow (Actor):
def __init__(self):
Ac tor.__init__(self, True, "sprites/crossbow.gif" , 2)

- class Dart ----------------
class Dart (Actor):
def __init__(self, speed):
A ctor.__init__(self, True, "sprites/dart.gif")
se If.speed = speed
self.dt = 0.005 * getSimulationPeriod()

Page 249

Called when actor is added to GameGrid

def reset (self):

se If.px = self.getX()

self.py = self.getY()

dx = math.cos(math.radians(self.getDirectionStart()))
self.vx = self.speed * dx

dy = math.sin(math.radians(self.getDirectionStart()))
self.vy = self.speed * dy

def act(self):
if isGameOver:

return
self.vy = self.vy + g * self.dt
se If.px = self.px + self.vx * self.dt

self.py = self.py + self.vy * self.dt
self.setLocation(Location(int(self.px), int(self.py)))
self.setDirection(math.degrees(math.atan2(self.vy, self.vx)))
if not self.isInGrid():
self.removeSelf()
crossbow.show(0) # Load crossbow

def collide(self, actorl, actor2):

ac tor2.sliceFruit()
return 0
#o------ End of class definitions --------------------

def keyCallback(e):

code = e.getkeyCode()
if code == KeyEvent.VK_UP:
cr ossbow.setDirection(crossbow.getDirection() - 5)
elif code == KeyEvent.VK_DOWN:
cr ossbow.setDirection(crossbow.getDirection() + 5)

elif code == KeyEvent.VK_SPACE:
if isGameOver:

return
if crossbow .getldVisible() == 1: # Wait until crossbow is loaded
return

crossbow.show(1) # crossbow is released

dart = Dart(100)

a ddActorNoRefresh(dart, crossbow.getLocation(), crossbow.getDirection())

for a new dart, the collision partners are all existing fru its

dart.addCollisionActors(toArrayList(getActors(Fruit)))
FACTORY_CAPACITY = 20
FACTORY_SLOWDOWN = 35
screenWidth = 600
screenHeight = 400
g=9.81
isGameOver = False
makeGameGrid(screenWidth, screenHeight, 1, False, keyPressed = keyCallback)
setTitle("Use Cursor up/down to target, Space to shoot.")
setBgColor (makeColor("skyblue"))
addStatusB ar(30)
factory = FruitFactory.create(FACTORY_CAPACITY, FACTORY_SLOWDOWN)
addActor(factory, Location(0, 0)) # needed to run act()
crossbow = Crossbhow()
addActor(c rossbow, Location(80, 320))
setSimulationPeriod(30)
doRun()
show()
while not isDisposed() and not isGameOver:

Don't show message if same
oldMsg =
msg = "#hit: " +str(FruitFactory.nbHit)+ " #missed: " +str(FruitFactory.nbMissed)

if msg !=oldMsg:

Page 250

setStatusText(msg)
oldMsg = msg

if FruitFactory.nbHit + FruitFactory.nbMissed == FACTORY_CAPACI TY:
isGameOver = True

removeActors(Dart)

setStatusText("You smashed " + str(FruitFactory.nbHit) + " out of "
+s tr(FACTORY_CAPACITY) + " fruits")

add Actor(Actor("sprites/gameover.gif"), Location(300, 200))

delay(100)

Highlight program code (ctri+C to copy, Ctrl+V to paste)

B MEMO

Most user actions should not be allowed at Game Over. The easiest way to implement this is to
introduce a flag isGameOver = True with which you prohibit the actions using a premature
return in the corresponding functions and methods.

You should still be allowed to move the crossbow at Game Over, but not shoot.

B EXERCISES

1. Count the number of arrows and restrict it to a reasonable maximum number. Once you
have used up the specified amount of arrows, the game will also be over. Add appropriate
status information too.

2. Add a point score system for the halving of the fruits:
Melon: 5 points

Orange: 10 points
Strawberry: 15 points

3. Make it so that when you press the Enter key after Game Over, the game starts over.

4. Expand or modify the game with some of your own ideas.

Page 251

Most Important Methods of the Library Class JGameGrid

Module import: from gamegrrid import *

Class GameGrid (global functions when makeGameGrid() is called)

Method

Action

GameGrid(nbHorzCells, nbVertCells,
cellSize, color)

generates a game window with a given number of horizontal and
vertical cells, a given cell size, visible grid lines in a given color,
and a navigation bar

GameGrid(nbHorzCells, nbVertCells,
cellSize, color, bgiImagePath)

generates a game window with a given number of horizontal and
vertical cells, a given cell size, grid lines, a background image,
and a navigation bar

GameGrid(nbHorzCells, nbVertCells,
cellSize, None, bgImagePath, False)

generates a game window with a given number of horizontal and
vertical cells, a given cell size, no grid lines, a background image,
and no navigation bar

act()

calls periodically after the start of the simulation cycle

addActor(actor, location)

adds the actor to the game window at the given position

addKeyListener(listener)

registers the keyboard listener

addMouselistener(listener,
mouseEventMask)

registers the mouse listener

addStatusbar(height)

adds a status window to GameGrid

delay(time) waits for a set amount of time (in milliseconds)

doPause() pauses the simulation cycle

doStep() performs the simulation step by step

doReset() sets all actors at the starting position and restarts the simulation
doRun() starts the simulation cycle

getActors(Actor class) returns all actors of a given class in a list

getBg() returns the reference to GGBackground

getBgColor() returns the background color

getKeyCode() returns the key code of the last pressed key

getOneActorAt(location)

returns the first actor in the given cell (zero if none)

getOneActor(Actor class)

returns the first actor of the given class (zero if none)

getRandomEmptyLocation()

returns a random empty cell location

getRandomLocation()

returns a random cell location

hide()

hides the game window without closing it

isAtBorder(location)

returns True if the cell is located at the edge of the game window

isEmpty(location)

returns True if the cell is empty

isInGrid(location)

returns True if the cell is inside of the game window

kbhit()

returns True if a key has been pressed

toLocation(x, y)

returns the cells with the pixel coordinates x and y

openSoundPlayer("wav/ping.wav")

produces a sound file. The following sounds are available in
tigerjython.jar: bird.wav, boing.wav, cat.wav,
click.wav,explore.wav,frog.wav. notify.wav, boing.wav

play()

plays the provided sound

refresh()

refreshes the game window

Page 252

registerAct(onAct)

registers the callback onAct that is called in every simulation cycle

registerNavigation(started=onStart,
stepped=onStep, paused=onPause,
resetted = onReset, periodChanged =
onPerionChange)

registers the callbacks onStart, onStep, onPause, onReset,
onPeriodChange that are called when the navigation bar is visible
(not all necessary)

removeActor (actor)

removes an actor from the game window

removeActorsAt(location)

removes all actors located in the specified cell

removeAllActors()

removes all actors from the game window

reset() puts the defined simulation back to the starting position, with the
exception of actors which have already been removed
show() shows the game window

setBgColor(color)

sets the background color

setSimulationPeriod (milisec)

sets the period of the simulation loop

setStatusTest(text)

sets the text in the status bar

setTitle(text)

sets the title in the window title bar

Class Actor

Actor(spritepath)

generates an actor with the given sprite

Actor(True, spritepath)

generates a rotatable actor with the given sprite

Actor(spritepath, nbSprites)

generates an actor with multiple sprites (index _0, _1,...
e.g..fish_0.gif , fish_1.gif,...)

Actor(True, spritepath, nbSprites)

generates a rotatable actor with multiple sprites

act()

calls periodically after the start of the simulation cycle

addActorCollisionListener(listener)

registers the collision listener

addCollisionActor(actor)

registers the collision partner

addMouseTouchListener (listener)

registers the MouseTouchListener

collide(actorl, actor2)

callback when a collision occurs, returns the number of simulation
cycles, while the other events are suppressed

getCollisionActors()

returns a list of the collision candidates

getDirection()

returns the direction of movement

getldVisible()

returns the Id of the visible sprites

getNeighbours(distance)

returns a list of all actors that are the given distance away

getNextMovelocation (location)

returns the /ocation after the next move()

getX() returns the current horizontal cell coordinate

getY() returns the current vertical cell coordinate

hide() hides the actor, but does not remove it. After reset() it becomes
visible again

isInGrid() returns True if the actor is located inside of the game window

isHorzMirror()

returns True if the figure is mirrored horizontally

isVertMirror()

returns True if the figure is mirrored vertically

isMoveValid()

returns True if a move() of the actor stays inside of the window

isNearBorder() returns True if the actor is located near the edge of the window
isVisible() returns True if the actor is visible
move() moves the actor with the current direction into an adjacent cell

move(distance)

moves the actor to the given distance

Page 253

reset()

called if the actor is added to the GameGrid or if the reset button
is pressed

setCollisionCircle (spriteld,center,
radius)

sets the circle within the actors which is used for collisions

setCollisionLine(spriteld, startPoint,
endPoint)

sets the line within the actors which is used for collisions

setCollisionRectangle(spriteld, center,
width, height)

sets the rectangle within the actors which is used for collisions

setCollisionSpot(spriteld, spot)

sets the point within the actors which is used for collisions

setCollisionImage(spriteld)

wahlt fir die Kollision nicht transparente Pixel . Nur verfligbar,
wenn der Partner spot, line oder circle verwendet

setHorzMirror(True)

flips the image horizontally

setVertMirror(True)

flips the image vertically

setSlowDown(factor)

slows the call of the method act() for actors with the given factor

setLocation(location)

places the actor in the given cell

setLocationOffset(point)

shifts the middle of the sprite image relative to the center of the
cell (location not changed)

setPixelLocation(location)

sets the actor to the given pixel coordinate (location/offset can be
customized)

setX(x) sets the x-coordinate to the specified value
setY(y) sets the y-coordinate to the specified value
show() makes the sprite with the ID 0 visible

show(spriteld)

makes the sprite with the specified ID visible

showNextSprite ()

shows the next sprite image (spriteld increases by 1 (modulo
nbSprites))

showPreviousSprite()

shows the previous sprite image (spriteld -1 becomes nbSprites -
1)

removeSelf()

removes the actor. After reset() it no longer appears

reset()

is called by GameGrid.addActor() and when the reset button is
pressed

turn(angle)

changes the direction of movement by the given angle (in degrees
clockwise)

Class Location

Location(x, y)

generates a location object with the given horizontal and vertical
cell coordinates

Location(location)

generates a location object with the given location (clone)

clone()

returns the new location with the same coordinates

equals(location)

returns True if the current location is identical to the one given
above

get4CompassDirectionTo(location)

returns a list with 4 adjacent locations (WEST, EAST, NORTH,
SOUTH)

getCompassDirectionTo(location)

returns a list of 8 neighboring locations (also diagonally)

getDirectionTo(location)

returns the direction of the current to the given position in degrees
(0 degrees = east)

getNeighbourLocation(direction)

returns one of the 8 neighboring cells. It returns the cell that is
closest to the given direction

Page 254

getNeighbourLocations(distance)

returns a list of all the cells with centers inside of the given
distance

getX()

returns the current horizontal cell coordinate

getY()

returns the current vertical cell coordinate

Class GGBackground

clear()

clears the background and fills it with the current background color

clear(color)

clears the background and fills it with the given background color

drawCircle(center, radius)

draws a circle with the given center and radius (pixel coordinates)

drawline(x1,y1, x2, y2)

draws a line with the given end points (pixel coordinates)

drawlLine(ptl, pt2)

draws a line with the given end points (pixel coordinates)

drawPoint(pt)

draws a point (pixel coordinates)

drawRectangle(ptl, pt2)

draws a rectangle with the given diagonal vertices (pixel
coordinates)

drawText(text, pt)

writes text to the position with the given starting point (pixel
coordinates)

fillCell(location, color)

fills the given cell with the given color (pixel coordinates)

fillCircle(center,radius)

draws a filled circle with the given center and radius (pixel
coordinates)

getBgColor()

returns the current background color

getColor(location)

returns the background color in the center of a cell (actors are not
taken into account)

save()

saves the current background

setBgColor(color)

changes the background color

setFont(font)

sets the font

setLineWidth(width)

sets the line width

setPaintColor(color)

sets the drawing color

setPaintMode()

draws regardless of the existing background

setXORMode(color)

the second drawing produces a background again??

restore()

restores the previously saved background

Page 255

chapter eight

COMPUTER EXPERIMENTS

Learning Objectives

You can solve simple stochastic problems with a computer simulation using random
numbers.

You understand that random experiments are subject to statistical fluctuations, you can
represent results as a frequency distribution and interpret them.

You can examine the significance of a sample using a computer simulation and you know the
concept of chi-square tests.

You know how to use the computer to simulate populations.

You know what the Mandelbrot set is and how to represent it graphically.

You know what fundamentals and overtones are and you know the concept of a spectrum.

"l only believe in statistics that | doctored myself."

Attributed to Winston Churchill

Page 256

8.1 SIMULATIONS

E INTRODUCTION

Computer simulations do not only play an important role in research and in the industry, but
also also in the finance world. They are used to simulate the behavior of a real system using a
computer. Computer simulations have the advantage of being inexpensive and
environmentally friendly, as well as safe, compared to real experiments and studies.
However, they can usually never reflect reality with full accuracy. There are many reasons for
this:

O reality can never be perfectly represented by numbers due to errors in measurement
(except for in enumerations)

O often the interaction of the components is not precisely known, since either the
underlying laws are not exact [more...] or not all influences are taken into account
[more...]

Nevertheless, computer simulations are becoming more and more precise with increasing
computational power, just think of the weather forecasts for the next few days.

Chance plays an exceptionally big role in our lives, as we make many decisions based on an
intuitive assessment of probabilities and not just on the basis of purely logical arguments.
However, the use of chance can also greatly simplify problems with exact solutions. One
example is that it can be very time consuming to exactly determine the shortest possible path
from A to B on a road map with many different connection possibilities using an algorithm; it
is sufficient for practical use to find the most probably shortest possible path [more...]

PROGRAMMING CONCEPTS: Computer simulation. computer experiment, statistical
fluctuations

B THE COMPUTER AS A GAME PARTNER

Your companion Nora suggests the following game: .--o

"You can throw three dice. If you roll a six, you win and N -

I'll give you a marble. If you don't roll a six, I win and ‘\‘ & o

you have to give me a marble". iy 0 o

At first glance the game appears to be fair because you .---

think about it quickly and realize that for each die, the 3 o® -®

probability of rolling a six is 1/6, and so the chance to ‘\ 0 8 0.--

roll a six in the first, second, or third turn is 1/6 + 1/6 \ .\ P 3 4 0

+1/6 = 1/2. & W e .
Vo

You can verify this thought process with the computer and your programming skills. You
thereby assume that it does not matter whether you roll the 3 dice consecutively or all at the
same time. So in other words, the probability of a die to obtain a certain number is
independent of the other dice and it is always 1/6.

There are two ways to tackle the problem, either statistically or combinatorially. The
statistical solution corresponds to the real game. You simulate the throwing of the dice by
repeatedly generating 3 random numbers between 1 and 6 and then counting the winning
cases.

Page 257

fromrandom i nport randint
n = 1000 # nunber of ganes
won = 0
repeat n:

a = randint(1, 6)

b =randint(1, 6)

¢ =randint(l, 6)

if a==6or b==6or c ==

won += 1

print "Wn:", won, " of ", n, "ganmes"
print "My winning percentage:", won / n

Highlight program code (Ctrl+C copy, Ctrl+V paste)

The result is a winning percentage of about 0.42, not 0.5 as you expected. The value easily
changes from simulation to simulation though, because it is subject to statistical
fluctuations. As you might intuitively expect, the result is more accurate the more tests
you do.

Statistical fluctuations are of great importance in computer simulations.

In order to examine them, you conduct

the experiment with purposely few games 100
(let's say 100) many times (let's say 300
10000 times) and draw a frequency
diagram of the games won. It results in 800
an interesting bell-shaped distribution, 700
typical for statistics.
600
You use a GPanel as a graphics window in
the program. You can also display a 500
coordinate grid using drawGrid(). 400
Implement a single hundred-times test
with the function sim(), which returns the A0
number of games won whose fluctuations 200
you want to investigate. 100
N .
o 10 20 30 40 50 B0 YO 80 90 100
from gpanel inport *
fromrandom i nport randint
z = 10000
n = 100
def sim():
won = 0
repeat n:
a = randint(1l, 6)
b = randint(1, 6)
¢ = randint(1l, 6)
if a==6o b===6o0r ¢c ==
won += 1
return won
makeGPanel (-10, 110, -100, 1100)
drawGid(0, 100, 0, 1000)
h =10 * (n + 1)
title("Sinmulation started. Please wait...")

Page 258

repeat z:

X = sim()

h[x] += 1
title("Sinmulation ended")

i neWdt h(2)

set Col or ("bl ue")

for x in range(n + 1):
line(x, 0, x, h[x])

Highlight program code (Ctrl+C copy, Ctrl+V paste)

MEMO

The maximum of the distribution is approximately at 42, since the probability of winning is
around 0.42 and you play 100 games each time. If you play 100 times with Nora it is possible
that you win the game over 50 times, despite your only 0.42 chance of winning. However, the
probability for this is quite low (ca. 5 %) and therefore the game is not fair. Computer
experiments with random numbers are subject to statistical fluctuations that get smaller the
larger number of attempts.

For the combinatorial solution, you let the computer run all possible rolls with 3 dice one after
another. The first, second, and third roll can each result in a number from 1 to 6. In the
nested for loop you form all triples of numbers and count the total possibilities with the
variable possible, whereas you count your winning cases which contain at least one 6 with the
variable favorable.

possible =0
favorable = 0
for i in range(l, 7):
for j in range(l, 7):
for k in range(l, 7):
possible += 1

if i ==6 or j == 6 or k == 6:
favorable += 1
print "favorable:", favorable, "possible:", possible
print "My winning percentage:", guenstige / possible

Highlight program code (Ctrl+C copy, Ctrl+V paste)

This results in 91 favorable of 216 possible cases and thus a winning probability w = favorable
/ possible of 91/216 = 0.42, which you also get with the computer simulation.

ADDITIONAL MATERIAL

You could, of course, also solve this problem entirely without a computer. For this, think of
the following: There are three possible winning events E1, E2, E3:

El: Getting a 6 on the first roll. Probability: 1/6

E2: No 6 in the first roll, but a 6 in the second round.
Probability: 5 /6 * 1/6

E3: No 6 in either the first or second roll, but a 6 in the third round.
Probability: 5/6 * 5 /6 * 1/6

Since E1, E2, and E3 are independent of each other, the probability is the sum, i.e. 1 /6 + 5
/36 + 25 /216 = 91/216 = 0.421296.

Page 259

You can display the process as a tree:

&
1/6 516
1.roll b [)
1/6 16 56
2.rol . o
e 116 5/6
3. roll . .

25/216

There is also an ideal way to get the solution: the probability of rolling no 6's at all is p = 5/6
* 5/6 * 5/6 = 125/216. Therefore, the desired probability isw =1 - p = 91/216.

B EXERCISES

1.

4%,

The Duke Ferdinando de Medici of Florenz determined in the year 1600 that when
throwing 3 dice a total of 9 or 10 pips (the dots on the die) can be obtained with a same
number of possibilities:

Sum of pips 9 Sum of pips 10
1+2+6 1+3+6
1+3+5 1+4+5
2+2+5 2+24+6
2+34+4 2+3+4+5
3+3+4+3 2+44+4

The Duke found, however, that rolling the totals of 9 and 10 are not equally probable
and he asked mathematics professor Galileo Galilei for advice. Calculate these
probabilities with a computer simulation in two ways:

a. statistically

b. combinatorially

Using a statistical computer simulation, determine the probability that at least two
children have the same birthday (no leap year) in a class of (at least) 20 children.

In 1650 in Paris, the Chevalier de Méré asked the mathematician Blaise Pascal about the
odds of the following two events:

a. rolling at least one 6 after 4 rolls

b. rolling at least one double 6 after 24 rolls.

He believed that the odds of winning are equal, since even though with b) the probability
of winning is 6 times as low, there 6 times as many tries. Was he right?

In the game with Nora, determine how high the probability is that you win more than 50
times in a game consisting of 100 rolls.

Page 260

8.2 POPULATIONS

H INTRODUCTION

Computer simulations are often used to make predictions about the behavior of a system in the
future, based on time observation or a certain time span in the recent past. Such predictions can
be of great strategic significance and can prompt us, for example, to rethink early enough in a
scenario leading to a catastrophe. Hot topics today are the prediction of the global climate and
population growth.

We understand a population as a system of individuals whose number changes as a result of
internal mechanisms, interactions, and external influences over the course of time. If external
influences are disregarded, we speak of a closed system. For many populations the change in
population size is proportional to the current size of the population. The change of the current
value is calculated from the growth rate as follows:

new value - old value = old value * growth rate * time interval

Because the left shows the difference of the new value from the old value, this relationship is
called a difference equation. The growth rate can also be interpreted as an increase probability
per individual and time unit. If it is negative, it decreases the size of the population. The growth
rate may well change over the course of time.

PROGRAMMING CONCEPTS: pjfference equation, growth rate, exponential/limited growth, life
table, population pyramid, predator-prey system

l EXPONENTIAL GROWTH

Population projections are of great interest and can massively affect the political decision-making
process. The latest example is that of the debate going on about the regulation of the proportion
of foreigners in the population.

You can find the number of inhabitants in Switzerland each year for the years 2010 and 2011
from the Swiss Federal Statistical Office (source:: http://www.bfs.admin.ch, keyword:
STAT-TAB):

2010: Total zg = 7 870 134, of which sg
2011: Total z;y = 7 954 662, of which sy

6 103 857 are Swiss
6 138 668 are Swiss

Can you create a forecast of the proportion of foreigners for the next 50 years from this
information? You should first calculate the number of foreigners using the numbers ag = zg - sg
and a; = z1 - sg and from this the annual growth rate between 2010 and 2011 for Swiss and
foreigners.

bzw. ra= 4=40 — 58195
S0 ap

Page 261

Tokad

It should now be easy for you to Auslirder
investigate the composition of the
population for the next 50 years, provided 18
that these growth rates remain the
same. You can do this with a calculator, a
spreadsheet program, or with Python. You " -
can visualize the calculated values in a " ~
graph.

\

mon o JmEs 00 J09% JO0 3% J0AD JaS 20D 0% 0G0

from gpanel import *

source: Swiss Federal Statistical Office, STAT-TAB
z2010 = 7870134 # Total 2010

z2011 = 7954662 # Total 2011
s2010 = 6103857 # Swiss 2010
52011 = 6138668 # Swiss 2011

def drawGrid():
Horizontal
for 1 in range(11):
y = 2000000 * i
line (0, y, 50, y)
text (-3, y, str(2 * i))
Vertical
for k in range(1l1l):
x =5 * k
line(x, 0, x, 20000000)
text (x, -1000000, str(int(x + 2010)))

def drawLegend() :
setColor ("lime green")
y = 21000000
move (0, v)
draw (5, vy)
text ("Swiss")
setColor ("red")
move (15, vy)
draw (20, vy)
text ("foreigner")
setColor ("blue'")
move (30, vy)
draw (35, vy)
text ("Total")

makeGPanel (-5, 55, -2000000, 22000000)
title("Population growth extended")
drawGrid ()

drawLegend ()

a2010 z2010 - s2010 # foreigners 2010
a2011 = z2011 - s2011 # foreigners 2011

lineWidth (3)

setColor ("blue'")

line (0, z2010, 1, =z2011)
setColor ("lime green'")

Page 262

line (0, s2010, 1, s2011)
setColor ("red")
line (0, a2010, 1, a2011)

rs = (s2011 - s2010) / s2010 # Swiss growth rate
ra = (a2011 - a2010) / a2010 # foreigners growth rate
iteration
s = s2011
a = a2011
z = s + a
s0ld = s
alld = a
z0ld = z
for 1 in range (0, 49):
s = s + rs * s # model assumptions
a=a+ ra * a # model assumptions
z = s + a

setColor ("blue™)

line(i + 1, z0ld, i + 2, z)
setColor ("lime green")
line(i + 1, s01d, i + 2, s)
setColor ("red")

line(i + 1, a0Old, i + 2, a)

z0ld = z
sOld = s
a0ld = a

Highlight program code (Ctri+C to copy, Ctrl+V to paste)

MEMO

As you can gather from the figures, the proportion of foreigners doubles from 2010 to 2035, so
just within 25 years, and in another 25 years it quadruples. The population size obviously
increases proportionally to the constant growth rate. If T is the doubling time, the population
size y after time t for an initial size A is apparently:

y:A*21/T

Since time is in the exponent, this rapid growth is called an exponential growth.

LIMITED GROWTH

Many populations reside in an environment with limited resources. The rapid exponential
increase with a constant growth rate r is therefore bounded. Already about 100 years ago the
biologist Carlson determined the following quantities (mg) for a yeast bacteria culture after each
hour in an experiment:

Page 263

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
9.6 183 [29.0 472 |71.1 |119.1 |174.6 [257.3 [350.7 |441.0 |513.3 |559.7 |594.8 |629.4 [640.8 651.1 |655.9 [659.8 |661.8

You can understand the experimental process with a model where the exponential growth
experiences saturation. For this you can let the growth rate decrease linearly with an increasing
population size y until it is zero at a certain saturation value m.

£ As you can easily verify by substituting y = 0 and y = m, we
get the following formula:

r=rg*(1- X) =*(m-y)
m m

=

With this assumption, you can graphically -
display the temporal process and also draw
the experimental values in a short -
program. To do this, repeat the difference a0
equation with:

]
dy: new value - old value - paaini
y: old value Ve
dt: time increment e 7

-
A: growth rate am j-'
lrl.-'
SO you can write: ’m :
.
o ,f
—p Rk =y ke k] KO)% .
dy=y*r*dt=y*rp*(l m)dt . o
] _.--l"""-'!
1]] a L] a 1 (k' "] e mn

Using the initial value yg = 9.6 mg, the saturation quantity m = 662 mg and the initial growth
rate ro = 0.62 /h we obtain a good correlation between theory and experiment.

from gpanel import *

z = [9.6, 18.3, 29.0, 47.2, 71.1, 119.1, 174.6, 257.3, 350.7, 441.0, 513.3,
559.7, 594.8, 629.4, 640.8, 651.1, 655.9, 659.6, 661.8]

def r(y):
return rO * (1 - y / m)

r0 = 0.62

Page 264

m = 662

makeGPanel (-2, 22, -100, 1100)
title("Bacterial growth")
drawGrid (0, 20, 0, 1000)
lineWidth (2)
for n in range (0, 19):
move (n, z[n])
setColor ("black")
fillCircle (0.2)
if n > 0:
dy =y * r(y)
yNew = y + dy
setColor ("lime green")
line(n - 1, vy, n, yNew)
y = yNew

Highlight program code (Ctri+C to copy, Ctrl+V to paste)

MEMO

Assuming a linear decrease of the growth rate results in an "S” shaped saturation curve typical
of the population size (also called logistic growth or sigmoid curve).

LIFE TABLES

A possible way to measure the health of a population is to look at the probability of surviving a
certain age or of dying at an old age, respectively. If you wish to analyze the age distribution of
the Swiss population, you can use current data from the Federal Statistical Office again, namely
the so-called life tables (source: http://www.bfs.admin.ch, keyword: STAT-TAB). These tables
contain the observed probabilities (gx and gy) for men and women to die at a certain age,
separated by gender. Their determination is basically simple: one considers all deaths in the past
year separately for men and women and calculates the frequency of 0-year-olds (people who
died between birth and one year of age), 1-year-olds, etc. Afterwards, one divides each number
by the total number in the corresponding age group at the beginning of the year.

(You can create an Excel table for 1.0
STAT-TAB and copy the columns for gx 0.g
and gy into text files gx.dat or gy.dat, or

just download the files from here. Copy 08
them into the directory where your 0.7
program is located.) Input the data into 0B
the program in a list gx or gy. Since the 05

numbers sometimes contain spaces or
apostrophes for better readability, you 0.4
must remove them. First, you simply

. . na)
create a graphical representation of the
read data. 0.z
0.1
0.0

wunklhl
0 10 20 20 40 50 &0 ¥0 &0 90 100

Page 265

import exceptions
from gpanel import *

def readData (filename) :
table []
fData = open(filename)

while True:

line = fData.readline() .replace (" "").replace(""'", "")
if line == "":
break
line = line[:-1] # remove trailing \n
try:
g = float(line)
except exceptions.ValueError:
break
table.append(q)
fData.close ()
return table
makeGPanel (-10, 110, -0.1, 1.1)
title("Mortality probability (blue -> male, red -> female)")
drawGrid (0, 100, 0, 1.0)
gx = readData("gx.dat")
gy = readData("qgy.dat")
for t in range(101):
setColor ("blue")
p = agx[t]
line(t, 0, t, p)
setColor ("red")
q = qylt]
line(t + 0.2, 0, t + 0.2, q)
Highlight program code (Ctri+C to copy, Ctrl+V to paste)
MEMO
Nik|
The curve clearly shows that on average, bt
women live longer than men. The course in
the first 30 years of life is also interesting.
jLag?
Significantly more boys than girls die in the
first year of life, as well as during the ages e
from 15- to 30-years old. Come up with some hoges
of your own thoughts about this graph. "
ikl
o
ant
J TRy il l L

Page 266

=

Bl TEMPORAL EVOLUTION OF A POPULATION

With the help of the life table and a
computer program, you can tackle many
interesting demographic questions in a
scientifically correct way. In this example
you examine how a population of 10,000
newborns will evolve over the next 100
years. In doing so, use the values gx and
gy as negative growth rates.

import exceptions
from gpanel import *

n = 10000 # size of the population
def readData(filename) :

table [1
fData = open(filename)

while True:

line = fData.readline() .replace(" ", "").replace("'", "")
if line == "":
break
line = line[:-1] # remove trailing \n
try:

g = float(line)
except exceptions.ValueError:
break
table.append(q)
fData.close ()
return table

makeGPanel (=10, 110, -1000, 11000)
title("Population behavior/predictions (blue -> male, red -> female)")
drawGrid (0, 100, 0, 10000)
gx = readData ("gx.dat")
qy = readData("gy.dat")
x = n # males
y = n # females
for t in range(101):
setColor ("blue")
rx = gx[t]
X = x - x * rx
line(t, 0, t, x)
setColor ("red")
ry = qylt]
Yy =Yy -y *ry
line(t + 0.2, 0, t + 0.2, vy)

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 267

B LIFE EXPECTANCY OF WOMEN AND MEN

In the previous analysis it became clear once again that women live longer than men. You can
also express this difference with a single quantity called the life expectancy. This is the average
achieved age of either women or men.

Briefly recall how an average, for example the average grade of a school class, is defined: You
calculate the sum s of the grades of all students and divide it by the number of students n. If
you are looking for simplicity, you can assume that only the integer grades between 1-6 occur
and so you can calculate s as follows:

s = number of students with the grade 1 * 1 + number of students with the grade 2 * 2 + ...
number of students with the grade 6 * 6

or more generally:
average = sum of (frequency of the value * value) divided by the total number

If you read the frequencies from a frequency distribution h of the values x (in this case, the
grades 1 to 6), one also calls the average the expected value and you can write

Xp ¥*hp+x>*ho+ ... +x,*h,
hy +hy+ ...+ hy

E=

As you can see, the frequencie hj are weighted with their value x;in the sum.

Life expectancy is nothing else than the expected value for the age at which women and men
die. In order to calculate it with a computer simulation, you begin with a certain amount of men
and women (n = 10000) and determine the number of men (hx) or women (hy) that die between
the ages t and t + 1. Evidently these numbers can be expressed as follows, using the size of the
population x and y at the time t which you calculated in the previous program and the death
rates rx and ry:

hx =x *rx bzw. hy =y *ry

n = 10000 # size of the population
def readData(filename) :
table = []

fData = open(filename)

while True:

line = fData.readline() .replace(" ", "")
if line == "":

break
line = line[:-1] # remove trailing \n
try:

g = float(line)
except exceptions.ValueError:
break
table.append(q)
fData.close ()
return table

gx = readData ("gx.dat")
gy = readData("gy.dat")

X = n
y = n
xSum = 0
ySum = 0
for t in range(101):
rx = gxl[t]
X = x - x * rx
mx = x * rx # male deaths

Page 268

ry = qyl[t]

y =y -y *ry
my =y * ry # female deaths
ySum =

print "Female life expectancy:",

xSum = xSum + mx * t # male sum

ySum + my * t # female sum

print "Male life expectancy:", xSum / 10000

ySum / 10000

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

The data of the Swiss population yields a life expectancy of men of about 76 years of women
about 81 years.

POPULATION PYRAMID

In demographic studies, the population is 100
often grouped by year and from this, a
frequency diagram is created. If you have
two groups that you would like to compare,
you can plot the frequencies of one group to
the left and the ones of the other group to
the right. Using this method for comparing
women and men results in a beautiful
pyramid-like graphic.

You can again take the current data (31.
December 2012) from a table that you can
find on the Swiss Federal Statistical Office
website (http://www.bfs.admin.ch,
keyword: STAT-TAB) and copy them from the
Excel table into the test files zx.dat and
zy.dat. You can also download them hier.

import exceptions
from gpanel import *

def readData (filename) :
table = []
fData = open(filename)
while True:
line = fData.readline() .replace(" ", "").replace("'", "")
if line == "":
break
line = line[:-1] # remove trailing \n
try:
g = float(line)
except exceptions.ValueError:
break
table.append(q)
fData.close ()
return table

def drawAxis () :
text (0, -3, "0")
line (0, 0, 0, 100)
text (0, 103, "100"™)

makeGPanel (-100000, 100000, -10, 110)

title("Population pyramid (green -> male, red -> female)")
lineWidth (4)

zx = readData ("zx.dat")

Page 269

zy = readData("zy.dat")
for t in range(101):
setColor ("red")
x = zx[t]
line (0, t, -x, t)
setColor ("darkgreen'")
y = zylt]
line(0, t, vy, t)
setColor ("black™)
drawAxis ()

Highlight program code (Ctri+C to copy, Ctrl+V to paste)

MEMO

It is easy to spot the baby boomers born in the years 1955 - 1965 (47 - 57 years old).

CHANGE OF THE AGE DISTRIBUTION

An analysis of how the age distribution 100

changes over decades can expose important
information, such as how a society changes.
You can simulate the current age
distribution for the next 100 years under the
following conditions:

o There is no immigration or migration
from the outside (closed society)

o Deaths are taken into account
according to the mortality tables

o Each woman of childbearing age from
20 to 39 will have a certain number of
children k (girls and boys are equally
likely). At the moment we will assume
k = 2.

With a key press you can always insert a year?

import exceptions
from gpanel import *

k =2.0

def readData(filename):
table = []
fData = open(filename)
while True:
line = fData.readline() .replace(" ", "").replace("'", "")
if line == "":
break
line = line[:-1] # remove trailing \n
try:
g = float(line)
except exceptions.ValueError:
break
table.append(q)
fData.close ()
return table

def drawAxis():

Page 270

text (0, -3, "0")

line(0, 0, 0, 100)

text (0, 103, "100")

lineWidth (1)

for y in range(1l1l):
line (-80000, 10* y, 80000, 10 * y)
text (str (10 * y))

def drawPyramid():
clear ()

title ("Number of children: " + str(k) + ", year:

", total population: " + str(getTotal()))
lineWidth (4)
for t in range(101):
setColor ("red")
x = zx[t]
line (0, t, -x, t)
setColor ("darkgreen")
y = zylt]
line(0, t, vy, t)
setColor ("black")
drawAxis ()
repaint ()

def getTotal (
total = 0
for t in range(101):
total += zx[t] + zy[t]
return int (total)

)t

def updatePop () :
global zx, zy
zxnew = [0] * 110
zynew = [0] * 110
getting older and dying
for t in range(101):

zxnew[t + 1] = zx[t] - zx[t] * gx[t]
zynew[t + 1] = zy[t] - zyl[t] * qgqylt]
making a baby
r =%k / 20

nbMother = 0

for t in range (20, 40):
nbMother += zy[t]

zxnew[0] = r / 2 * nbMother

zynew[0] = zxnew[O0]

ZX = ZXNnew

zy = zynew

makeGPanel (-100000, 100000, -10, 110)
zx = readData("zx.dat")
zy = readData("zy.dat")
gx = readData ("gx.dat")
gy = readData("gy.dat")
year = 2012
enableRepaint (False)
while True:
drawPyramid ()
getKeyWait ()
year += 1
updatePop ()

"

+ str(year)

+

Highlight program code (Ctrl+C to copy, Ctrl+V to paste)

Page 271

B MEMO

It turns out that the future of the population is very sensitively dependent on the number k.
Even with the value k = 2, the population decreases in the long term. To stop the screen from
flickering when vyou press a key, you should disable automatic rendering with
enableRepaint(False). In drawPyramid() the graphics are then merely deleted from the
backing storage (offscreen buffer), and are only newly rendered to the screen after the
recalculation of repaint().

B EXERCISES

1. A population consists of 2 individuals at time 0. Each year it increases at a birth rate of 10%
(number of births per year per individual). Simulate this for the first 100 years (display it
graphically as a bar graph).

2a. In a non-aging population, the mortality probability always remains the same regardless of
age. There is no such population for living beings, but radioactive atoms (radionuclides)
behave exactly this way. Instead of calling this mortality probability, we call it decay
probability. Simulate a population of 10,000 radionuclides whose decay probability amounts
to 0.1 for the first 100 years (display it graphically as a bar graph).

2b. In the diagram, draw the times at which the population has shrunk to approximately 1/2,
1/4, 1/8, and 1/16 of the initial size, as vertical lines. What can you guess?

2c* Radioactive decay takes place according to the following law:
N=Ng*e™H

No: number of radionuclides at the timet = 0
N: number of radionuclides at the time ¢
A: decay probability per time unit (decay constant)

Enter the best possible adapted curve shape using the color red in the graphic from 2a.

3. Life expectancy can also be calculated by a statistical computer simulation. To do this, you
simulate the life of a single individual from year to year. Let the computer choose a random
number between 0 and 1 and allow the individual to die if the number is less than the
mortality probability g. You then add up the achieved life duration. Once you have performed
this simulation for 10,000 individuals, divide the total by 10,000. Determine the life
expectancy of a female using this method with the values from gy.dat.

ADDITIONAL MATERIAL

@ PREDATOR-PREY SYSTEMS

The behavior of two populations in a particular ecosystem which affect each other is very
interesting. Assume the following scenario:

Bunnies and foxes reside in a closed territory. The bunnies multiply at a constant growth rate rx.
If a fox meets a bunny, there is a certain probability that the fox will snatch it. In turn, the foxes
die with a mortality rate ry. Their growth rate is determined by the consumption of bunnies.

If you assume that the probability of the foxes and bunnies meeting is equal to the product of

the number of bunnies x and foxes y, there are two difference equations for x and y [more...].
Page 272

= * % %
XNew -x =rx *x-gx *x *y -

YNew -y =-ry *y +gy *x *y o
Use the following values: 1ean I’
rx = 0.08 e
ry = 0.2 1300
9x - 0.002 /) !
v M|
a0 ﬂ
and use the initial populations x = 500 ’/’\ Jl,u' \ ./ \ }
L1l
bunnies and y = 20 foxes. For now, perform 7 / \ / l /
the simulation for 200 generations. a0
7T/
00 Euf P /; _ﬁ/ﬁj IH
T o Ve o - J‘l\

from gpanel import *

rx = 0.08
ry = 0.2
gx = 0.002
gy = 0.0004
def dx () :
return rx * x - gx * x * vy
def dy():

return -ry * y + gy * x * vy

x = 500
y = 20

makeGPanel (-20, 220, -200, 2200)
title("Predator-Prey system (red: bunnies, blue: foxes)")
drawGrid (0, 200, 0, 2000)
lineWidth (2)
for n in range (200)

xNew = x + dx ()

yNew = vy + dy ()

setColor ("red")

line(n, x, n + 1, xNew)

setColor ("blue'")

line(n, y, n + 1, yNew)

x = xNew

y = yNew

Highlight program code (Ctri+C to copy, Ctrl+V to paste)

MEMO

The number of the bunnies and foxes consistently fluctuates up and down. Qualitatively, this
cycle is understood as follows: since the foxes eat the bunnies, they multiply particularly
strongly, when there are many bunnies. Since this in turn depletes the population of the
bunnies, the breeding of foxes slows down. It is during this time that the number of bunnies
increases again (even beyond any limits).

Page 273

B EXERCISES

1.Implement a boundary of the habitat for the bunnies according to the logistic growth with a
growth rate rx' = rx(1 - x/m) with otherwise identical values as you did above. Show that
when m = 2000 the oscillation decays over time, whereas when m = 3500 it oscillates

regularly.

00 lapan

facs 1800

1] 100

] 100

Ja0s 100

I50) 30

] 1800

0 | 0

K] a0

]]

I Jpasen n

1 SO0 1000 100 000 500 2000 3500 ANOD AN00 S000 1 SO0 1000 1600 2000 2800 300D 3500 4000 4S0D 000
m = 2000, oscillation decays/fades away m = 3500, oscillation is stable

2.A chart/graph where the sizes of the population are plotted against each other is called a
phase diagram. Write a program that draws the phase diagram for the two cases from
exercise 1. Do you understand the behavior?

100 lsca
40 e
k] Ll
10 184
50 14
50 18
£l . (20
@\
10 | 1\1.'. 148
@
0 :,_,'-_;'_r"// i
T len
u b
] 10 0 300 MG S0 S T0 SW 900 1000 a W0 BN NN 1300 1RO B0 00 G0 3700 3000

Page 274

8.3 HYPOTHESES, STATISTICAL TESTS

H INTRODUCTION

You make a hypothesis (called the null hypothesis), for example to check if the coin lying in
front of you is not a fake, which means that the probability for landing on heads and tails is the
same (p = %2). Or, you might have a die in front of you and make a hypothesis that it is not
loaded, which means that all 6 numbers have the same probability of occurring (p = 1/6). In this
chapter you will learn a method to test your hypothesis, however not with absolute certainty as
you assume a 5% probability (significance level) with which the null hypothesis is wrongly

rejected.

PROGRAMMING CONCEPTS: Null hypothesis, significance, dispersion, Chi-square test

Il A SIGNIFICANTLY FAKE COIN

You begin with the null hypothesis that the coin is not a fake and if you toss it n

you get heads a certain number of times k and tails n - k times.

You repeat the test several times, let's say z

1000

100 times,

= 10,000 times, and the result is a
distribution for k that you can determine 900

with a simulation. As you expect, it is in a -

bell-shaped distribution around the average

value m = 50 [more...]. e
L1l
You now take on the interesting question of
in which area +- s around the average o
value a predetermined percentage lays, -
e.g. 68 % of all tests. You can also
300

determine s, called dispersion, in the

computer simulation by adding up the 200
frequencies to the left and right starting at

the average until you reach 6800.

If you mark the area corresponding to 95% of all cases, you obtain approximately double the

dispersion.

an

an

from gpanel import *
import random

n = 100 # size of the test group
p = 0.5
z = 10000

def showDistribution():
setColor ("blue™)
lineWidth (4)
for t in range(n + 1):
line(t, 0, t, h[t])

def showMean () :
global mean

Page 275

sum = 0
for t in range(n + 1):
sum += h[t] * t
mean = int(sum / z + 0.5)
setColor ("red")
lineWidth (2)
line (mean, 0, mean, 1000)
text (mean - 1, -30, str(mean))

def showSpreading(level):

sum = h[mean]
for s in range(l, 20):
sum += h[mean + s] + h[mean - s]
if sum > z * level:
break

setColor ("green'")
lineWidth (2)
line (mean + s, 0, mean + s, 1000)

text (mean + s - 1, -30, str(mean + s))
line (mean - s, 0, mean - s, 1000)
text (mean - s - 1, -30, str(mean - s))
def sim():
sum = 0
repeat n:
w = random.random ()
if w < p:

sum +=1
return sum

makeGPanel (-0.1 * n, 1.1 * n, -100, 1100)
title("Coin toss, distribution of number'")
drawGrid (0, n, 0, 1000)

h = [0] * (n + 1)
repeat z:
k = sim()
hik] += 1

showDistribution ()
showMean ()

showSpreading (0.68)
showSpreading (0.95)

Programmcode markieren (Ctrl+C kopieren, Ctrl+V einfiigen)

MEMO

If you frequently make a test with 100 coins that are not fake, in 68 % of all cases the number
of tossed heads lies in the area 50 +-5, and 95% of all cases in the area 50 +-10 [more...] .

If you make a test with the coin that is lying in front of you and you get a value for the
number of heads that is greater than 60 or smaller than 40 you reject the hypothesis that the
coin is not fake, in other words, you say that the coin is fake. In this case, you may be
mistaken with a probability of 5% (the significance level). Sometimes you can also concisely
say that the present coin is significantly fake.

A SIGNIFICANTLY LOADED DIE

You have a die in front of you and want to test whether it is a fair die, which means that all
numbers can occur with the same probability of 1/6. You make the hypothesis: The die is not
loaded.

Page 276

Here you will get to know a slightly different method from one that we used with the coin since
there are six, not only two, possibilities that can occur on a roll, namely the numbers from 1 to
6. To be on the safe side you will want to roll the die often, let's say around 600 times, and write

down the frequencies of the numbers that occur.

. Observed Theoretical frequency
Pip number
frequency (u) (expected value e)
1 112 100
2 128 100
3 97 100
4 103 100
5 88 100
6 72 100
Total 600 600

Observed and theoretical frequencies

In order to introduce a measure for the deviation of the observed from the theoretical
occurrences, you need to calculate the relative square deviation for each number (u - €)2 / eand
add up these values. We call the result x2 (pronounced "Chi-square").

This raises the interesting question of how
x2is distributed, meaning how often the
different values of x2 occur in many 600-roll 100
attempts. To find this out, perform another
computer simulation with 10,000 samples
and determine the distribution. For the sake
of simplicity, you can round the obtained 1200
values to whole numbers [more...].

2000

1800

1400

1000

Coincidentally, you again enter a critical -
value for x2, below 95% of all cases. The
simulation results in s = 11 [more...].

L]

1]

from gpanel import *
import random

600 # number of tosses
p=1/26
z = 10000

def showDistribution():
setColor ("blue")
lineWidth (4)
for i in range(21):
line(i, 0, i, h[i])
def showLimit (level):
sum = 0
for i in range(21):
sum += h[i]
if sum > z * level:
break
setColor ("green")
lineWidth (2)
line(i, 0, 1,
text (i, -80,

2000)
str(i))

Page 277

return i

def chisquare (u) :

chisquare = 0
e =n *p
for i in range(l, 7):
chisquare += ((uli] - e) * (uli]l - e)) / e

return chisquare

def sim():
u = [0] * 7
repeat n:
t = random.randint (1, 6)
ult] += 1

return chisquare (u)

makeGPanel (-2, 22, -200, 2200)
title("Chi-square simulation 1s being carried out. Please wait...")
drawGrid (0, 20, 0, 2000)

h = [0] * 21
repeat z:
c = int(sim())
if ¢ < 20:
hic] += 1
else:
h[20] += 1

title("Chi-square test on the die")
showDistribution ()
s = showLimit (0.95)

Observed series
ul = [0, 112, 128, 97, 103, 88, 72]

u2 = [0, 112, 108, 97, 113, 88, 82]

cl = chisquare(ul)

c2 = chisquare (u2)

print "Die with", ul, "Xi-square:", cl, "loaded?", cl > s
print "Die with", u2, "Xi-square:", c2, "loaded?", c2 > s

Highlight program code (Ctri+C to copy, Ctrl+V to paste)

MEMO

The computer simulation exposes the following result: in 95% of all cases, x2 is less than or
equal to the critical value 11. Hence, you have found a method to test if your die is rigged:
calculate x2 from the observed frequency. If the value is greater than 11, you can say with a
5% probability of being wrong that your null hypothesis of it being a fair die is incorrect, and
therefore the die is loaded.

The frequencies of the table above result in x2 = 18.7. In other words, the die has a very high
probability of being loaded. With another die rolled 600 times you get the frequencies u2 =
[112, 108, 97, 113, 88, 82]. Since you obtain x2 = 8.5, there is a low probability that the die
is loaded.

DIFFERENCES IN HUMAN BEHAVIOR

You can also apply the x2 test to a study of the behavior of two groups of people. An interesting
question often asked is whether in a particular context the behavior of females and males should
be appraised to be statistically different, or whether both sexes behave equally.

You assume that the use of Facebook is studied in a secondary school. A total of 106 girls

Page 278

(women) and 86 boys (men) were
results are as follows:

asked whether they have a Facebook account. The survey

Facebook Yes Facebook No Total % Yes
Females 87 19 106 82.0%
Males 62 24 86 72.1%
Total 149 43 192 77.7%

The percentage of people who have a Facebook account is substantially greater among females
than it is with males. But it raises the question of whether this higher proportion is statistically

significant.

For the simulation, you first determine the

probability p of having an account from the 2500
total number n of females and males: 3950
p = (females_yes + males_yes) / n 2000
.) . 1750
With this value you simulate the number of
females who have an account using random 1500
numbers and the total number of females. 1250
This results in fO females with an account
and fl females without one. You do the 1000
same for the males, and you will get mO 750
males with an account and m1 men without
one. These numbers form the values u in 500
the calculation of x2. 250
0 H PR TR

x2=sumof (u-e)?/e o1 2 3 4 & & 7 8 9 10

You must now still determine the expected value e for all four cases. You can assume that p =
(f0 + m0) / n is the total probability for a Yes and correspondingly 1 - p is the total probability
for a No, so you calculate:

Expected value for females- Yes: ef0 = total number of females * p
Expected value for males- Yes: emO0 = total number of males * p
Expected value for females- No: efl = total number of females * (1 - p)
Expected value for men- No em1l = total number of males * p

The rest of the program remains largely unchanged from the die test.

from gpanel import *
import random

z = 10000

survey values/polls
females yes = 87
females no = 19

males yes = 62
males_no = 24

def showDistribution() :
setColor ("blue™)
lineWidth (4)
for i in range(101):
line(i/10, 0, 1/10, h[i])

def showLimit (level):
sum = 0
for 1 in range(101):

Page 279

sum += h[i]
if sum > level * z:
break

setColor ("green")
lineWidth (2)
limit = 1 / 10
line(limit, 0, limit, 1000)
text (limit, -80, str(limit))
return limit

def chisquare(f0, f1, mO, ml):
f: females, m: males, 0O:yes, l:no

w = (f0 + mO) / n # probability of a yes
expected value
ef0 = (£f0 + f1) * w # females-yes
em0 = (m0 + ml) * w # males-yes
efl = (f0 + f1) * (1 - w) # females-no
eml = (mO + ml) * (1 - w) # males-no
add up deviations (u - e)*(u - e) / e
chisquare = (f0 - ef0) * (f0 - ef0) / ef0 \
+ (m0 - emO0) * (m0 - emO0) / emO \
+ (fl1 - efl) * (fl1 - efl) / efl \
+ (ml - eml) * (ml - eml) / eml
return chisquare
def sim():
simulate females
f0 = 0 # yes
f1 = 0 # no
for i in range(females all):
t = random.random ()
if t < p:
fo += 1
else:
fl += 1
simulate males
m0 = 0 # yes
ml = 1 # no
for i in range(males all):
t = random.random ()
if t < p:
m0 += 1
else:
ml += 1
return chisquare(£f0, f1, m0O, ml)
females all = females yes + females no
males all = males yes + males no
n = fema